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Abstract

This paper describes an implementation of a high level framework for constructing incremen-
tal programs — programs which can efficiently update the result of a computation when the input
changes only slightly. This framework was described in [SH91] and uses partial evaluation. The
implementation is based on the partial evaluator Schism [Con90b]. As an example of the use
of the framework, the construction of an incremental data flow analyzer is described in detail.
The framework can be expressed in the form of an incremental interpreter. Efficient “compiled”
incremental programs are obtained by specializing this incremental interpreter. Thus, partial
evaluation is used for two purposes: in the framework to describe incremental programs, and to
implement the framework efficiently. Performance results for interesting problems show sizeable
speedups of the incremental program over the corresponding non-incremental one.

1 Introduction

Incremental tools —i.e. ones which can efficiently update the result of a computation when the input
changes only slightly — are increasingly playing an important role in programming environments.
It is very common to apply a program (e.g. interpreters, compilers, text formatters etc.) to a series
of similar inputs. However, despite the preponderance of work on incremental algorithms and pro-
grams, formal and general treatments of the problem are rare. Historically the approach has been to
hand-craft incremental algorithms for many important problems, and as a result common elements
of the designs are often obscured. Indeed, looking at various extant incremental algorithms, one
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might be led to believe that there is no common element at all! There seems to be some consensus
that incremental algorithms are hard to derive, debug and maintain [Pug88, YS89, FT90], and as
we attempt to create incremental programs for larger tasks, this problem will only get worse.

This problem is addressed in [SH91] where a framework for incremental computation based on
partial evaluation [BEN8S8] is presented. This framework makes use of residual functions (the results
of partial evaluation) to provide a problem-independent way of storing intermediate computations.
In addition to providing a precise definition of the term “incremental program”, this framework
offers a methodology to generate an incremental program from its non-incremental counterpart
plus a specification of a partition of the input object. (This reduces the designer’s primary task
to determining the partition of the input domain, which controls the “granularity” of the incre-
mentality as well as overall efficiency.) It also provides an algebraic basis for reasoning about the
correctness of the incremental programs thus generated. While there have been other attempts to
provide a general framework for the construction of incremental programs, this framework is the
only one based on the notion of partial evaluation.

its performance on some interesting problems. We begin by reviewing the salient features of our
framework for incremental computation. Each stage of the implementation is described using the
example of incremental data flow analysis. First the problems of transforming the data flow analyzer
to a form amenable to partial evaluation are discussed. Then an implementation of the algorithm
to compute the least upper bound of residual functions is described. Finally these results are
combined to construct an incremental interpreter which executes a specification of an incremental
program efficiently. We describe the methods used to avoid the overhead of interpretation and to
generate “compiled incremental programs”. We also present performance results for two problems:
incremental data flow analysis and incremental attribute grammar evaluation. These results sizeable
speedups of the incremental program over the non-incremental (batch) program.

Partial evaluation is used for two distinct purposes: it forms the basis of the framework to de-
scribe incremental programs. It is also used to implement this framework efficiently (by specializing
the incremental interpreter). Another interesting feature is the reliance on partial evaluators based
on binding time analysis: as we will see, the implementation depends crucially on binding time
information of the program.

The implementation is based on 'Sc-hism, which is a partial evaluator for a side-effect free dialect
of Scheme [Con90b, Con90a]. The source programs are written in pure Scheme: a dynamically
typed, applicative order implementation of lambda-calculus. Schism handles higher order functions
as well as the data structures manipulated by the source programs, even when they are only partially
known. Schism is written in pure Scheme and is self-applicable. Schism also provides mechanisms
to control the specialization process by means of user annotations called filters [Con88].

2 Incremental Computation and Partial Evaluation

2.1 Partial Evaluation

This section describes the notation we will use for partial evaluation. We use Launchbury’s [Lau88]
definition of partial evaluation using projections.




Definition 2.1 A projection on a domain D is a continuous mapping p : D — D such that:

¢ p C ID (no information addition)

e pop = p (idempotence)

Note that ID (the identity function) is the greatest projection and ABSENT (the constant function
with value L) the least (under the standard information ordering on functions).

Definition 2.2 If p and q are projections and p LJ'q = ID, then q is a complement of p.

Note that by the above definition the complement of a projection may not be unique (for example,
ID is a complement of every projection). This problem is avoided by choosing an appropriate
domain of projections where complement is defined in terms of a difference operator. (for details,
see [SH91]). We write p to denote the unique complement of p.

