Yale University
Department of Computer Science

Identifying k-CNF formulas from noisy examples

Dana Angluin and P. D. Laird, Yale University

YALEU/DCS/TR-478
' June 1986

Research funded in part by the National Science Foundation, DCR-8404226.




Abstract

We consider the problem of identifying an unknown subset L of a universal set U,
given an oracle that randomly samples and reports elements of U and classifies
them as to membership in L. The oracle is assumed to make independent random
errors in classifying the reported elements. Valiant has shown that in the absence of
errors, there is an efficient procedure to identify sets described by k-CNF formulas
that produces an “approximately correct” identification with “high probability”.
The main result of this paper is to extend Valiant’s result to the case of noisy
oracles, provided that the error rate is less than 1/2. We also give some general
results indicating how many examples suffice to compensate for this kind of error.
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Identifying k-CNF formulas from noisy examples

Dana Angluin and P. D. Laird, Yale University

1 Introduction

The ability to form general concepts on the basis of particular examples is an
essential ingredient of intelligent behavior. If the examples may contain errors,
the task of useful generalization becomes harder. In this paper we address the
question of how to compensate for randomly introduced errors, or “noise”, in the
example data. The examples are assumed to be generated by a sampling procedure
that randomly mis-classifies examples of a concept as non-examples and vice versa.
The criterion of correct identification we adopt is that of “probably approximately
correct identification”, introduced by Valiant [6]. The main result of the paper is
that identification of k-CNF formulas is feasible under this error model, provided
that the error probability is less than 1/2.

In the remainder of this section we define the notion of “probably approxi-
mately correct identification”, give an example of it, introduce our model of ran-
dom errors in the data, compare it with Valiant’s, and summarize our results.

1.1 Probably approximately correct identification

Valiant has proposed a general criterion of correct identification of a concept from
examples in a stochastic setting [6]. The idea is that after randomly sampling
examples and non-examples of a concept, an identification procedure should con-
jecture a concept that with “high probability” is “not too different” from the
correct concept. This is quantified in the following definitions.

Let L, Lo,... be a countable family of subsets of a countable universe U, and
let D be an unknown probability distribution on the elements of U. The task
is to identify an unknown one of these sets, L., given access only to a sampling
oracle EX(). Each call to EX() randomly selects an element z from the universe
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U according to the distribution D and returns (z,+) if z € L., and returns (z, —)
otherwise .

An identification procedure makes a number of calls to EX() and then con-
jectures one of the sets, L. The success of the identification is measured by two
parameters, € and 8, which are given as inputs to the identification procedure.

The parameter ¢ is a bound on the “difference” between the conjectured set
Ly and the unknown set L,. Define

d(S,T)= > Pi(z

zeSeT

where S and T are any subsets of U, § @ T is the symmetric difference of S and
T, and Pr denotes probability with respect to the distribution D. Thus, d(S,T)
is precisely the probability that in one call to EX() we will draw an element that
is in one but not the other of the two sets.

The parameter § is a confidence parameter; because the calls to EX() are
random experiments, there is always the possibility of getting a wildly unrepresen-
tative sample and drawing a ridiculous conclusion. The parameter é is a bound
on how likely this is.

Putting this together, the identification procedure is said to do probably ap-
prozimately correct identification of L, if and only if

Pr{d(L.«,Lp) < €]21-6.

We abbreviate probably approximately correct identification as pac-identification.

Blumer et al. have investigated this notion of identification and given neces-
sary and sufficient conditions for it in terms of the structure of the hypothesis
space [3]. See their paper also for definitions encompassing the case of continuous
distributions.

1.2 An example: k-CNF formulas

If n and k are positive integers, CNF(n,k) denotes the class of all conjunctive
normal form propositional formulas over the variables z;, z3, ..., , with at most k
literals per clause. For a fixed n, the universe U is the set of all truth assignments
a mapping z1, 22, ..., Tn to the set {0,1}. A formula ¢ in CNF(n, k) is interpreted
as representing the set of all assignments a from U that satisfy ¢, i.e., such that
a(#) = 1. The sampling oracle EX() returns assignments (represented as n-vectors
of 0’s and 1’s for concreteness) marked either + or — according to whether they
satisfy the unknown formula ¢..




Valiant [6] has shown that there is an identification procedure V' that takes as
input n, k, €, and 6, has access to the sampling oracle EX() for an unknown formula
@u, runs in time polynomial in n*, 1/¢, and log 1/6, and does pac-identification of
&, for any ¢« from CNF(n,k).

The procedure V' calculates from n, k, ¢, and § a number, m, of samples to
draw, makes m calls to EX(), and then outputs the conjunction of all clauses over
T1,%2,...,Tn With at most ) literals per clause that are satisfied by every positive
example, i.e., by every assignment a such that some call to EX() returned the
value (a,+).

