Abstract. We show that all stationary probabilities of a finite irreducible Markov chain react
essentially in the same way to perturbations in the transition probabilities. In particular, if at least
one stationary probability is insensitive in a relative sense, then all stationary probabilities must
be insensitive in an absolute sense.
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1 Introduction

The purpose of this paper is to analyse the sensitivity of individual stationary probabilities to
perturbations in the transition probabilities of finite irreducible Markov chains.

In addition to providing perturbation bounds that are much sharper than the traditional bounds,
our analysis demonstrates that all stationary probabilities in an irreducible chain react in a somewhat
uniform manner to perturbations in the transition probabilities. This property of uniform sensitivity
distinguishes Markov problems markedly from general linear systems. Section 2 presents examples
~ that illustrate why a Markov problem should not be treated as just another linear system.

Most of the work on perturbations of irreducible Markov chains has focused on the derivation of
norm-based bounds of the following kind. Let P and P = P + E be probability transition matrices
of irreducible Markov chains with respective stationary probability vectors 77 and #7 satisfying

7rTP=7rT, #p=7T, Z‘)r; = lzz%,'.
) i

Then
l=T — &7l < «||E||

for suitable vector and matrix norms. The condition numbers & can be produced in various ways:
from entries of Kemeny and Snell’s “fundamental matrix” [13] as in [20], from entries of the group
inverse [4] A¥ of A=I-Pasin|[2,7,9, 15, 17, 18, 22], and from the coefficient of ergodicity as
in [21].

These norm-based bounds, however, are not satisfying for two reasons. First, there exist irre-
ducible chains for which the bounds are not tight, so the condition number x may seriously over-
estimate the sensitivity to perturbations. Secondly, the bounds generally provide little information
about the relative error |r; — 7;|/7; in individual stationary probabilities.

We remedy this situation in Section 3 by deriving perturbation bounds for individual stationary
probabilities. The bounds are tight because for each Markov chain we can exhibit perturbations that
satisfy the bounds with equality. Our analysis then leads to the uniform sensitivity of the stationary
probabilities. In particular, if at least one large probability has low absolute sensitivity then all
probabilities have low absolute sensitivity, and the chain is absolutely stable.

In Section 4 we relate our measure of sensitivity to the traditional condition numbers for the
Markov problem. We prove that all relevant condition numbers for the problem 77 A = 0 are small
multiples of each other.

After discussing the ramifications of the perturbation results on direct methods for computing
the stationary probabilities in Section 5, we consider the case of nearly transient chains in Sections
6 and 7. We show that under special perturbations even small probabilities may have low relative
sensitivity. In addition, we give conditions under which a nearly transient chain is absolutely stable
under general perturbations. A summary of the results in Section 8 concludes the paper.

Notation

Unless otherwise specified, the infinity-norm is used for matrices and column vectors, and the one-
norm for row vectors. The jth column of the identity matrix I is denoted by e;, and the column
vector of all ones is denoted by e.




The matrix P of order n denotes the matrix of transition probabilities of a n-state irreducible
Markov chain with stationary distribution 77. We define A = I — P. The matrix P = P+ E is
a perturbation of P that represents the transition matrix of an irreducible chain with stationary

distribution #7T.

2 Why Markov Chains Are Different

In this section we illustrate why the computation of the stationary distribution of an irreducible
Markov chain should not be treated as just another linear system. It turns out that the rich
structure of the Markov matrices regulates the sensitivity of the probabilities to perturbations in
the matrix.

In general, the solution components of an ill-conditioned linear system are not necessarily all

sensitive to perturbations. Some components may be quite insensitive as the example below from [5]
demonstrates.

Example 1 Consider the linear system Bz = b, where

0.4919  0.1112 -0.6234 -—0.6228 0.4351

B= —0.5050 —0.6239  0.0589  0.0595 b= —0.1929
0.5728 —0.0843  0.7480 0.7483 |’ - 0.6165

—0.4181  0.7689  0.2200  0.2204 v —0.8022

The first three columns of B are nearly orthogonal while the last two columns are almost identical.
The two-norm condition number of B is on the order of 103.

