Interfacing Hugs and COM

William Javorcik and John Peterson

Research Report YALEU/DCS/RR-1144
December1997

dﬂw\uu/\r\f 14a¢

Yale University

Department of Computer Science
Research Report YALEU/DCS/RR-1144
William Javorcik and John Peterson

Interfacing Hugs and COM

CS690 Independent Project

Javorcik & Peterson Fall 1997

William Javorcik: Interfacing Hugs and COM Page 1

Interfacing Hugs and COM

Abstract

The goal of this project is to encapsulate the Haskell language interpreter Hugs by a COM wrapper to
create a local server version of the Hugs. The task involves designing an interface that would allow
exploiting the functionality of Hugs from different clients.

The paper is divided into three parts. The first part provides fundamentals of the Component Object
Model and briefly covers issues closely related to the component model of programming in general. The
second part describes what has been done in detail and looks at how different issues were implemented.
The third part provides guidelines about the parts of the project that have been left open to be
implemented in future.

Component Model of Programming

The component model of programming is relatively a new trend in programming methodologies. This
section describes its evolution and individual features in general.

Evolution of Components

The traditional way of writing a program has been to write it as a big monolith. Every part of the program
knew about all other parts and could call functions or access data in any other part. Evolution in
programming methodologies always tended to break up the programs into smaller units that are easier to
manage. Modular programming restricted the access to some parts of the program and introduced the
concept of lifetime and scope of variables and functions. Object oriented programming encapsulated
certain areas of the program’s functionality into objects and further restricted direct access to data.

A similar trend towards breaking up the program into smaller and more manageable units could be seen
at the executable file level. Originally, applications were stored in individual executable files. Later on,
dynamically linked libraries and shared modules were introduced to allow for sharing the functionality
between individual programs.

The natural progression of simplifying the programming was to break up the program into smaller
components. The components should be relatively independent of each other and, just like objects, they
should provide well-defined functionality that can be easily used by other components or parts of the
program. The difference is that the components are executable units that can be utilized on their own.

Writing programs consisting of components can also be looked at as a natural combination of the object
oriented programming and sharing executable program segments. It allows for isolating parts of
functionality into separate executable units that communicate with the world outside through well-
defined interfaces. This concept is very similar to the concept of objects. The fact that the components
are executable units has many profound consequences and significantly impacts the application
development process. It can also provide great benefits to the application programmer in the long run.

Component Object Model (COM)

COM or Component Object Model is the Microsoft Corporation’s implementation of writing programs
consisting of components. There are other similar technologies supported by different players in the
industry, such as JavaBeans, or CORBA.

William Javorcik: Interfacing Hugs and COM Page 2

These technologies have many things in common. Microsoft’s COM is just one way of resolving the
issues and defining standards which make the whole concept possible. The following sections look at
these issues in detail.

Client-Server Architecture

The Component Object Model is based on the client-server architecture. A component is said to be a
server, i.e. a provider of services, if other programs connect to it and request its services. The programs
connecting to the server are called clients. A client of a server may be a server to other clients. It is also
possible for two components to be both clients and servers at the same time.

Different Kinds of Servers

COM supports distributed computing by allowing three different kinds of servers:
¢ DLL servers |

e Local servers

e Remote servers

DLL servers are implemented as DLLs (Dynamic Link Libraries). A DLL gets loaded into the client’s
process address space when the connection to the server is made. There is no mechanism to unload a
particular server, but it is possible to unload all unused DLLs.

Local servers aré implemented as executable files and they run as separate processes on the same
machine as the client process. The server process is usually started automatically by the COM subsystem
on the client’s behalf, The server process usually terminates once all connections to it are closed, but
there is a possibility to lock the server to prevent it from unloading itself.

Remote servers run as separate processes on a machine different from the client machine. Distributed
COM (DCOM) must be configured on both machines in order to use remote servers.

The DLL servers are also referred to as in-process servers. The local and remote servers are known as
out-of-process servers. A client can communicate with any type of server without having to be modified.

Calling Services and Passing Parameters and Resulits

Calling services and passing parameters to in-process servers is easy since both the client and the server
share the same address space.

Calls to local servers are issued using the LPC (Local Procedure Call) mechanism. The parameters must
be marshaled across the process boundary but they need no conversion to a standard format.

Calls to remote servers are issued using the RPC (Remote Procedure Call) mechanism. Marshaling the
parameters and results requires putting them into the standard format and packetizing them for the
transport across the network.

Relation of Objects and Components

The object-oriented technology fits the component model very well. This is why C++ is the language of
choice for implementing COM components.

A component corresponds to an object that exposes multiple interfaces. Since a C++ class cannot have
multiple interfaces, a component is usually implemented using multiple classes.

Primary Issues

The Component Object Model was designed with certain requirements in mind. These requirements
actually constitute the benefits that COM provides for the developer. As shown below, many of these
properties are closely related.

William Javorcik: Interfacing Hugs and COM Page 3

Independence from the Source Code

Individual components must be usable without access to their source code. All functionality of a
component must be published, i.e., must be specified and known up front.

Consequence:
The components must publish their presence on the system

Communication through Interfaces

All communication with components must be performed through interfaces. Interfaces are sets of
functions that the component supports. Each interface represents certain area of functionality. A
component can support multiple interfaces.

Consequence:

The components must be able to return information about interfaces they support. The components may
also publish the interfaces they support on the system. Since the communication is possible only through
an interface, the components must share a common interface (IUnknown).

An interface is uniquely identified by a 128-bit value called IID (Interface ID). An IID is an instance of a
GUID (Globally Unique Identifier).

Immutability of Interfaces

The interfaces supported by a component can never change. An interface cannot be modified or deleted
after it is published.

An interface is changed if any of the following changes:
Number of functions in an interface

Order of functions in an interface

Number of parameters in a function

Order of parameters in a function

Types of parameters in a function

Possible return values from a function

Types of return values from a function

Meanings of parameters in a function

Meanings of functions in an interface

Versioning of Components

If a change is necessary, a new interface that extends the functionality of the previous one must be added
(this requirement is based on immutability of interfaces). Adding the new interface must not break the
functionality of previous interfaces if they share code or data.

Consequence:
The components are likely to support multiple interfaces for the same area of functionality. The client
must be able to determine which interface it can use.