Definition 2.3 A partial evaluator P& is a function which takes representations of a function f,
a projection p, and a value a, and produces a representation of the residual function, f,q, defined
as follows:

PE fp(applypa) = fpa
such that

apply fpa (apply p a) = apply f a

where apply takes the representation of a function and its argument and produces a representation
of the result.

The idea here is to use projections to capture the known parts of the input. When there is no
ambiguity we use 7, to denote PE f p a. Given this notation, note that r;p = apply f a.

In [Lau90] Launchbury has extended this framework by showing how the type of the residual
function depends on the static value used to produce it. Using the notion of dependent sum and
dependent product domain constructions, he shows how the residual function can be made to take
as little information as possible.

2.2 Incremental Computation

Returning now to the problem of incremental computation, we can summarize the situation as in
Figure 1. Here the function f (which may be a compiler, text formatter, etc.) is being applied to
a structured argument to give the result. If only part of the argument changes, such as part b,
we would like to compute the new result without having to redo the entire computation; in other
words, we would like to avoid having f reprocess parts a, ¢, and d.

Now, here’s the connection to partial evaluation, and the basis of our framework: The parti-
tioning of the input domain can be described using a set of projections as defined in the previous
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Figure 1: Incremental computation

section; let’s call them p,, ps, pc, and py for the example in Figure 1. If we then compute the resid-
ual functions rp,, 7p,, Tp,., and 7,,, we have essentially “cached” those portions of the computation
that depend only on parts a, b, ¢, and d of the input, respectively.

Recalling that r;p = apply f a, all we need now to compute the final result is a (presumably
efficient) way to construct ryp from the set of residual functions — for now, let’s assume that such
a technique exists. If part of the input were to change, say b changes to b’, then all we have to
do is replace r,, with Toy computation of r7p then takes place with this new residual function in
place.

An alternative way to describe this process is as follows: At the point when b changes to b’,
suppose we had by some means already computed r5; — then all we need to do to compute the
new result is to apply rz to b’. We can thus view the problem as an attempt to find (at least a
conservative approximation to) r; by combining existing residual functions.

We can define all this more formally as follows:

Definition 2.4 A partition P of a domain D is a set of projections {p;} on D such that U{p;} =
ID.

Definition 2.5 An incremental program specification is a pair (f,P) where f : D — £ is the
function to be incrementalized and P ts a partition of D.

We now describe an “incremental interpreter,” denoted Z, which captures the methodology
described earlier. Z has functionality:

I(f,P) — ag — (50,61,...) - (bo,bl,...)

(f, P) is the incremental program specification, and ag is the initial argument. The és are functions
capturing “small” changes to the input, and the bs are the successive output results.

Algorithm T:

¢ Setup: Compute 7,; = PE f p; a for each p; in the partition P.

o Reestablish: If a changes to a’, recompute all r,, for which p; a # p; a’.
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¢ Combine: The new result ryp is obtained from {r,, } using appropriate combining operations.

The main purpose of Z is to maintain the invariant: rp,, = PE f p; a for all p; € P, and in so
doing satisfies the following correctness criterion:

b; = f a; where a; = 6;—1 a;—

This forms the basis for our approach. In [SH91] we show how the notion of “combining”
residual functions can be formalized as a least upper bound of residual functions in an appropriate
domain. An algorithm for this operation (which forms the basis for the implementation) is also
discussed. Other questions addressed include the choice of the partition of the input data object.
In the sections which follow we will discuss each stage of the incremental interpreter by means of
an example.

3 Reaching Definitions

As an example of compiler data flow analysis, consider the problem of determining the set of “reach-
ing definitions” at every program point. The example and the choice of the partition is inspired by
an algorithm for incremental data flow analysis from [MR90]. The algorithm we sythesize from our
framework has the same characteristics as the the one in [MR90]. A definition of a variable is said
to “reach” a program point if there exists a path from the definition to the program point which
does not pass through a redefinition of the same variable. For example, consider the flow graph in
Figure 2. Each of the circles denotes a basic block, where a label “z =" means that z is assigned a
value in that block. Arcs are labelled with sets L; of definitions which reach that arc. For example,
the set Lo = {(z, el),(y,e2)} means that the definition of z at program point el and y at e2 reach
the arc labelled Lo. We can then write the following equations (“?” refers to a wildcard):