1.3 A simple model of errors

We introduce a model of random errors, or “noise”, in the sampling oracle EX().
We assume that the sampling oracle is able to draw elements from the relevant
distribution D without error, but that the process of determining and reporting
whether the example is a positive or negative one is subject to independent random
errors with some unknown probability » < 1/2. That is, the experiment performed
by EX() is now assumed to be: draw a random element x from U according to the
distribution D, and then flip a coin that comes up heads with probability 1 —#. If
the coin comes up heads, report z with the correct sign, otherwise, report z with
the reverse of the correct sign. To indicate that the oracle is subject to errors of
this type, it will be denoted EX, (). EXp() is the sampling oracle with no errors
of reporting.

Why do we restrict 7 to be less than 1/2? Clearly, when 7 = 1/2, the errors
in the reporting process destroy all possible information about membership in the
unknown set L., and no identification procedure could be expected to work. When
n > 1/2, there is information about L., but it is equally information about the
complement of L, with the smaller error 1 — . While in principle we might be
able to recognize this situation in domains which are not closed under complement
with respect to U, we have chosen not to pursue this possibility.

What if 5 is very close to 1/2? How could an identification procedure be
expected to work? We assume that there is some information about 5 available
as input to the identification procedure, namely an upper bound #; such that
n < mp < 1/2. Just as an “efficient” identification procedure is permitted in the
absence of errors to run in time polynomial in 1/¢ and 1/6, in the presence of
errors we will permit the polynomial to have 1/(1 — 25;) as one of its arguments.
This quantity is inversely proportional to how close #; is to 1/2, so the closer the
upper bound on the error rate is to 1/2, the longer the identification procedure
will be permitted to run.




How general is this model of errors? It seems appropriate to a setting in which
there is an observable, reliable mechanism selecting examples, and a separate,
noisy one classifying them. However, there are many situations for which this is
not a reasonable assumption, for example the following one. Suppose that correct
examples are being transmitted over a noisy line (say, with independent errors in
each bit); then not only is the sign of the example subject to errors, but a given
example x may be changed into another one z'. In this case, the examples z'
reported by the sampling oracle may come from a different distribution D'. Even
if our results were applicable in this situation, the “difference” of the hypothesis
from the correct set will be measured with respect to the observed distribution D'
instead of the true distribution D, which is not necessarily what is wanted.

1.4 Valiant’s error model

Valiant [5] has considered a rather different error model for the problem of identify-
ing disjunctive normal form formulas (or dually, conjunctive normal form formulas)
from examples. He assumes a small rate of errors, but permits the errors to be
maliciously rather than randomly chosen. In particular, for an error rate of  an
error-prone sampling oracle first flips a coin with probability of success 1—17. If the
coin comes up heads, the sampling and reporting process proceed without error.
If the coin comes up tails, the oracle may give any response. Valiant gives an algo-
rithm that efficiently identifies k-DNF (dually, £-CNF) formulas in the presence of
such errors, provided that the error rate is sufficiently small (proportional to the
minimum of € and é and inversely proportional to the number of k-CNF clauses.)

Valiant suggests the possibility that “the learning phenomenon is only feasible
with very low error rates”. The results of this paper show that nontrivial learning is
in principle still feasible at quite high error rates, provided the errors are randomly
generated in a sufficiently straightforward way.

1.5 . Summary of results

In the next section we consider any finite space of hypotheses, L;, Lo, ...,Ly, and
show that there is a polynomial p such that a sample of size

m 2 p(log AT? 1/5’1°g 1/6’ 1/(1 - 2776))

contains enough information to do pac-identification of each L; from noisy samples.
The following section shows that the approach used to prove this theorem is not
in general computationally tractable, so that we need different methods to achieve
pac-identification from noisy samples in a practical sense.




The main result of the paper is that there is an efficient procedure to do pac-
identification of k-CNF formulas from noisy samples. More precisely, there is a
procedure V' that takes as inputs n, k, €, 6, and 7, has access to a sampling
oracle EX;() for some unknown n < 73 and some unknown formula ¢.; runs in
time polynomial in n¥, 1/¢, log1/6, and 1/(1 — 29;), and does pac-identification
of ¢., for every ¢. in CNF(n,k).

Thus, even in the presence of fairly large random errors in the reporting of
examples, k-CNF formulas can be efficiently pac-identified. Note in particular that
the error rate  may be much larger than the accuracy and confidence parameters
€ and 8. The procedure V/ may be viewed as a modification of the procedure V' of
Valiant, in that it samples to estimate the error rate  and then discards clauses
whose failure rate is “significantly larger” than this estimate. The procedure V' is
presented and analyzed in Section 4.

2 How many examples suffice in the presence of noise?

Forgetting for a moment the question of computational feasibility, how can we be
sure that there is enough information in a certain number of samples drawn from a
noisy oracle to determine the unknown set L, up to e-equivalence with probability
at least 1—67 Suppose the space of possible hypotheses is finite, say Li, Lo, ..., Lx.
For the error-free case, Blumer et al. [3] have shown the following.

Theorem 1 There is a polynomial p such that +f L; is any hypothesis that agrees
with
m 2> p(log N,1/e,log1/6)

samples drawn from the EX() oracle, then
Pr{d(L;,L.) < €]>1-6.

Thus, in the absence of errors, it suffices to find any hypothesis that is consistent
with all of a sufficiently large collection of examples.