Polymorphism of Components

The components implement polymorphism using multiple interfaces. COM does not support
polymorphism through inheritance.

Consequence:
The implementation of interfaces is likely to share component’s internal data and functions.

William Javorcik: Interfacing Hugs and COM Page 4

Dynamic Linking

A component’s functionality must be accessible without having to go through a linking process.
Replacing an older component by a newer one must be possible in runtime without impacting the
functionality of any clients connected to the component.

Consequence:
The functions in an interface must be callable by address, not by a name. If the functions the component
publishes are callable by name, there has to be at least one function callable by address.

Server Location
The location of the server is arbitrary. A client can choose what kind of server it wants to connect to.

Consequence:

The location of the server can only impact the performance, and never the functionality.

The parameters passed to and from a local (remote) server must be marshaled across the process
(machine) boundary.

Machine Independence

The components should be machine independent. A client must be able to communicate with a server
running on a different platform.

Consequence:
The parameters passed to and from the server must be put to a standard form and converted on to the
native form at each end of the communication.

Language Neutrality
It must be possible to write COM programs in arbitrary language.

Consequence:
COM is a binary standard. Any programming language that can create binary structures compatible with
the COM definition is suitable for writing COM applications.

Important Implementation Issues

Reference Counting

Reference counting is a mechanism that allows the servers to count the references made to its services.
The COM specification includes reference counting to free the programmer from the necessity of
explicitly unloading the server. This mechanism guarantees that the server will be never unloaded at an
improper time.

Marshaling

Marshaling is the process of transporting the parameters of a function from the address space of the
client into the address space of the server (and vice versa).

Marshaling between the processes on the same machine involves accessing and copying the data across
the process boundary. If the client and the server run on different machines with possibly different
architectures, marshaling must put the data into a standard format.

Marshaling is implemented using a so-called marshaling in-process server (marshaling DLL). A DLL
is used since it can be mapped into the process space of both the client and the server and thus it can
provide services on both sides of the communication pipe.

The code handling the marshaling of the outgoing parameters is called proxy; the code handling
incoming parameters is called stub.

William Javorcik: Interfacing Hugs and COM Page 5

Marshaling is implemented by the IMarshal interface. It is possible to implement customized
marshaling to improve marshaling of built-in data types or to support new types.

IDL / MIDL

In order to facilitate easy maintenance of interfaces, Microsoft adopted a language called IDL (Interface
Description Language) which was originally a part of the Open Software Foundation’s (OSF) Distributed
Computed Environment (DCE).

MIDL is the IDL language compiler developed by Microsoft that takes a description of the interfaces in
IDL and generates the C/C++ header files containing the class/structure definitions of interfaces. Apart
from the interface header files, MIDL also generates the proxy/stub code for a marshaling DLL.

MIDL can also be used to generate the type libraries for the components.

Memory Allocation

In order to handle parameters of arbitrary size in a consistent manner, COM defines that in-out and out
parameters must be implemented using pointers. The memory pointed to by the pointers can be allocated
by the client and may have to be released by the server (or vice versa).

To deal with the situation that memory will be allocated and released by different components, COM
defines a set of memory allocation functions encapsulated in the IMalloc interface.

Class Factories

The task of creating a COM component is implemented by another component that exists solely for the
purpose of creating components. This component is called class factory and it communicates with its
clients through the IclassFactory interface.

It is possible to define customized class factories that can perform special tasks when creating
components. Such factories must implement the IclassFactory interface.

Registry

|
The implementation of COM heavily relies on the central Windows data repository, otherwise known as ‘;
the Registration Database, or Registry. This approach is necessary since a client must be able to
connect to a server without knowing anything explicit about it other than the fact that the server exists.

The components are registered in several ways:
1. By the Class ID under the HKEY_CLASSES_ROOT/CLSIDkey.
2. By the version-independent Program ID in the <Program> . <Component > format under the &
HKEY_CLASSES_ROOT key.
3. By the version-dependent Program ID in the <Program>.<Component>.<Version>
format under the HKEY_CLASSES_ROOT key.

This system allows an easy lookup of a component by its Class ID or Program ID. It is also possible to
register a component as a member of one or more component categories.

For DCOM, additional information in registry is required (such as location of the remote servers).
Aggregation and Containment

Aggregation and containment are two methods used by COM to implement component reuse. Both
methods combine two components into a unit in which one component is identified as the outer
component and the second component is identified as the inner component.

In containment, the inner component is completely encapsulated by the outer component.

William Javorcik: Interfacing Hugs and COM Page 6

In aggregation, the outer component reuses the inner component and extends its functionality by adding
to new interfaces that may or may not use the inner component’s functionality. This is the preferred
method to implement inheritance on the component level.

Threading Models

Threads are an important programming methodology especially when it comes to responsive user
interfaces and I/O operations. COM must support threading since the components may be accessing
COM servers from different threads.

Windows 32 defines two kinds of threads: user-interface threads and worker threads. In COM
terminology these are known as apartment threads and free threads, respectively.

Under the apartment model, there can be multiple COM objects on a thread, but calls to an object must
execute on the thread that "owns" the object. This thread is called the object's apartment thread and
interface requests to the object from another thread must be marshaled to the apartment thread that owns
the object. Standard marshaling is used to cross the thread boundaries.

Summary of Benefits and Drawbacks

Portability

Both COM and DCOM natively run on Microsoft Windows NT and Windows 95. It is expected that any
32-bit Windows operating system will be able to run COM and DCOM. Microsoft has also ported COM
to the Macintosh platform.

Microsoft has contracted Software AG to port COM to other platforms; both UNIX and non-UNIX
based.

Extendibility

COM is a proprietary standard, therefore it is not extensible. Microsoft is talking about making it an open
standard, and it is conceivable once COM is being used on other platforms as well.

Speed

In-process server calls are very fast and they incur minimal overhead. Local servers are slower compared
to in-process servers since their performance is impacted by the necessity of marshaling the parameters
across process boundaries. Remote servers are order of magnitude slower than local servers and their
effective use may require special optimizations.

Implementation of the Project

The project itself consists of three separate program units:
e Marshaling DLL

e Local Hugs server

e Hugs Client

About Program Units
All files belonging to a program unit are located in a separate directory.

To build/make a program unit, Microsoft command line development tools were used. Each program unit
directory contains a make file compatible with the Microsoft nmake program.