LO - {(2761)7 (yvez)}

Ly = LgUlLjs

Ly = Ly -{(z,M)}u{(z,B)}

Ly = (LU Lz)—{(y,)}u{(y,C)}

The solution to these set equations is defined by a least fixpoint construction, yielding:

Ly = {(3761)7(:%62)}

L, = {(z,el),(y,e2),(x,B),(y, C)}
L, = {(y,e2),(y,C),(z,B)}

Ly = {(:c,el),(a:,B),(y,C’)}

Recall that an incremental algorithm specification consists of a non-incremental program plus a
partition of the input domain. Therefore we first need to describe a non-incremental algorithm. We
assume the input to the algorithm to be a list of strongly connected components of the set of data
flow equations in topological order (which can be produced by a standard dependency analysis).
The solution is then defined by the following Scheme program:




Figure 2: Example flow graph

(define (dfa graph env0)
(foldl (lambda (env scc) (solve scc env)) envO graph))

(define (solve scc env)
(let ((env’ (next-approx scc env)))
(if (env-eq? env env’)
env
(solve scc env’))))

solve is a function which takes an initial (empty) environment (mapping arc labels to sets) and
a set of mutually recursive equations. It then computes the least fixpoint of the equations using the
initial environment as the first approximation. Function next-approx recomputes the identifiers
defined by the equations eqns using the old environment env to produce a new environment env’.
To complete the incremental program specification we specify the following input partition:

P = {p;} such that
i = L,pp(z:zs) = (z:L)and
pill = L,pi(z:zs) = (L:(pi-1 z9)).
This means that each strongly connected component is in a separate element of the partition.

This partition enables the fixpoint computation to go to completion on each element of the partition
(as will be seen in the following sections).

In the sections which follow, we will show how an incremental program can be extracted from
this incremental program specification. In the rest of the paper we will use the terms “known” and
STATIC interchangeably, and similarly the terms “unknown” and DYNAMIC.




4 Partial Evaluation

In the Setup and Reestablish phases of the incremental interpreter, the computation of rp, is the
main activity. In this section we will see how to do this. Before we use the function defined in the
previous section we need to transform the definition into a form amenable to partial evaluation.
The projections which form the partition describe partially static input. To make sure that the
binding times for arguments to the main function are not partially static, we carry out a process
similar to arity raising. This implies fixing the number of connected components a priori. If the
graph grows to exceed this limit, we may either redo this arity raising with a higher number of
arguments or we may club more connected components into a single argument. The latter solution
ends up using a “coarser” partition of the input and may yield poorer incremental performance.
In practice one may choose a sufficiently large arity to avoid this problem. For the example in this
paper we choose to convert the list of components into three arguments: (The principles involved
for a larger number of arguments remain the same)

(define (dfa sccl scc2 scc3 env0)
(solve scc3
(solve scc2
(solve sccl env0))))

During specialization, if the first argument to the function solve is STATIC, we know that
the solve function can be completely unrolled. This is because the termination of the fixpoint
computation does not depend on the environment argument. To convey this information to Schism
we make use of the filter mechanism. Filters in Schism provide the user with control over the
specialization process. First the environment is split into two components: a static and dynamic
component. This is done since filters can only contain tests for either STATIC or DYNAMIC. The
fixpoint iteration is always started with the static environment empty. The dynamic environment
is the solution to the problem flowing in to the component. Thus the termination of the unfolding
process is made to depend only on static information since the dynamic environment does not
change during iteration within this component. Given this knowledge, the filter specifies that
solve can be unfolded only if both scc and env_s are known:

(define (solve scc env_s env_d)
(filter (if (and (stat? scc) (stat? env_s)) UNFOLD SPECIALIZE)
(list scc env_s env_d))
(let ((env_s’ (next-approx scc_s env_s))
(env_d’ (next-approx scc_d env_d)))
(if (env-eq? env_s env_s’)
(env-union env_d env_s)
(solve scc env_s’ env_d’))))




The binding time analysis of Schism is monovariant, i.e. each function can only have one
binding time signature!. This loss of information is unacceptable in our case where we wish to do
binding time analysis with one of the components known and the rest being unknown. In this case
the solve function would never be unfolded because each call to it would have all its arguments
mapped to DYNAMIC. To overcome this problem, each call to solve is made to a different version.
This entails duplication of code, but can be done in a straightforward manner. The function applied
to the ith component will be named solvei.