How is this modified in the presence of errors? Because of the errors, there is
no guarantee that any of the hypotheses will be consistent with all of a particular
collection of samples drawn from some EX,(). However, if we replace the notion
of consistency with that of minimizing the number of disagreements with the ex-
amples, and permit the number of samples to depend on the upper bound #; on
the error rate, we get an analogous result, Theorem 2.

Let

g = (xla S]), (1132,82), () (xm,3m>




denote a sequence of samples drawn from an EX, () oracle, where each z; is in
the universe U and each s; is either + or —. If L, is any possible hypothesis, let
F(L;,0) denote the number of indices j for which L; disagrees with (z;, s;), that
is, s; = + and z; is not in L; or s; = — and z; is in L;.

Theorem 2 There is a polynomial p such that if we draw a sequence o of
m > p(log N,1/e,log1/6,1/(1 — 2n3))

samples from an EX, () oracle and find any hypothesis L; that minimizes F(L;,0),
then
Pr{d(L;,L.) < €]>1-6.

Note that the dependence on the size of the hypothesis space and the accuracy
and confidence parameters remains essentially the same as in Theorem 1.

Proof: We analyze the expected rate of disagreement between any hypothesis L;
and sample sequences produced by the oracle EX,, () with unknown set L.. Let

d; = d(L;, Ls).

The probability that an example produced by EX,() disagrees with L; is the
probability that an example is drawn from L; @ L. and reported correctly (which
is just d;(1-7)) plus the probability that an example is drawn from the complement
of L; @ L. and reported incorrectly (which is just (1 — d;)n.) Let p; denote the
probability that an example from E X, () disagrees with L;, then we have

pi=di(1-n)+ (1-di)n.

In the case that the hypothesis L, is equal to L., we have p; = 7, since disagree-
ments will only arise as the result of reporting errors.
The expression for p; may be rewritten as

pi = n+d;i(1 - 27).

Since < 1/2, this shows that any hypothesis L; has an expected rate of disagree-
ment of at least 5. In particular, if we define a hypothesis L; to be e-bad if and
only if d; > €, then for any e-bad hypothesis L; we have

pi 2 n+e€(1-2n).

Thus we have a separation of at least €(1 — 25) between the disagreement rates of
correct and e-bad hypotheses. By our assumptions, # is not known, but an upper
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bound ny < 1/2 is known, so we have a known lower bound on the separation of
e(1 = 2m).

The problem is reduced to guaranteeing that the number m of samples drawn
from E Xy () is sufficient to guarantee that no e-bad hypothesis has a lower observed
rate of disagreement with the samples than L., with probability greater than
(1-26).

At this point we need to introduce a little notation. If p and r are numbers
between 0 and 1 and m is a non-negative integer, let GE(p, m,r) denote the prob-
ability of at least rm successes in m independent Bernoulli trials with probability
p. and let LE(p,m.r) denote the probability of at most rm successes in m inde-
pendent Bernoulli trials with probability p. Lemmas bounding these quantities in
various ways are given in the Appendix.

Let s = €(1 — 2n;). Let o denote a sequence of

48 2N
m2 €2(1 = 27;)? ln 5
examples drawn from the noisy sampling oracle EX, (). This bound is polynomial
in log N, 1/¢, log1/6, and 1/(1 — 27;).
In order for some ¢-bad hypothesis to minimize F(L;,0), either

F(Li,0)/m 2 n+s/2

or
F(Li30)/m < 77+3/2

for some e-bad hypothesis L;, or both. Applying Lemma 12 in the Appendix,

Pr[F(I}*,a)/mZ n+s/2] = GE(y,m,n+s/2)
< §/2N
< §/2,
and if L; is e-bad then
Pr(F(Lio)/m < n+s/2) € LE(n+smn+s/2)
< §/2N.

Thus the probability that any e-bad hypothesis L; has F(L;,0)/m < 5 + s/2
is at most 6/2, since there are at most N — 1 e-bad hypotheses. Putting these
two inequalities together, the probability that some ¢-bad hypothesis minimizes
F(L;,0) is at most 8. O



Applying Theorem 2 to the case of formulas from CNF(n,k), the logarithm of
the size of the hypothesis space is polynomial in n¥, so this result indicates that
there is enough information in a sample of size polynomial in n*, 1/¢, log1/s,
and 1/(1 — 2n;) to pac-identify formulas from CNF(n,k) in the presence of errors.
However, the particular method of minimizing conflicts with a sample is in general
not a computationally feasible approach, as the next section indicates.

3 Minimizing disagreements may not be feasible

The computational approach suggested by Theorem 2 is to draw a sample sequence
of the appropriate size from EX,() and then find a hypothesis that minimizes
disagreements with this sequence of samples. In general this may not be a com-
putationally feasible problem, as the following NP-hardness result demonstrates.

Let n be a positive integer. Let PP(n) denote the set of all products of a
subset of the literals z;,z9,...,z,. There are 2" such products; the empty product
is interpreted as equivalent to “true”. Each product 7 in PP(n) is interpreted as
denoting the set of truth-value assignments that satisfy it. PP(n) is a subset of
the formulas in CNF(n,1).