The intermediate output files (binary files like * . ob3j, *.res, * .map) are stored in the TEMP
directory.

To compile a program unit with debug information, enter:

William Javorcik: Interfacing Hugs and COM Page 7

nmake

To compile a program unit without debug information, enter:
nmake nodebug=1

To register the program unit (if applicable), enter:
nmake register

To unregister the program unit (if applicable), enter:
nmake unregister

To clean up binaries, enter:
nmake clean

To clean up all generated files, enter:
nmake cleanall

A program unit is described using the following subsections:
e Functionality

e Invocation

o Source Files (in detail)

e Modifying the Code

What Has Been Done

Sample code from the Platform SDK was used to create the COM framework for all three program units.

A simple interface named IHugs was defined to communicate with the server version of Hugs. The
interface provides basic capability to initialize the Hugs server, load a project into it and examine parts of
it internal symbol table.

In order to allow for future extension, support for aggregation of components was included in the
framework. A simple aggregating interface named IHugsU was defined to demonstrate aggregation.

The IHugsU interface code was commented out in the source and make files to simplify program
development. Otherwise, every change to the IHugs interface would have to be implemented in the
IHugsU interface as well. The functionality of the programs is not impacted by this change since
currently there is no immediate need to support aggregation of components.

The Thugs Interface

The IHugs interface contains functions that demonstrate the basic functionality that is achievable by the
use of COM. The following functions has been defined:

HRESULT Test (short nNum, short *pnRes);

HRESULT CInitHugsServer (int iArgc, unsigned char *szArgv);

HRESULT CGetLastError (string255 szErr);

HRESULT CLoadProject {(unsigned char *szFileName) ;

HRESULT CLoadFile (unsigned char *szFileName) ;

HRESULT CGetModuleCount (int *pnModule) ;

HRESULT CGetModuleName (int nModule, string255 szName);

The Test function is the only function that has been correctly implemented in the THugsU interface. It
only serves as a test bed for various COM function issues related to aggregation.

The first four functions deal with generic Hugs functionality:
CInitHugsServer initializes the Hugs interpreter (includes reading in the standard prelude).
CGetLastError retrieves the textual information about the last error that occurred.

William Javorcik; Interfacing Hugs and COM Page 8

CLoadProject instructs Hugs to load a project whose name is the argument of the function.
CLoadF1ile instructs Hugs to load a file whose name is the argument of the function.

The last two functions implement an interface for obtaining information about modules:
CGetModuleCount returns the number of modules loaded into Hugs.
CGetModul eName returns the name of the module whose number is the argument of the function.

The Hugs Marshaling DLL

Functionality

The marshaling DLL functions as a communication server between the Hugs client and the Hugs server
executables. It provides the stub/proxy code for marshaling parameters of the interface functions between
the client and the server.

In other words, it is an in-process COM server that offers standard marshaling services for the interfaces
it is registered to handle.

Invocation
The marshaling DLL is invoked automatically by the COM subsystem.
Registering the Program

The program is automatically registered using the register utility if the make process completes
successfully.

Despite the fact that it is a DLL, it is possible to “invoke” it for the purpose of registering and
unregistering its functionality. This “invocation” must be, however, done using an executable program —
regsvr32.exe.

To register the marshaling DLL, enter:
regsvr32 marshal.dll

To unregister the marshaling DLL, enter:
regsvr32 /u marshal.dll

Source Files
The source files are located in the marshal directory.

Source files modifiable by the developer:
makefile the make file
mihugs.idl the IDL interface description file containing descriptions of all
Hugs interfaces

marshal.cpp the main implementation file for marshal.dll
marshal.rc the resource definition file for marshal.dll
marshal.ico the icon resource file for marshal.dll

Source files generated by the MIDL compiler:
mihugs.h the interface include file for the specified interfaces.
dlldata.c DLL data routines for the proxies and other functions
mihugs_i.c the data definitions of the GUIDs for the marshaled interfaces.
mihugs_p.c the actual proxy and stub functions for the interface methods.

Interface Description File (mihugs.idl)

This file contains the description of the interface implemented by the Hugs server.

William Javorcik: Interfacing Hugs and COM Page 9

Interface Definition in IDL

Here is a section of the file defining the Thugs interface.

[uuid(911a1190-685c-11d1-b616-0000c0b95d8e) ,
object

1

interface IHugs : IUnknown

{

import "unknwn.idl';

HRESULT Test ([in] short nNum, [out] short* pnRes);
HRESULT CInitHugsServer{[in] int iArgc, [in, string] char* szArgv);
HRESULT CGetlLastError ([out] string255 szErr);
HRESULT CLoadProject([in, string] char* szFileName) ;
HRESULT CLoadFile([in, string] char* szFileName) ;
// Module access
HRESULT CGetModuleCount ([out] int* pnModules) ;
HRESULT CGetModuleName ([in] int nModule, [out] string255 szName);
}

The translation of this definition to C++ is as follows (simplified):
interface DECLSPEC_UUID("911al1190-685¢c-11d1-b616-0000c0b95d8e")
IHugs : public IUnknown
{
public:
virtual HRESULT STDMETHODCALLTYPE
Test {short nNum, short _ RPC_FAR *pnRes) = 0;
virtual HRESULT STDMETHODCALLTYPE
CInitHugsServer (int iArgc, unsigned char _ RPC_FAR *szArgv) = 0;
virtual HRESULT STDMETHODCALLTYPE
CGetLastError (string255 szErr) = 0;
virtual HRESULT STDMETHODCALLTYPE
ClLoadProject (unsigned char __ RPC_FAR *szFileName) = 0;
virtual HRESULT STDMETHODCALLTYPE
ClLoadFile(unsigned char _ RPC_FAR *gzFileName) = 0;
virtual HRESULT STDMETHODCALLTYPE j
CGetModuleCount (int __ _RPC_FAR *pnModule) = 0;
virtual HRESULT STDMETHODCALLTYPE
CGetModuleName (int nModule, string255 szName) = 0;

i
The interface name is Thugs; it is derived from ITUnknown.
The UUID was generated using the uuidgen tool, which is a part of the Microsoft Development Studio.

The UUID assigned to this interface should not change once the interface was published. It is necessary
to assign a unique UUID to each interface.

The import section is equivalent to the C language #include directive, except that it is possible to
import the same file more then once without having to worry about multiply defined symbols.