The result of specializing dfa with scc2 and env0 as STATIC is shown below. The value used for
scc2 is the graph shown in Figure 2 and the value used for env0 is the empty environment. Note
that solve2 has been completely unrolled. The static part of the result is completely computed.
The dynamic environment (flowing in from the result of the first component) is processed before
being combined with the static environment to yield the environment to be passed to the next
component in the topological order:

(lambda (scecl sce3)
(solve3 scc3 (map31 (car scc3))
(env-union2
(next-approx scc2
(next-approx scc2
(next-approx scc2
(solvel sccl (mapil (car sccl))
*((10) (11) (12) A3NNN
7((10 (x . el) (y . e2))
(11 (x . e1) (y . e2) (x . b) (y . <))
(12 (y . e2) (y . ) (x . b))
(13 (x . e1) (x . b) (. NN

The residual function corresponding to scci and envO being STATIC is shown below: (Note
that in this case solvel is completely unfolded since all its arguments were static, the values used
are the same as in the last case.)

(lambda (scc2 sce3d)
(solve3 sce3 (map31i (car sce3))
(solve2 scc2 (map21 (car scc2))
'((10 (x . el) (y . e2))
(11 (x . el) (y . e2) (x . b) (y . <))
(12 (y . e2) (y . ) (x . b))
(13 (x . e1) (x .bB) (g . eNNN

! A binding time signature is a description of the binding times for the arguments and the result of a function




During the Setup phase of the incremental interpreter, residual functions (including the ones
shown above) are computed corresponding to each element of the partition. The Reestablish
phase simply entails recomputing those residual functions affected by changes in the input.

5 Combining Residual Functions

The last step of the incremental interpreter is the Combine step which computes the least upper
bound of two residual functions r, and rq, namely rpu,. This section will describe the implemen-
tation of an algorithm to combine residual functions r, and r, to produce their least upper bound.
The algorithm avoids redoing any of the reductions already done in the computation of either r,
and r,. Indeed if the incremental interpreter is to achieve good performance, this is essential. The
algorithm is driven by actions, an interpretation of the binding time information, computed for the
two residual functions. Schism computes actions for every node of the source program from the
binding time information. It produces four kinds of actions [CD90]:

e Reduce: An action which says process the children of the syntax tree according to the action
subtrees rooted at this node and then Reduce the node.

¢ Rebuild: An action which says process the children of the syntax tree according to the action
subtrees rooted at this node and then Rebuild the node.

o Eval: Evaluate (using the standard semantics of the language) the subtree rooted at this
node. :

o Id: Freeze the subtree rooted at this node.

The algorithm constructs rp, from subexpressions of 7, and r,. Which subexpression is chosen
depends on the binding times. The algorithm follows the general rule: “choose the subexpression
which is more evaluated”. The function lub takes as arguments the bodies of the two residual
functions: r1 and r2, the source code corresponding to the two bodies: c1 and c2 (which should be
the same always, and so could be replaced by a single argument), the action trees which produced
the two residual functions: at1l and at2. In addition two kinds of environments are used, whose
purpose will soon become clear. anal and ana2 are the results of binding time analysis for the two
residual functions. The algorithm operates on a first order subset of Scheme.

The entire code for the algorithm is presented in Appendix A. In this section we will examine
some salient features of the algorithm. We use fst, snd, trd, frt to mean the obvious list selector
functions. The algorithm works by comparing the two residual functions and their action trees.
The three main cases to consider are the node reduced being an application, a variable and a
conditional. In the case of the node under consideration being an application, the cases of interest
are: both residual functions have reduced the application, one has reduced it while the other rebuilt
it, and both have rebuilt it. Of these three cases consider the case when one application has been
reduced and the other rebuilt. The algorithm is recursively called on the body of the function. In
addition the environment of the rebuilt application must be enhanced with the residual expressions
corresponding to its arguments. This is essential as the arguments of the rebuilt may incorporate
reductions not in the arguments of the reduced function. The code for this case is shown below:




((and (reduce? atil) (rebuild? at2))
(let ((v1 (sel anail (fn-name c1)))
(v2 (sel ana2 (fn-name c2))))

(inc:lub r1 (extract-code v1) (extract-at vi1)