A sample sequence o will consist of a finite sequence of ordered pairs of the
form (aj,s;) where a; is a truth-value assignment to the variables z,, 1, ...,z, and
s; is either 4+ or —. If # € PP(n) and o is a sample sequence, then F(7,0) is
the number of pairs (a;,s,) in o such that s; = + and a;(%) = 0 or s; = — and
aj(r) = 1. That is, F(7,0) is the number of disagreements between 7 and the
sample sequence o.

Theorem 3 The problem of determining, given positive integers n and ¢ and a
sample sequence o, whether there is an element 7 € PP(n) such that F(7,0) < ¢
is NP-complete.

Proof: The proof is a polynomial time reduction of the vertex cover problem to the
specified problem. The vertex cover problem is specified by an undirected graph
G of n vertices and a positive integer ¢ < n, and the question is whether there
exists a set C of at most ¢ vertices of G such that every edge of G is incident to
at least one vertex in C. (Such a set C is called a vertex cover.) The vertex cover
problem is NP-complete.

Let a vertex cover problem, (G,c), be given. Suppose the vertices of G are
V1, V2,...,Vn. There will be n variables: z1,z2,...,2n. For each vertex v;, define
a truth assignment a; that maps z; to 0 and every other z; to 1. For each edge
e = {v;,v;}, define a truth assignment b, that maps z; and z; to 0 and every other
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zr to 1. The sample sequence ¢ consists of one copy of (a;,+) for each vertex v;

and n + 1 copies of (b.,—) for each edge e in G.

, Then we claim that G has a vertex cover of at most ¢ vertices if and only if
there is an element 7 of PP(n) such that F(7,0) < c.

Suppose G has a vertex cover C of at most ¢ vertices. Let 7 denote the product
of those z; such that v; is in C. How many examples from ¢ disagree with #? For
each vertex v;, the assignment a; assigns O to 7 if and only if v; € C. Thus, =
disagrees with at most ¢ positive examples from o. For each edge e = {v;,v;}, the
set C contains at least one of v; or v;, so the product 7 contains at least one of z;
or z;. Since the assignment b, is 0 on both z; and zj, it must be O on #. Thus, =
agrees with all the negative examples in ¢. Hence F(rm,0) < ¢, as claimed.

Suppose now that there exists some 7 € PP(n) such that F(x,0) < c. Since
¢ < n, this means that 7 must agree with all the negative examples in o, since each
one is repeated n+ 1 times. Hence 7 can only disagree with positive examples in o,
and at most ¢ of them. Thus 7 must contain at most c literals z;. Define the set C
to be all those vertices v; such that z; appears in the product #. Then C contains
at most ¢ vertices; it remains to see that it is a vertex cover. If e = {v;,v;} is any
edge in G then the assignment b, must assign O to =, since 7 agrees with all the
negative examples. But b, assigns O to 7 if and only if 7 contains at least one of
z; or z;. Thus C contains at least one of v; or v;, so C is a vertex cover of G.

The computation of n, ¢, and ¢ from (G,c) can clearly be carried out in
polynomial time. [J

This indicates that even for a very simple domain the approach of directly
trying to minimize the number of disagreements with the sample may not be
computationally feasible. We show in the next section that a somewhat more
sophisticated approach does permit efficient pac-identification of k-CNF formulas
from noisy samples.

4 Efficient pac-identification of k-CNF formulas in the
presence of noise

In this section we describe an efficient procedure V' that does pac-identification of
k-CNF formulas. The inputs to the procedure are n, k, ¢, 8, 73, and a noisy oracle
EX,() for an unknown formula ¢. from CNF(n,k), using an unknown distribution
D to sample truth-assignments. The accuracy and confidence parameters € and §
must be between 0 and 1, and the error bound n; is such that 0 < n < 5, < 1/2.
Once n and k are fixed, there is a set C of all possible clauses over the variables
Z1,...,Zn with at most k literals per clause. Let M denote the cardinality of C.




Clearly M is at most (2n + 1)¥.

4.1 Motivation for the procedure V'

Once D is fixed we define two probabilities for each clause C from C:

po(C) = Prla(C) =0]
p(C) = Prla(C) =1].

If ¢. is also fixed, we may subdivide these probabilities into four cases, py,, for
r=0,1and s= 0,1 as follows:

Pre(C) = Pr[a(C) = r and a(.) = o].

Note that po(C) = poo(C) + pa1(C). -
We use these probabilities to classify each clause as follows. A clause C is
defined to be tsmportant if and only if

po(C) 2 Q1,

where
Qr = e(1 - 2n)/16M2.

A clause C is defined to be harmful if and only if
Po1 (C) > QHa

where
Qn =¢/2M.

Note that Qg > Qy, so every harmful clause is important. Note also that no
clause contained in or implied by ¢. can be harmful.