The function declarations are very similar to C. The [in] and [out] parameter attributes specify |
which way the parameter is used and help MIDL generate more optimized code. ‘

The [string] attribute instructs MIDL that the following pointer to char is really a pointer to a null-
terminated string, so that the proxy/stub code that will be generated will marshal the whole string
including the zero terminator as opposed to marshaling just one character.

William Javorcik: Interfacing Hugs and COM Page 10

Support for the IHugsU interface
The definition of the THugsU interface is commented out.
Main Implementation File (marshal .cpp)

This file contains the code implementing the DLL itself. The main entry point to the DLL is the
D11Main function. Other important functions in this source file are D11RegisterServer and
DllUnregisterServer.

The marshaling DLL is registered as the provider of standard marshaling for the interfaces specified in
mihugs.idl. Each interface is registered using the GUID specified for it.

Support for the THugsU interface
The code registering and unregistering the THugsU interface is commented out.

Modifying the Code
Enabling the THugsU interface

To enable support for the THugsU interface:
1. mihugs.idl: Uncomment the section defining the ThugsU interface
2. marshal . cpp: Uncomment the Create Registry Entries and the Delete Registry Entries
sections for the THugsU interface
3. Erase the temporary binaries in the TEMP directory and re-make the DLL

Adding a New Function to an Existing Interface

This procedure can be only applied during the development phase of the program when the interface was
not published yet. To add a new function to an existing interface, a new version of the interface with a
new IID must be created.

To add a new function to an existing interface:
1. mihugs.idl: Add the function declaration into the interface section
2. Erase the temporary binaries in the TEMP directory and re-make the DLL

Adding a New Interface

To add a new interface to the marshaling DLL:
1. mihugs.idl: Add the new interface section
2. mihugs. 1dl: Generate a new IID using the uuidgen program and paste it into the uuid
attribute of the new interface
3. marshal.cpp: Add the Create Registry Entries and the Delete Registry Entries sections for the
new interface
4. Erase the temporary binaries in the TEMP directory and re-make the DLL

The Hugs COM Client

Functionality
The Hugs COM client is a separate executable program named HugsCln. exe.

After the program is run, it initializes the COM functionality and displays a simple menu. The main menu
contains a submenu for each interface supported. Each submenu contains the Create and Release
entries that create and dispose of a component. Additional menu entries correspond to individual
interface functions. Each function can print debugging traces into the main window.

William Javorcik: Interfacing Hugs and COM Page 11

When the Create function is invoked, the client connects to the HugsSrv server and creates the
desired component. If the server is not running, it is started automatically. It is possible to create one
component for each interface. The Hugs COM server will be started automatically if there are no active
components and it will terminate if the number of active components goes to zero.

The IHugs Interface Submenu

This submenu contains the following selections:
IHugs: :Create

IHugs: :Release

IHugs: :Test

TIHugs: :Intialize
IHugs: :GetLastError
IHugs: :LoadProject
IHugs: :LoadFile
IHugs: :GetModuleCount
IHugs: :GetModuleName
IHugs: :GetModuleNames

The Create function connects to the Hugs COM server and creates an object of the type COHugs. The
Release function disposes of the object. If it was the last object housed by the server, it also unloads
the server.

The rest of the functions except for GetModuleNames invoke the corresponding ITHugs interface
functions. GetModuleNames is implemented using both GetModuleCount and GetModuleName.

Invocation

The program can be invoked by either double-clicking the program’s icon, or by entering its name on the
command line. The program does not take any command line switches.

Registering the Program

The Hugs client does not need to be registered.
Source Files

The source files are located in the HugsC1n directory. !

Source files modifiable by the developer:
makefile the make file
HugsCln.h the include file containing class declarations, function {
prototypes and resource identifiers |
HugsCln.cpp the main implementation file, containing the WinMain
and CMa inWindow implementation, as well as the main menu dispatching
HugsCln.rc the resource definition file for HugsCln. exe
HugsCln.ico the icon resource file for HugsCln. exe

Hugs Client Include File (HugsCln.h)

This include file defines the main window class as well as the resource identifiers (menu items, strings,
etc.). The window class is a class derived from the CvirWindow in the AppUtil module: j
class CMainWindow: public CvirWindow;

Support for the ITHugsU interface

The code defining entries for the THugsU interface is commented out.

William Javorcik: Interfacing Hugs and COM Page 12

Hugs Client Source File (HugsCln.cpp)

This source file contains all functionality that the Hugs COM client program implements.

The file implements the CMainWindow class defined in HugsCln. cpp and the WinMain function.
Support for the THugsU interface

The code supporting the THugsU interface is commented out.

Modifying the Code
Enabling the IHugsU interface

To enable the support for the THugsU interface:
1. Marshaling DLL: Enable support for the IHugsU interface
2. HugsCln.h: Uncomment the section specifying the menu command identifiers for the THugsU
interface
3. HugsCln.h: Since the THugsU interface inherits from IHugs, it may be necessary to add the
menu command identifiers for the new functions that THugsU inherits from THugs
4 . HugsCln.cpp: Uncomment the IHugsU interface pointer declaration in the
CMainWindow: : DoMenu function
5. HugsCln.cpp: Uncomment the THugsU interface menu command processing in the
CMainWindow: : DoMenu function
6. HugsCln.cpp: Since the THugsU interface inherits from IHugs, it may be necessary to add
menu command processing for the new functions that THugsU inherits from THugs
7. HugsCln.rc: Uncomment the THugsU interface menu definition section
8. HugsCln.rc: Since the THugsU interface inherits from IHugs, it may be necessary to add
menu items for the new functions that THugsU inherits from Thugs
9. Erase the temporary binaries in the TEMP directory and re-make the HugsCln program

Adding a New Function to an Existing Interface

This procedure can be only applied during the development phase of the program when the interface was
not published yet. To add a new function to an existing interface, a new version of the interface with a
new IID must be created.