(update-env envi (arg-names v1)
(dup (inc:length (arg-names vi)) ’?)
(arg-bodies c1)
(arg-ats atl))

cenvl anal

(extract-code v2) (extract-code v2)

(extract-at v2)

(update-env env2 (arg-names v2)

: (arg-bodies r2)

(arg-bodies c2)
(arg-ats at2))

cenv2 ana2)))

When the node under consideration is a variable, a case analysis needs to be done on the binding
times. We will look at one of the branches of the case: namely when one variable is reduced and
the other rebuilt. lub is recursively called with the reduced variable expression and the lookup of
the variable in the environment of the rebuilt variable. New action trees and environments are also
obtained from each environment. The code for this case is shown below:

((and (reduce? atl) (rebuild? at2))
(let ((v1 (inc:lookup-env envl (var-name c1)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:1lub ri (snd v1) (trd vi) (frt vi) cenvl anal
(fst v2) (snd v2) (trd v2) (frt v2) cenv2 ana2)))

The case of the conditional explains the use of the two environments cenvl and cenv2. When
faced with a reduced conditional, the binding time information does not tell us which expression -
consequent or alternate — was chosen. This information is needed for the recursive call to lub to be
made. We assume that the specializer records a trace of how each conditional in the program was
resolved. This information is presented in the form of an environment mapping program points to
traces. In the following case branch, we consider the possibility of one conditional being reduced
and the other being left residual. The lub algorithm is called recursively with arguments depending
on which way the conditional was reduced (as shown below).
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((and (rebuild? atl) (reduce? at2))
(let ((v (lookup-cenv cenv2 (cond-name c2))))
(inc:1lub (choose-b (car v) rl) (choose-b (car v) ci)
(choose-a (car v) atl) envl cenvi anal
r2 (choose-b (car v) c2)
(choose-a (car v) at2) env2 (cdr v) ana2)))

6 The Incremental Interpreter

Shown below is an incremental interpreter, i.e. it takes a specification of an incremental program
(a non-incremental program and a partition of the input), an initial argument and a series of small
changes to the input and “incrementally” produces a series of answers. The function setup com-
putes the residual functions correponding to prog on each element of the partition. reestablish
takes a set of residual functions, a small change to the argument of the program and recomputes only
those residuals affected by the change. These functions are built out of the components discussed
in the previous sections.

(define (Inc prog part init_arg deltas)
(I (setup prog part init_arg) deltas))

(define (I residuals deltas)
(cond
((null? deltas)
(cons (eval (ast->t (combine residuals)) (repl-env)) ’()))
(else
(let* ((delta (car deltas)))
(cond
(let ((residuals’ (reestablish residuals delta)))
(cons (eval (ast->t (combine residuals’)) (repl-env))
(I residuals’ (cdr deltas)))))))))

7 Compiled Incremental Programs

That the use of an interpreter entails a performance overhead is well known. Partial evaluation has
been used to capture the essence of compilation by specializing an interpreter wrt a program yielding
a compiled program. We can use this idea profitably to specialize the incremental interpreter (Inc)
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wrt a incremental program specification (prog and part). This yields a “compiled incremental
program” which can yield substantial performance benefits over the interpreted version. We have
actually carried out such a specialization for many problems (Section 8). This can be described
precisely as follows: (f is the function to be incrementalized, P is the input partition, Z is the
incremental interpreter, fin. is the “compiled” incremental program and [f] denotes the function
corresponding to the program f)

[PELZ (f,P) = finc

Since the incremental interpreter itself makes liberal use of partial evaluation (in the Setup
and Reestablish phases), the abovementioned specialization entails self application of the partial
evaluator. How exactly is increased performance achieved by this specialization? First, binding
time analysis of prog on each element of part can be carried out at specialization time. Also,
the specializer can be specialized with each result of the binding time analyses to yield specialized
specializers (the second Futamura projection [Fut71]). The Combine phase does not benefit from
this specialization because the conditional environment arguments to the lub function (cenvi and
cenv2) are both DYNAMIC. Thus the lub function has to be left residual.

8 Performance

In this section we describe the performance results of two problems: the data flow analysis' problem
discussed above and an evaluator for non-circular attribute grammars. The evaluator reattributes
the attribute tree after a subtree replacement. For more details of the incremental program for
the attribute grammar example, see [SH91]. Other examples we have worked on include constraint
solving, strictness analysis and type inference [Sun91].