The intuition is that a clause that is not important is almost always assigned
the value 1 by assignments chosen according to D, so it may be included or not
in the final hypothesis without significantly affecting the outcome. On the other
hand, a harmful clause is one for which a significant fraction of the assignments
chosen from D make the clause O but the correct hypothesis 1. If a harmful
clause is included in the final hypothesis, it will cause a nontrivial probability of
disagreement between the final hypothesis and the correct hypothesis. Thus, the
strategy of the procedure V' is to attempt to include in the final hypothesis all
the important clauses contained in ¢« and no harmful clauses. Our first lemma
shows that if V! succeeds in this attempt, then the final hypothesis is indeed an
e-approximation of ¢..
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Lemma 4 Let D and ¢. be fized. Let ¢ be any product of clauses from C that
contains every important clause in ¢. and contains no harmful clauses. Then

d(¢a ¢*) < €.

Proof: We analyze the probability of an assignment a such that a(¢.) = 1 and
a(¢) = 0 or vice versa. Let ¢ — ¢, denote the set of clauses in ¢ but not in ¢..

Pria(¢,) =1anda(¢)=0] < D poi(C).
C€¢_¢t
< MQ@pg, since no element of ¢ — ¢, is harmful,

< €/2.
For the other side,

Prla(¢) =1landa(6)=0] < 3 polC),

CEps—¢
< MQ@Qy, since no element of ¢, — ¢ is important,
< €/2.
Thus,
Prla(¢) # a(¢.)] < €/2+¢/2.
O

The procedure V' has no direct information about whether a clause is impor-
tant or harmful — it must rely on the noisy oracle EX,)() for its information about
D and ¢.. Since the oracle EX} () reports assignments according to the distribu-
tion D, po(C) can be directly estimated by sampling the oracle and calculating the
fraction of assignments that assign 0 to C. The procedure V' uses this to construct
a set I that with high probability contains all the important clauses C from C. If
this is accomplished, the remaining problem is to identify all the harmful clauses
in I. (Note that V' depends in an essential way upon the fact that, in this model,
the distribution D is not perturbed by the presence of noise.)

However, the definition of a harmful clause refers to the values of assignments
on ¢., which are subject to reporting errors and cannot be estimated directly. For
each clause C we define two more probabilities:

po-(C) = Prlasample (a,s) drawn from EX,() has a(C) =0 and s = -],
po+(C) = Prlasample (a,s) drawn from EX,() has a(C) = 0 and s = +].

These may be directly estimated using calls to EX}(). A sample (a,s) will have
a(C) = 0 and s = + if and only if either a(C) = 0 and a(¢.) = 1 and there was no
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reporting error, or a(C) = 0 and a(¢.) = 0 and there was a reporting error. Thus

po+(C) = (1=n)po1(C) + npoo(C)
= 7(poo(C) + po1(C)) + (1 = 29)po1(C)
= 1npo(C)+ (1 - 29)pn1 (C).

If po(C) # O then

Since 7 < 1/2, this quantity is always greater than or equal to  and is equal to 7
if C is contained in or implied by ¢.. Since pp(C) < 1, for all clauses C such that
po(C) # 0,
po+(C)
po(C)

If C is a harmful clause, then po;(C) > Qp, so

2 1+ po1(C)(1 - 29).

po+(C)
po(C)

The quantity po+(C)/po(C) is the proportion of those assignments falsifying
C that are reported with s = +. The preceding calculation shows that there is a
separation of at least Qg (1 — 27) in the expected value of this quantity between
clauses that are to be retained (important clauses in ¢.) and clauses that are to
be discarded (harmful clauses). Since 5 is unknown, we replace this separation by
a (known) lower bound

>n+Qg(1-2n).

s=Qpg(1-2n).

Moreover, po+(C)/po(C) can be estimated by sampling the oracle EX, (). (Recall
that I contains clauses to which a nontrivial number of samples assign s = 0, so
for elements of I this estimate will be sufficiently accurate.)

The procedure V' calculates an estimate %’ of # and identifies as harmful
all those clauses C € I whose estimated value of po+(C)/po(C) is greater than
n' + s/2. The final output is the product of all the other clauses in I. In order
for this to work, V' needs a sufficiently accurate estimate ' for . Where does
this come from? If I contains any clause C in or implied by ¢., then the esti-
mate of po+(C)/po(C) will be close to 5. In this case, the minimum estimate of
Po+(C)/po(C) for all clauses C in I will be close to 7.

However, it may happen that no clause in I is contained in or implied by ¢.,
and this minimum value may not be a good estimate of . In this case, provided
all the important clauses are in I, we know that ¢« does not contain any important
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clauses. This means that almost all assignments drawn from D assign the value 1 to
éx. In this case, the observed overall rate of negative examples will be sufficiently
close to . Thus, the estimate of 7 is taken to be the minimum of two estimates:
the estimated fraction of negative examples and the minimum estimated value of
po+(C)/po(C) over all clauses C in I. We now summarize the description of V.