1. Marshaling DLL: Add a new function to an existing interface

2. HugsCln.h: Add the menu command identifier for the new function

3. HugsCln.cpp: Add the menu command processing for the new function

4. HugsCln.rc: Add a menu item for the new function

5. Erase the temporary binaries in the TEMP directory and re-make the HugsC1ln program

To add a new function to an existing interface: :
i
|

Adding a New Interface

To add a new interface to the HugsC1ln program:
1. Marshaling DLL: Add a new interface
2. HugsCln.h: Add the menu command identifiers for all functions in the new interface
3. HugsCln.cpp: Add the menu command processing for all functions in the new interface
4. HugsCln.rc: Add the menu items for all functions in the new interface
5. Erase the temporary binaries in the TEMP directory and re-make the HugsC1ln program

Displaying the Server’s About Window

It is possible for the client to request the About Window from the server. The client will try to lookup the
- server’s window by name:

William Javorcik: Interfacing Hugs and COM Page 13

HWND hWnd = FindWindow (NULL, TEXT (SERVER_WINDOW_TITLE_STR)) ;
if (NULL != hWnd)
PostMessage (hWnd, WM_COMMAND, IDM _HELP_ABOUT, NULL);

In order for this lookup to succeed, the developer must make sure that both the client and the server know

each other’s window names correctly:
#define MAIN_WINDOW _TITLE_STR "HugsCln: COM Interface for Hugs"
#define SERVER_WINDOW_TITLE_STR "HugsSrv: COM Interface for Hugs "

Example of a Hugs Session

This example will demonstrate functionality of the THugs interface.
1. Start the Hugs Client is started by entering;:
HugsCln
The client starts up and displays the main menu
2. Imvoke Hugs->IHugs: :Create
The client connects to the server started by the COM subsystem and creates the object implementing
the IHugs interface
3. Invoke Hugs-> IHugs: :GetModuleCount
The program prints the following message:
C: === Hugs Menu: IHugs: :CGetModuleCount
C: —--pIHugs->THugs: :CGetModuleNames: returned 0
This means that there are no modules defined, since the Hugs server was not initialized
4. Invoke Hugs->IHugs::Initialize
The Hugs server is initialized and the standard prelude gets loaded in
5. Invoke Hugs-> IHugs: :GetModuleCount
The program prints the following message:
C: === Hugs Menu: IHugs::CGetModuleCount
C: ~-pIHugs->IHugs: :CGetModuleNames: returned 7
After the standard prelude is loaded, there are 7 modules
6. Invoke Hugs->THugs: :GetModul eNames
The program prints the following output:
=== Hugs Menu: IHugs::CgetModuleNames
C: --pIHugs->CGetModuleName: module’s name is ’‘Prelude’
C: --pIHugs->CGetModuleName: module’s name is 'Trace’
C: --pIHugs->CGetModuleName: module’s name is ‘Ix’
C: --pIHugs->CGetModuleName: module’s name is ‘'Maybe’
C: --pIHugs->CGetModuleName: module’s name is ‘IO’
C
(&
7

Q

--pIHugs->CGetModuleName : module’s name is ’'IOExts’
—--pIHugs->CGetModuleName: module’s name is ’Dynamic’

Invoke Hugs->IHugs: :LoadFile

The program prints the following output:
C: --Calling pIHugs->CLoadFile d:/cs690/hugs/demos/random.hs

The file random. hs from the demos directory is loaded in

8. Invoke Hugs-> IHugs: :GetModuleCount

The program prints the following message:

C: === Hugs Menu: IHugs: :CgetModuleCount

C: —--pIHugs->CGetModuleNames: returned 9

Loading the file random. hs increased the number of modules by 2

9. Invoke Hugs->IHugs: :GetModuleNames

The program prints the following output:

C: === Hugs Menu: IHugs::CgetModuleNames

C: --pIHugs->CGetModuleName: 0 module’s name 1s ’'Prelude’

ook WPk o

William Javorcik: Interfacing Hugs and COM Page 14

module’s name is ‘Trace’
module’s name is 'Ix’
module’s name is ’‘Maybe’
module’s name is ‘IO’
module’s name is ‘IOExts’
module’s name is ‘Dynamic’
module’s name is ’‘Gofer’
module’s name is ’‘Random’

~-pIHugs->CGetModuleName:
—--pIHugs->CGetModuleName:
--pIHugs->CGetModuleName:
—-pIHugs->CGetModuleName:
—-pIHugs->CGetModuleName:
--pIHugs->CGetModuleName :
—-pIHugs->CGetModuleName :
--pIHugs->CGetModuleName:

The Hugs COM Server

anNnaoaoaoaan
o~JouUuh WN R

Functionality
The Hugs COM server is a separate executable program named HugsSrv . exe.

The program is a registered COM server for the THugs (IHugsU) interface(s). The Hugs Server is
essentially a server version of Hugs wrapped by generic COM code.

The COM server wrapper is an apartment-threading version that guarantees safe threading regardless of
the client’s implementation. There is a separate apartment thread for each class factory. COM objects
reside on the same apartment thread as the class factory that creates them.

The IHugs interface functions invoke the corresponding Hugs server functions on client’s behalf and
pass the return values back to the client.

Invocation

The program is usually started by the COM subsystem on behalf of the client connecting to it. In this case
the program is started using the standard switch —Embedding or /Embedding which means that the
server will remain hidden. As an out-of-process server, HugsSrv is not designed to run as a standalone
application and it will not start without a command-line switch.

Registering the Program

The program is automatically registered using the register utility if the make process completes
successfully.

The program can be invoked with command line switches telling it to register on unregister itself.
To register the program, enter:

HugsSrv -RegServer
or
HugsSrv /RegServer

To unregister the program, enter:

HugsSrv -UnregServer
or
HugsSrv /UnregServer

Source Files
The source files are located in the Hugs Srv directory.

Source files modifiable by the developer:
makefile the make file
HugsSrv.h the include file for containing class declarations, function
prototypes, and resource identifiers

William Javorcik: Interfacing Hugs and COM Page 15

HugsSrv.cpp the main implementation file, containing the WinMain
and CMainWindow implementation, as well as the main menu dispatching
HugsSrv.rc the resource definition file for HugsSrv. exe
HugsSrv.ico the icon resource file for HugsSrv . exe

CHugs.h the include file for the CHugs COM object class
CHugs.cpp the implementation file for the CHugs COM object class
CHugsU.h the include file for the CHugsU COM object class
CHugsU.cpp the implementation file for the CHugsU COM object class
CServer.h the include file for the server control C++ object, also used for
HugsSrv externs

CServer.cpp the implementation file for the server control object,
managing apartment threads, object counts, server lifetime, and the creation of
class factories

CFactory.h the include file for the server’s class factory COM objects
CFactory.cpp the implementation file for the server’s class factories

Support for the IHugsU interface

In all Hugs COM server source files, the code supporting the THugsU interface is compiled
conditionally if the CHUGSU_INTERFACE macro is defined at the beginning of each file.