The implementation runs under the T system (a dialect of Scheme) using the partial evaluator
Schism. In each case we will compare the performance of the “compiled incremental program” (as
described in the last section) with the non-incremental (batch) version. The choice of input data
has been done as follows. It is possible to show very good performance by making the changing
element of the partition very small and the rest of the input arbitrarily large. Correspondingly
it is possible to make an incremental program perform poorly by making the changes very large,
so that the overhead of recomputing the solution becomes comparable to the batch version. To
present a more accurate picture, we have chosen input data where the elements of the partition
are of equal size. Thus if there are n elements in the partition, one would expect the incremental
version to show an n-fold speedup over the batch version for changes which only affect one element
of the partition. In practice we observe that the overhead associated with the methodology gives
us speedups less than n (because of the overheads associated with the Combine step).

Shown in Figures 3 and 4 are the performance figures for the two examples. The tables show
the costs of recomputing the result in a non-incremental (batch) mode and using the incremental
program. Each row of the tables represents a small change to the input in the previous row. The
graphs in Figure 8 plot the data with the x-axis representing consecutive changes to the input and
the y-axis representing cost of recomputation. The cost of the Combine step grows slower than
the cost of the Reestablish step. Thus as the input partition size gets larger (more components
in the data flow analysis example), the speedup will also increase.
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Batch | Reestablish | Combine | Total | Speedup
115.32 31.24 26.39 57.63 2.00
116.97 29.26 24.48 53.74 | 2.18
118.35 29.57 24.90 54.47 2.17
117.26 27.74 26.30 54.04 2.17

Figure 3: Data Flow Analysis: Reaching Definitions. A 120 node graph with 3 connected compo-
nents of approximately equal size.

Batch | Reestablish | Combine | Total | Speedup
31.63 6.03 8.71 14.74 2.15
30.43 6.29 7.51 13.80 2.20
30.17 5.92 8.20 14.12 2.14
32.79 4.85 7.53 12.38 2.65

Figure 4: Attribute Evaluation: L — L L, L — a. A 100 node tree with changes made to a subtree
of approximately half the size.
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9 Conclusions and Future Work

The performance results and the relative ease of construction suggests that partial evaluation can
be a useful tool to build incremental programs. An important reason for the good performance
of the programs is the self-applicable nature of the partial evaluator. Given that most successfully
self-applicable partial evaluators have been based on binding-time analysis [JSS89], we can infer
that binding time analysis is crucial to the approach. This can also be seen from the fact that
the least upper bound algorithm is driven by an interpretation of the binding time information of
the two residual functions. The experience gained during implementation suggests some avenues
to improve the framework:

Storage Costs of Residual Functions. The intermediate results maintained by the interpreter
are residual functions. As the size of the partition grows, the number of residual functions also
grows. This may lead to excessive storage consumption. However, note that usually large portions
of any two residual functions are usually the same. This is because portions of the computation
not affected by either member of the partition are essentially the same. This observation can be
exploited to come up with an efficient storage scheme for residual functions.

Restrictions on the use of Residual Functions. The framework does not encourage reuse
of residual functions in the following sense. If two data flow graphs share a strongly connected
component, it should be possible to use the residual function from one incremental session in the
other session. But this may not be possible since the two strongly connected components, although
they are the same, may occupy different positions in the list of strongly connected components. We
are investigating ways of overcoming such restrictions.

Higher order functions. The system as currently implemented only handles first order func-
tions. Schism computes an extended set of actions for higher order functions. We are currently
reformulating the lub algorithm to make use of these actions.

Acknowledgements Thanks to Paul Hudak for many discussions and to Charles Consel for
making Schism available and answering innumerable questions.
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Algorithm LUB

(define (inc:lub rl cl atl envi cenvi anal r2 c2 at2 env2 cenv2 ana2)
(cond

((inc:application? c1)

(cond
((eval? atl) r1)
((eval? at2) r2)
((id? at1) r2)
((id? at2) ri)

((and (reduce? atl) (reduce? at2))
(let ((v1 (sel anal (fn-name ci)))
(v2 (sel ana2 (fn-name c2))))