4.2 Concise description of V'

From n, k, €, 6, and #;, the procedure 1/ calculates the following:

€ = {C:Cisaclause over n variables with at most  literals},
M o= |cl,
K = 3.2V,
A [ EMS | 6M
€3(1 — 2n;)8 5§ |’
Qr = €¢/2M,
s = Qu(l-2m)=e(l-2n)/2M,

Qr = s/8M =¢(1—-2m)/16M2.
V! draws m samples from the oracle EX, (), say
0 =(a1,51),- -, {@m, Sm),

where each a; is a truth-value assignment to the variables z,,...,z, and each s;
is either + or —.
The following quantities are defined using o:

Z. = l{]'23j= _}[’
Z(C) = {j:q(C)=0}],
Zo+(C) = |{j:0a;(C)=0and s; = +}|.

Z_ is the overall number of negative samples, Zy(C) is the number of samples that
assign 0 to the clause C, and Zy4(C) is the number of samples that assign 0 to C
and are reported with the sign +. For each clause C in C such that Z;(C) # 0,
define
h(C) = Zp+(C)/Zo(C).
h(C) is the estimated value of the quantity po+(C)/po(C).
The procedure V' calculates one estimate of 7:

= Z'-/ma
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which is just the observed fraction of negative examples.
The procedure V' then forms the set I by including all those clauses C in C
such that

Zo(C)/m 2 Q1/2.

If I is non-empty then V' calculates a second estimate of 7 as follows:
ne = min{h(C) : C € I}.

If I is empty then 7o = +o0.
V' then calculates
n' = min{ny, na}.

The final output ¢ of V' is the product of all those clauses C € I such that
h(C) < 7'+ s/2.

It is clear from this description that V' runs in time polynomial in n*, 1/,
log1/6, and 1/(1 — 2n;). In the next section we show that it achieves pac-
identification of the formulas in CNF(n, k). /

4.3 Proof of correctness of V'

Theorem 5 For every ¢. € CNF(n, k), V' pac-identifies ¢., that is,
Pr|d(¢,¢.) < €)= 1-6.

The proof proceeds by showing that, with high probability, the set I contains
all the important clauses, and given that I contains all the important clauses, %’
is a good estimate of n with high probability, and finally, given that I contains
all the important clauses and 7' is a good estimate of 5, all the harmful clauses
are excluded from ¢ and all of the important clauses in @. are retained in ¢ with
high probability. The net effect is to show that with high probability, the output
¢ contains all the important clauses in ¢, and no harmful clauses. Applying
Lemma 4, we conclude that with high probability, d(¢, ¢.) < €.

Lemma 6 With high probability the set I contains all the tmportant clauses, i.e.,

Pr[I ezcludes some important clause] < 6 /6.

14




Proof: Consider any important clause C. By definition, po(C) > Q. Each time
an assignment is drawn from D, there is a probability of po(C) that it assigns 0 to
C. The probability that in m assignments drawn from D the fraction that assign
0 to C is less than or equal to Q;/2 is at most LE(Qr,m,Q/2). That is,

Pr[C is not included in I] < LE(Q;,m,Q;/2).

By Lemma 13 in the Appendix,
LE(Qr.,m,Q1/2) < §/6M.

Summing over the (at most M) important clauses, we find that

Pr (I excludes some important clause | < /6.
O
Lemma 7 With high probability n, is not “too small”, that 1s,

Prim < n—s/4<6/6.

If ¢. does not contain any important clause then with high probability, 5, is not
“too big”, that s,
Prin >n+s/4)<6/6.

Proof: We analyze the expected rate of negative samples from EX,() for any
formula ¢. € CNF(n,k). Let

po(¢s) = Prla(¢s) =0],
p-(¢«) = Prlasample (a,s) drawn from EX, () has s = —].

An assignment a chosen by EX,() is reported as a negative example if and only
if either a(¢.) = 0 and there is no error of reporting or a(¢.) = 1 and there is an
error of reporting, so

p-(¢<) = (1 = n)po(os) + n(1 = po(d.)).

We rewrite this as
p-(:) =1+ po(4.)(1 = 27).
Since n < 1/2, p-(4.) = 5 for all formulas ¢, € CNF(n,k). Moreover, since
(1 - 2n) is at most 1,
P—((b*) <7 +p0(¢*)'




To establish the first part of the lemma, we note
Prinm <n-s/4 < LE(n,m,n — s/4).
By Lemma 13 in the Appendix,
LE(n,m,n — s/4) < 6/6.

To prove the second part of the lemma, assume that ¢. is any element of
CNF (n,k) that contains no important clauses. Then

po(ds) < Y po(C),

C€Eda
< Z Q7, since no clause in ¢, is important,
C€gd.
< MQy,
< s/8.
Hence
p—(4.) < n+s/8.
Then

Pr(m 2 n+s/4 < GE(n+ s/8,m,n+ s/4),
and by Lemma 13 in the Appendix,

GE(n+s/8,m,n+ s/4) < §/6.
O
Lemma 8 With high probability, o ts not “too small”, that s,
Prine < n—s/4<é/6.

If ¢. contains some important clause, then with high probability, 5o is not “too
large”, that 1s,

Pr(ne > n+ s/4| I contains every important clause] < 6/6.