Hugs Server Include File (HugsSrv.h)

This include file defines the main window class as well as the resource identifiers (commands, strings,

etc.). The window class is a class derived from the CvirWindow in the AppUtil module:
class CMainWindow: public CvirWindow;

The server needs to have a window in order to have a message queue for the window.
Hugs Server Source File (HugsSrv.cpp)

This source file contains the core of the Hugs Server functionality and implements the main framework
for a Win32 application.

The winMain Function

The WinMain function initializes the application and the COM libraries. It checks for the command line
switches and if necessary, calls the appropriate registry manipulation routine.

Logging the Messages

If the server during startup can find the client window, it will be sending the log messages to the client
(simplified):
hwnd = FindWindow (NULL, TEXT(CLIENT WINDOW_TITLE)) ;
if (NULL != hWnd)
{
m_pMsgLog->LogToServer (FALSE) ;
m_pMsgLog->SetClient (m_hInst, m_hWnd, hWnd);
}
else
{
m_pMsgLog->LogToServer (TRUE) ;
: : ShowWindow (m_hWnd, nShow);
: :UpdateWindow (m_hWnd) ;

William Javorcik: Interfacing Hugs and COM Page 16

The cHugs COM Object Include File (CHugs . h)
This include file contains the definition of an aggregatable COHugs object.

The COHugs object demonstrates the standard way in which a COM object is defined (simplified):
class COHugs : public IUnknown

{
public:
COHugs (IUnknown* pUnkOuter, CServer* pServer);
~COHugs (void) ;
STDMETHODIMP QueryInterface (REFIID, PPVOID);
STDMETHODIMP_ (ULONG) AddRef (void);
STDMETHODIMP_ (ULONG) Release(void);
private:
class CImpIHugs : public IHugs
{
public:
CImpIHugs (COHugs* pBackObj, IUnknown* pUnkOuter);
~CImpIHugs (void) ;
STDMETHODIMP QueryInterface (REFIID, PPVOID);
STDMETHODIMP_ (ULONG) AddRef (void) ;
STDMETHODIMP_(ULONG) Release(void);
STDMETHODIMP Test (short nNum, short *pnRes);
STDMETHODIMP CInitHugsServer (int iArgc, unsigned char* szArg);
STDMETHODIMP CLoadProject (unsigned char* szFileName) ;
private:
ULONG m C; // Method call counter
ULONG m_cRefI; // Interface Ref Count
COHugs* m_pBackObj; // Parent Object back pointer.
IUnknown®* m_pUnkOuter; // Outer unknown for Delegation.
};
friend CImpIHugs; !
CImpIHugs m_ImpIHugs; ;
ULONG m_cRefs; ;
IUnknown* m_pUnkOuter;]
CServer* m_pServer;
}i

After the public section of the COHugs class, a nested class CImpHugs derived from the IHugs
interface is defined. This class implements the functionality outlined in the pure abstract class THugs
which cannot be instantiated. Notice that the implementation class also defines the variables it needs to
run.

After the definition, the implementation class CImpHugs is declared a friend of the COHugs class and it
is instantiated as a contained class.

The cHugs COM Object Source File (CHugs . cpp)
This source file implements an aggregatablé COHugs object.
Reference Counting

The component implements the reference counting functions in the standard way (simplified):
STDMETHODIMP_ (ULONG) COHugs: :AddRef (void)
{

m_cRefs++;

William Javorcik: Interfacing Hugs and COM Page 17

return m_cRefs;

}

The Release function artificially bumps up the reference count just before calling the delete function
on the object to prevent reentrancy via the main object destructor. After the object is deleted, the server

housing the component is notified that the global component count should be decremented.
STDMETHODIMP (ULONG) COHugs: :Release(void)
{
m_cRefs--;
if (0 == m_cRefs)
{
m_cRefs++;
delete this;
if (NULL != m _pServer)
m_pServer->0CbjectsDown () ;

}

Implementation of IHugs Interface Functions

In addition to the standard COM implementation this file contains functions that actually do the work in
the IHugs interface, such as:

STDMETHODIMP

COHugs: :CImpIHugs: :CInitHugsServer (int iArgce, unsigned char* szArgv);
STDMETHODIMP

COHugs: : CImpIHugs: :CLoadProject {(unsigned char* szFileName) ;

Calling Hugs Functions from the COM Code

It is necessary to prototype all Hugs’ functions that are going to be invoked from the COM framework.
The functions must be declared as extern “C” functions, e.g.:

extern "C" void* initHugsServer (int argc, char* argvl(]):;

extern "C" void LoadFile(String fn);

The server version of Hugs declares certain functions static despite the fact that these functions are
callable through a virtual-table like structure of function addresses. In order to be able to link to these
functions from other modules, either they have to be declared as non-static, or they must be called
indirectly. The preferred solution might be to declare them non-static, since a static function implies that
the function is not callable from outside of the module since it is not intended to be called from outside
of the module.

Accessing Hugs Variables and Structure from the COM Code

This is a relatively tricky task because of the multitude of symbols and definitions that need to be read in.

The best solution is to #include the proper header files in the following manner:
extern "C"

{
#include "..\hugs\src\prelude.h"
#include "..\hugs\src\storage.h"

}
The cHugsu COM Object Include File (CHugsU.h)
This include file contains the definition of an aggregatable COHugsU object.

This class defines two implementation classes: CImpHugs and CImpHugsU. The reason for this is that
the COHugsU object aggregates the COHugs object through containment. Both implementation classes

William Javorcik: Interfacing Hugs and COM Page 18

are instantiated as private members of the COHugsU object. The consequence of this is that the object

actually has two different virtual function tables, each starting with the classic trio:
STDMETHODIMP QueryInterface (REFIID, PPVOID);
STDMETHODIMP_ (ULONG) AddRef (void);

STDMETHODIMP_(ULONG) Release(void);

These two virtual tables in essence duplicate the TUnknown interface. Care must be taken to handle the
implementation of QueryInterface correctly. The inner component’s QueryInterface is called
delegating since it delegates all queries to the outer component, whatever it is.