(inc:1lub r1 (extract-code v1) (extract-at vi1)
(update-env envl (arg-names v1)
(dup (inc:length (arg-names vi)) ’7)
(arg-bodies c1)
(arg-ats atl1))

cenvl anal
r2 (extract-code v2) (extract-at v2)
(update-env env2 (arg-names v2)
(dup (inc:length (arg-names v2)) ’7)
(arg-bodies c2)
(arg-ats at2))
cenv2 ana2)))
((and (reduce? atl) (rebuild? at2))
(let ((vl (sel anal (fn-name c1)))
(v2 (sel ana2 (fn-name c2))))

(inc:1lub r1 (extract-code vi) (extract-at vi) Z
(update-env envl (arg-names vi1) I
(dup (inc:length (arg-names v1)) ’7)
(arg-bodies cl1)
(arg-ats atl))
cenvl anal
(extract-code v2) (extract-code v2)
(extract-at v2)
(update-env env2 (arg-names v2)
(arg-bodies r2)
(arg-bodies c2)
(arg-ats at2))
cenv2 ana2)))

((and (rebuild? at1) (reduce? at2))
(... ANALOGOUS TO THE LAST CASE ...))

((and (rebuild? atl) (rebuild? at2))
(mk-application (fn-name c1)
(map6 (lambda (x y z u v w)
(inc:lub x y z envl cenvl anal u v ¥ env2 cenv2 ana2))
(arg-bodies r1) (arg-bodies c1) (arg-ats atl)
(arg-bodies r2) (arg-bodies c2) (arg-ats at2))))))
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((inc:variable? c1)
(cond
(Ceval? at1) ri)
(Ceval? at2) r2)

((and (rebuild? atl) (fail? (inc:lookup-env envi (var-name c1))))
r2)

((and (rebuild? at2) (fail? (inc:lookup-env env2 (var-name c2))))
rl)

((and (reduce? at1l) (reduce? at2))
(let ((v1 (inc:lookup-env envi (var-name c1)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:lub r1 (snd v1) (trd vi) (frt v1) cenvl anal
r2 (snd v2) (trd v2) (frt v2) cenv2 ana2)
))

((and (rebuild? at1) (rebuild? at2))
(let ((v1 (inc:lookup-env envi (var-name c1)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:1lub (fst v1) (snd v1) (trd v1) (frt vi) cenvl anal
(fst v2) (snd v2) (txd v2) (frt v2) cenv2 ana2)))

((and (reduce? atl) (rebuild? at2))
(let ((v1 (inc:lookup-env envl (var-name ci1)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:lub ri (snd v1) (trd v1) (frt v1) cenvl anal
(fst v2) (snd v2) (trd v2) (frt v2) cenv2 ana2)))

((and (rebuild? atl) (reduce? at2))
(... ANALOGOUS TO THE LAST CASE ...))))

((inc:conditional? c1)
(cond
((eval? at1) ri1)
((eval? at2) r2)
((id? atl) r2)
((id? at2) ri1)

((and (rebuild? at1) (rebuild? at2))
(mk-if
(inc:lub (test-body ri) (test-body c1) (test-at atl) envl cenvl
anal
(test-body r2) (test-body c2) (test-at at2) env2 cenv2
ana2)
(inc:lub (cons-body r1) (coms-body c1) (coms-at atl) envl cenvl
anal
(cons-body r2) (cons-body c2) (cons-at at2) env2 cenv2
ana2)

(inc:1lub (alt-body ri1) (alt-body c1) (alt-at atl) envl cenvl anal
(alt-body r2) (alt-body c2) (alt-at at2) env2 cenv2 ana2

D))
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((and (rebuild? ati) (xreduce? at2))
(let ((v (lookup-cenv cenv2 (cond-name ¢2))))
(inc:lub (choose~b (car v) r1) (choose-b (car v) ci)
(choose-a (car v) atl) envl cenvl anal
r2 (choose-b (car v) c2)
(choose-a (car v) at2) env2 (cdr v) ana2)))

((and (reduce? atl) (rebuild? at2))
(... ANALOGOUS TO THE LAST CASE ...))

((and (reduce? atl) (reduce? at2))
(let ((v1 (lookup~cenv cenvl (cond-name c1)))
(v2 (lookup-cenv cenv2 (cond-name c2))))
(inc:1lub r1 (choose-b (car v1) c¢1) (choose-a (car v1) atl)
envl (cdr vi) anai
r2 (choose-b (car v2) c2) (choose-a (car v2) at2)
env2 (cdr v2) ana2)))))))
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