Proof: If I is empty then 5o = 400 and the first part of the lemma is true.
So, assume I is nonempty and let C be any clause in I. The probability that
a sample (a,s) reported by EX, () will have s = + given that ¢(C) = 0 is just
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po+(C)/po(C). This is the expected value of the observed quantity h(C). Since C
is in I, we have at least [mQ;/2] independent trials of this kind.
We have shown that po4+(C)/po(C) is greater than or equal to 7, so

Pr[h(C) < 1 —s/4] < LE(n,[mQ/2],n — s/4).
By Lemma 13 in the Appendix,
LE(n,[mQr/2],n — s/4) < §/6M.
Summing over the (at most M) elements of I,
Pr[for some C € I,h(C) < n—s/4] < §/6.

Thus in either case,
Prin2 < n-s/4<6/6,

proving the first part of the lemma.

For the second part of the lemma, assume that D and ¢. are such that ¢.
contains at least one important clause. Assume also that the sampling of EX, ()
produces the outcome that I contains all the important clauses, so in particular,
it will contain at least one important clause from ¢., say C,. We have shown that
in this case, po+(Cy)/po(Cy) = 7, s0

Pr[h(C.) 2 1+ /4] < GE(n,[mQ1/2],1 + s/4),
and by Lemma 13 in the Appendix,
GE(n,[mQr/2],n + s/4) < 6/6.

Since in this case 77 is at most h(C.), we conclude that when ¢. contains some
important clause,

Prn2 > n + s/4 | I contains every important clause] < 6/6.
O

Lemma 9 With high probability, every harmful clause C wn I will have a “large”
value of h(C), that is,

Pr [for some harmful C € I,h(C) < n + 3s/4] < 6/6.

With high probability, every important clause in both ¢, and I will have a “small”
value of h(C), that is,

Pr[for some important C € IN ¢,,h(C) > n+ s/4] < 6/6.

17



Proof: Suppose C is a harmful clause in I. We have shown that since C is harmful,

p0+(C)/po(C) 2 n+ s.

Thus,
Pr[h(C) < n+3s/4)< LE(n + s, [mQ1/2],n + 3s/4),

and by Lemma 13 in the Appendix,
LE(n+s,[mQ1/2],n+ 3s/4) < §/6]M.
 Summing over the (at most M) harmful clauses in I,
Pr [for some harrhful Cel,h(C)<n+3s/4<é/6.
Suppose C is an important clause in I and in ¢.. Then since

p0+(C)/po(C) =1, .

we have
Pr[h(C) 2 n+s/4] < GE(n,[mQ1/2],n + s/4),

and by Lemma 13 in the Appendix,
GE(n,[mQr/2],n +s/4) < §/6M.
Summing over the (at most M) important clauses in I N @., we obtain
Pr [for some important C € IN ¢.,h(C) > n+ s/4] < §/6.

O

Now we have all the pieces, and may conclude the proof of Theorem 5. We
analyze the probability that V' fails, that is, produces an output ¢ such that
d(¢,d.) > €. We analyze two cases separately: whether or not ¢, contains some
important clause.

Assume ¢, contains no important clause. V' can fail only if at least one of the
following events occurs.

L m2n+s/4
2. For some harmful C € I, h(C) < n + 3s/4.
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To see this suppose that neither of these events occurs. Then the value of 5’ is less
than 5+ s/4, so the vaiue of 7'+ s/2 is less than 7+ 3s/4. Also, for every harmful
clause C € I, h(C) is greater than 5 + 3s/4, so no harmful clause will be included
in ¢. Since there are no important clauses in ¢. by the assumption of this case,
¢ will (vacuously) contain every important clause in ¢.. Applying Lemma 4, we
conclude that d(¢,¢.) < e. '

By Lemma 7, the probability of event (1) above is at most § /6, and by Lemma 9.
the probability of event (2) above is at most §/6, so in this case, the probability
of failure of V' is at most 6/3.

For the second case, assume that ¢. does contain at least one important clause.
Then V' can fail only if at least one of the following events occurs.

1. Not every important clause is included in I.

2. m<n-s/4

3. n92 < —s/4.

4. n2 > n + s/4, given that I includes every important clause.
5. For some harmful C € I, h(C) < n + 3s/4.

6. For some important clause C € ¢. NI, h(C) > n + s/4.

To see this, suppose none of the above events occurs. Then every important
clause is included in I, %' is strictly between n — s/4 and 5 + s/4, so ' + s/2 is
strictly between n + s/4 and 5 + 3s/4. Moreover, for every harmful clause C in I,
h(C) > 1+ 3s/4, so no harmful clause is included in ¢. Also, for every important
clause in ¢, N I (which includes every important clause in ¢.), h(C) < 5 + s/4,
so every important clause in ¢. is included in ¢. Applying Lemma 4, we conclude
that d(¢,¢.) < e.

By Lemma 6, event (1) has probability at most §/6, by Lemma 7, event (2)
has probability at most §/6, by Lemma 8, events (3) and (4) each have probability
at most §/6, and by Lemma 9, events (5) and (6) each have probability at most
§/6, so the probability that V' fails at most 6.

Thus in either case, the probability that V' produces an output ¢ such that
d(¢, ¢+) < € is at least 1 — §, which proves Theorem 5.