The cHugsu COM Object Source File (CHugsU. cpp)

This source file implements an aggregatable COHugsU object which itself aggregates the COHugs
object.

Implementation of the QueryInterface Function

The inner component’s QueryInterface is delegating (simplified):
STDMETHODIMP

COHugsU: : CImpIHugs: :QueryInterface (REFIID riid, PPVOID ppvVv)
{

return m_pUnkOuter->QueryInterface(riid, ppv);

}

The outer component’s QueryInterface is non-delegating (simplified):
STDMETHODIMP

COHugsU: :QueryInterface (REFIID riid, PPVOID ppv)

{

HRESULT hr = E_NOINTERFACE;
*ppv = NULL;

if (IID_IUnknown == riid)
*ppv = this;

else if (IID_IHugs == riid)
*ppv = &m_ImpIHugs;

else if (IID_THugsU == riid)
*ppv = &m_TImpIHugsU;

if (NULL != *ppv)

{

((LPUNKNOWN) *ppv) —>AddRef () ;
hr = NOERROR;
}

return (hr);

}

Reference Counting

The cast of *ppv to (LPUNKNOWN) in the call to AddRef () is important since it guarantees that for
any interface in the component the AddRef () belonging to the IUnknown interface will be called.
This implements the component-wide reference counting as opposed to per interface reference counting.

Implementation of the Aggregated ITHugs Interface Functions

The COHugsU object’s implementation must include all functions implemented by COHugs. However,
these functions must be implemented using delegation (simplified):

STDMETHODIMP

COHugsU: :CImpIHugs: : Test (short nNum, short* pnRes)

William Javorcik: Interfacing Hugs and COM Page 19

{
m_pBackObj->m_pIHugs->Test (nNum, pnRes);

return NOERROR;
}

The Apartment Server Include File (CServer.h)

This include file contains definitions of types and classes pertaining to the apartment server. The
apartment server is encapsulated in the CServer class:
class CServer : public CThreaded;

The CThreaded class is defined in the AppUtil module. It provides exclusive access by multiple
threads to objects of classes derived from it. The exclusivity of the access is implemented using standard
mutex operations.

Definition of the Apartments
enum { NUM_APARTMENTS = 2 };
enum { APTHUGS = 0, APTHUGSU = 1 };

The Apartment Server Source File (CSexrver.cpp)

The CServer . cpp file contains implementation of the CServer class. This class contains methods
that start individual threads in which individual components run.

Maintaining the Server Object Count and Releasing the Server

The server maintains the variables for the object count and server locks:
LONG m_cObjects; // Global Server living Object count.
LONG m_cLocks; // Global Server Client Lock count.

The functions maintaining the object count are CServer: : ObjectsUp and
CServer: : ObjectsDown. They are defined as follows (simplified):
void CServer: :0bjectsUp (void)
{
if (OwnThis())
{
m_cObjects += 1;
UnOwnThis () ;
}

return;

}

Notice how the server shuts itself down by posting a WM_CLOSE message to its message queue if both
the server object count and the locks count are zero.
void CServer: :0bjectsDown (void)

{
if (OwnThis())
{
if (m_cObjects > 0)
m_cObjects -= 1;
if (0L == m_cObjects && 0L == m_cLocks && IsWindow(m_hWndServer))
{
UnOwnThis () ;
PostMessage (m_hwWndServer, WM_CLOSE, 0, OL);
}
else

UnOwnThis () ;

William Javorcik: Interfacing Hugs and COM Page 20

return;

}
The Class Factories Include File (CFactory.h)

This include file contains definitions of class factory COM objects for the THugs and the THugsU
interfaces. Both are derived from the ITUnknown interface. They contain a nested IClassFactory
implementation instantiation.

Note that both class factories are defined identically since there is no code that we need to execute to
specialize the component creation.

The Class Factories Source File (CFactory.cpp)

This source file contains the implementation of the class factory objects. The function
CFHugs: :CImpIClassFactory: :CreateInstance should be modified if it is necessary to
customize the component creation process.

Modifying the Code
Enabling the IHugsU interface

To enable support for the THugsU interface:
1. Marshaling DLL: Enable support for the THugsU interface
2. Hugs Client: Enable support for the IHugsU interface
3. All Hugs Server * . cpp and * . h files: Uncomment the CHUGSU_INTERFACE macro
4. Since the THugsU interface inherits from THugs, it may be necessary to add the new THugs
functions to the ITHugsU interface

Adding a New Function to an Existing Interface

This procedure can be only applied during the development phase of the program when the interface was
not published yet. To add a new function to an existing interface, a new version of the interface with a
new IID must be created.

To add a new function to an existing interface
1. Marshaling DLL: Add a new function to an existing interface
2. Hugs Client: Add a new function to an existing interface
3. Component include file: Add the declaration of the function into the component’s object class.
For a component that is aggregated by another component, add the function definition into the
aggregating component’s include file as well
4. Component source file: Add the definition of the function. For a component that is aggregated by
another component, add the function definition into the aggregating component’s source file as well
and make sure its implementation is delegating

Adding a New Interface

To add a new interface to the Hugs COM Server program:
1. Marshaling DLL: Add a new interface
2. Hugs Client: Add a new interface
3. HugsSrv.cpp: Add the code to register and unregister the interface in the
CMainWindow: :RegisterServer and CMainWindow: :UnregisterServer functions
4 . Cserver .h: Increase the number of apartments and define the name of the new apartment
5. Cserver.h: In the definition of the class Cserver, add the member variables to store a
pointer to the class factory, to the apartment init data structure and the apartment thread ID.

6. Cserver.cpp: Add the code to zero the Factory and Apartment thread references in
CServer: :Cserver

William Javorcik: Interfacing Hugs and COM Page 21

7. Cserver.cpp: Add the code to create, initialize and start the class factories in

CServer: :OpenFactories

8. Cserver.cpp: Add the code to shut down the class factories and release the interfaces in
CServer: :CloseFactories

9. Factory.h: Add the definition of the new class factory class

10. Factory. cpp: Add the implementation of the new class factory

11. Create a new component include file and define the component’s object class. If the component
is aggregating, add the definition of the aggregated component’s implementation interface and
instantiate it i

12. Create a new component source file and add the standard component functionality as well as the
implementations of all new interface functions. If the component is aggregating, add the functions
inherited from the aggregated component

Future of the Project

Future of COM

COM is just one implementation of the component model of programming. It is possible that there will
be several competing technologies that will survive. However, the sheer size of the company standing
behind COM makes it very probable that COM will be one of them. If COM is successfully ported to
other platforms, this likelihood becomes almost a certainty.