5 Remarks

Because of the duality of conjunctive and disjunctive normal forms, k-DNF for-
mulas can be pac-identified from noisy examples by the dual of the procedure V.
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The procedure V' does not depend very strongly on the properties of conjunctive
normal form, and should generalize to somewhat weaker notions of normal form.
Proving similar results for more general error models would be quite interesting.

We have made no particular attempt to minimize the number of samples used
by the procedure V', so there is undoubtedly room for improvement in that aspect
of the algorithm. A lot of work would likely be necessary to “tune” the procedure
V' for practical use; such an effort might well pay off in improved approaches to
the problem.

It would be interesting to explore the effect of errors in a situation which calls
for queries as well as random sampling. For example, could the polynomial time
procedure to identify regular sets given a sampling oracle and membership queries
in [1] be modified to compensate for random errors in the sampling and query
responses? Another interesting direction is to attempt to incorporate errors into
the general “refinement” approach to inference [4].

6 Appendix: Bounding lemmas

We establish some simple tools for bounding the accuracy of estimates of Bernoulli
variables. For p and r between 0 and 1 and any positive integer m, let LE(p, m,7)
denote the probability of at most rm successes in m independent trials of a
Bernoulli variable with probability of success p, and GE(p, m,r) the probability
of at least rm successes. Thus,

CE(p.mr)= 3 (’;) -t

k=[rm] v

and

lrm) 70,

LE(p,m,r) =Y (k)p"(l - p)mk,

k=0
It is not difficult to show that for p increasing, GE(p, m,r) is nondecreasing and
LE(p,m,r) is nonincreasing. We extend LE to have the value O if its third ar-
gument is less than 0, and similarly GE has the value O if its third argument is
greater than 1.

The basic lemma we use is from [2]:

- Lemma 10 If0 < p<1,0< B <1, and m is any positive integer then

LE(p,m,(1 - B)p) < e™#m/2,
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and .
GE(p,m,(1+ B)p) < e~ Pimp/3

We apply this to obtain a simple bound on the number of samples required
to assure that an estimate of p is within a distance s of the correct value with
probability at least 1 — 6.

Lemma 11 Let0< p<1,0<s<1,aend0<é<1. If

12. 1
m > = In 3
then
LE(P»m,P— S) S 63
and

GE(p,m,p+s) < 6.

Proof: To prove the first inequality, we consider two cases. Assume that p < s.
Then p— s < 0,s0 LE(p,n,p — s) = 0, which is certainly less than or equal to 6.
Assume that p > s, and let
B=s/p.

Then 0< 8 <1 and

p—s=(1-p)p.
Applying Lemma 10,
e-(a/p)gmp/2.

—s2
e=* m/2p’

LE(p, m,p— 8)

e~*"™/2 since p < 1,

8, since s?m/2 > 61n(1/6).

INININ DA

For the second inequality, we also argue in two cases. Assume that p < s/2.
Then

GE(p,m,p+s) GE(s/2,m,p+ s), by the monotonicity of GE in p,
GE(s/2,m,s),
e~em/6, applying Lemma 10 with =1,

8, since sm/6 2> (2/s)1n(1/$).

ININ IN A

Assume that p > s/2. Let
B =s/2p,
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note that § < 1, and
p+s/2=(1+pF)p.
Applying Lemma 10,

GE(p,m.,p+s) GE(p,m,p+ s/2),
¢~ (#/2p)*mp/3

2
¢ m/12p=

—a2 .
e="m/12 since p<1,

8, since s?m/12 > In(1/6).

INIA A IA TA

This concludes the proof of Lemma 11. O
For the various bounds in the paper, we require several applications of this
basic lemma, which are here summarized and proved.

Lemma 12 Let N be a positive integer, 0 < e <1,0<8< 1, and0< 5 < 3 <
1/2. Define

s=¢€(1~-2m).
ThenO0<s<1. If
m > 48 lnz—N
Te2(1-2m)2 7 6
then
GE(n,m,n+s/2) < 6/2N,
and

LE(n+s,m,n+s/2) < §/2N.

Proof: We apply Lemma 11 with s/2 in place of s and §/2/N in place of § to find
the indicated lower bound on m. O

Lemma 13 Let M be a positive integer, 0< e <1,0<6<1,and0<n < n <
1/2. Define
s=¢€(1-2n)/2M,

and )
Q1 = s/8M = ¢(1 — 2n3) /16 M2,

Then s/8 > Qr/2. If
KMS® ) 6M

ST T R B

(3%
[




where K = 3217 then for any p, {, and = such that 0 < p < 1, t > [mQ/2], and
Qr/2 < z <1, we have
LE(p’t’p_ ZL‘) < 6/6A{v

and
GE(p,t,p+ ) < §/6M.

Proof: This lemma is proved by applying Lemma 11 with Q;/2 for s, § /6 M for 6,
and [mQ/2] for m to obtain the indicated bound. It suffices if

12 6M
mE 2 G

so it suffices if
m > E)—6--11121—‘£
TQF 6

Substituting in the value of @7, we obtain

m K M?S 0 6M
T e(1-2m) 6

for K=3-21". 0O
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