Where Component Architectures Are Heading

It is very likely that the component model of programming is going to gain much more attention. Itis a
natural extension of the object oriented programming and it can have a major impact on how large
applications are architectured and developed. Componentizing applications simplifies the development
since reusing components is very easy.

Where Microsoft Is Going to Take COM

Componentizing most of the programs is the number one program maintenance task at Microsoft. The
task is gaining importance because of two trends: ‘
1. Programs that were originally created as standalone applications are being integrated into suites.
The two biggest examples are the Office Suite and the BackOffice Suite.
2. Generic frameworks into which individual tools are plugged in are replacing collections of tools l
to perform certain tasks. An example of this trend is the Microsoft Management Console with its
snap-in components. %

COM+

COM-+ is a new standard of Component Object Model. The COM+ runtime takes care of providing
implementations of IUnknown, IDispatch, error information interfaces, type information interfaces,
class factories, connection points, and the standard DLL entry points, when needed.

Automation and Dual Interfaces

Automation technology builds on the COM technology to allow the components to be accessed from
higher-level languages such as Visual Basic. Automation component is essentially a COM component
that supports the IDispatch interface. If an Automation component supports several other interfaces, it
is an ActiveX component.

The IDispatch interface (dispinterface) makes invocation of COM functions much easier since it

allows the functions to be invoked by name. If the component implements both the virtual table
invocation and the IDispatch interface, it is said to have dual interfaces.

William Javorcik: Interfacing Hugs and COM Page 22

Dispinterface implements a complex mechanism that supports type checking and automatic conversion of
parameters. However, the price for the flexibility is a much more difficult implementation of the
components and slower performance. For in-process servers, the standard COM virtual table interface is
on the order of 100 times faster than a dispinterface. For local servers, the difference is much smaller
because of the overhead of marshaling, and a virtual table interface is about 2.5 times faster than a
dispinterface.

Frameworks for Development of COM and Automation Components

The COM and Automation components can be developed in almost any language. However, C++ has
been the language of choice for many developers since it is the language in which COM was originally
developed. Many binary standards of COM directly correspond to the structures generated by a C++
compiler.

Development of COM components in C++ from ground up is a tedious and non-trivial task. It is
recommended solely for components that need to implement only a very small number of (nonstandard)
interfaces.

Several C++ class frameworks have been written to facilitate component development:
¢ Active Control Framework (ACF)

e Active Template Library (ATL)

o Microsoft Foundation Classes (MEFC)

There is a lot of confusion in the developer community about these frameworks and their recommended
usage.

Microsoft Foundation Classes

MEC was the very first one to support writing of ActiveX controls. MFC classes encapsulate a lot of
functionality required by the ActiveX controls and make the development process a lot easier. Its
drawback is that the controls have quite a big footprint and they require the correct version of the MFC
runtime DLL to run. Therefore, its use is not recommended if small footprint of the component is
required. Using MFC to develop ActiveX and OLE components is very well documented.

Active Control Framework

In response to the MFC, another developer group at Microsoft came up with the Active Control
Framework. The controls created using this framework are extremely small since the framework provides
only the basic functionality. If programmed carefully, the controls do not even have to be linked with the
C++ runtime libraries, which can result in extremely small executables. However, using ACF is very
difficult since requires detailed knowledge of ActiveX functionality and a lot of experience. The
documentation is practically non-existent. According to several developers at Microsoft, this framework
is not going to be developed any more and most likely will be abandoned completely.

Active Template Library

The third framework that can be used to develop components is the Active Template Library. It supports
a lot of functionality required by the ActiveX controls but the support for ActiveX documents and
higher-level components is not very good. ATL is quickly becoming the framework that Microsoft
internally uses to develop their components and therefore it is evolving very rapidly. Currently it is in
version 2.1. It is distributed as a part of Visual C++ together with a wizard that greatly simplifies laying
out a foundation for a component.

Enhancing the Project

A good integration of Hugs and a COM server can provide many benefits for both development and
execution of Hugs programs. The results achieved in this project are only the first step. The project can

William Javorcik: Interfacing Hugs and COM Page 23

serve as a good foundation for future enhancements. The COM framework was written in plain C++,
therefore it is easily portable to other platforms. All code is written to the COM specification and
contains support for advanced features such as reuse by aggregation.

There are a number of directions this project can be enhanced in.
Graphical User Interface for the Client

Currently, the client is essentially a simple text-oriented application that prints traces to the main
window. It is easy to eliminate the traces or, even better, to redirect them to a separate window. A
graphical interface could be added to the client to give it a more GUI look and feel.

Symbol Table Browser

To support out-of-process or remote browsing and debugging of Hugs programs, a lot of support must be
added in terms of COM interfaces. The COM specification suggests that it is better to support many
smaller interfaces then fewer big ones. For Hugs, this might translate to a separate interface for each area
of functionality.

Let’s suppose the goal is to have a complete symbol table browser. The Hugs server could communicate
with clients using the following interfaces:

IGenRuntime to support generic runtime functionality, such as initialize, load file, load project,
etc.

IBrowseModule to support module browsing

IBrowseTyCon to support type constructor browsing

IBrowseStack to support stack browsing

It is important to realize that the server has complete access to all of Hugs structures and variables, but
the client does not. The consequence is that the definition of the structures passed from the server to the
client must be well thought-out. The communication must be coarse-grained enough in order to achieve
reasonable performance. If, for example, each integer value should be converted to string upon client’s
request, a lot of communication could be generated just to pass small quantities of information around.

Using ATL

ATL seems a tool of choice for internal development of COM components at Microsoft and there is a lot
of effort being poured into its development. ATL is likely to encapsulate or provide support for many
standard interfaces that the Hugs server may want to implement in future.

References

1. Dale Rogerson: Inside COM, Microsoft Press 1997
2. Kraig Brockschmidt: Inside OLE, ond edition, Microsoft Press 1995
3. Microsoft Corporation: Automation Programmer’s Reference, Microsoft Press 1997