In [5] condition numbers for individual solution components are derived that indicate the relative
change of a component to perturbations in the matrix. The first two components of z above have
condition numbers of about one while the condition numbers for the last two components are on the
order of 103. Hence the first two components are insensitive to perturbations while the last two are
very sensitive to perturbations.

This is also evident when the “exact” solution z computed with 16-digit arithmetic is compared
with the solution £ computed with 4-digit arithmetic, which can be viewed as the solution to a
perturbed problem,

1.000075414240576 1.000
_ | —.5000879795933286 - _ | —.5003
| —.0242511388797165 =1 -.0589
.0262451395500586 .06090

The first two components of # are accurate to almost four digits, whereas the last two have no
accuracy whatsoever.

In the example above, no component of z is particularly small, so the sensitivity of the first two
components is not a result of their size. Hence, a general ill-conditioned linear system may give rise
to both, large insensitive probabilities and large sensitive probabilities. We will show in Section 3
that this cannot happen for Markov chains.

Regarding the effects of perturbations on Markov chains it is also important to distinguish
between absolute sensitivity and relative sensitivity, as the following example illustrates.




Example 2 For the 3-state chain whose transition matrix is

0 1-€ ¢
Ple)=|1-¢ 0 €],
1 0 0

the associated stationary distribution is

7r'I,(f)=((2-s)1(1+a (2-i)_(f+e) ﬁ-?)

If P = P(107®) is perturbed to become P = P(10~%), then the magnitude of the perturbation
E=P-Pis
[|E]| =2(10~* - 1078).

Consider the change in the respective stationary distributions
T =77(107%) and %7 =x7(107%).
As for the third component, its absolute change (the change relative to 1), is

10-8 10~
1+10-8 1+10-¢

W02 -107%  jg-a_1o-s= L2l

T T+10-9)(1+10-9) 2

but its relative change (the change relative to the original value) is

|7r3—v~rs|=|

ma =gl _ | _ 10-%(1+10-8%) ~ 10°
T3 | 10-8(1+10-%) ’

If the change in probabilities is assessed by comparing it to 1, then w3 is as insensitive to
perturbations as can be expected because the change of magnitude || E|| in the transition probabilities
produces a change in 73 of only ||E||/2. But if the change in probabilities is assessed in a relative
sense then the change in 73 is large, and 73 must be considered to be sensitive to perturbations.

As for the sensitivity of the other two probabilities 7; and 75, if a,#,j is element (2, §) in the group

inverse A¥ of A = I — P, then the absolute error in the Jjth stationary probability is bounded by [7]
#
il

Ir = 5l < s IEl, w5 = max]a]
In this example, max; ; [afjl < 1, so all three stationary probabilities are insensitive in the absolute
sense. Because m; and m; are both very close to 1/2, they are insensitive in the relative sense as
well.

The preceding example motivates the following definition.

Definition 1 An irreducible chain is said to be absolutely stable whenever each m; s insenstlive to
perturbations in P in the absolute sense, i.c., whenever there is a small constant k such that for all
perturbations E,

- %l <sIBl,  1<j<n,

where the term “small” is to be interpreted in the context of the underlying application.

Sufficient conditions for absolute stability are well-known. The results in [2,7,9, 15,17, 18, 22],
for instance, use the fact that a chain is absolutely stable if the group inverse A¥ of A =1 — P has
no large entries (relative to 1).




3 Component-Wise Analysis

In this section we derive tight upper bounds on the relative change in individual stationary prob-
abilities, and we prove that all stationary probabilities show essentially the same sens1t1v1ty to
perturbations in the transition probabilities.

We make use of the following properties of M—-matrices, cf. [3]. If P is an irreducible stochastic
matrix of order n then A = I— P is a singular M—matrix of rank n—1. Moreover, if A; is the principal
submatrix of A obtained by deletmg the jth row and column from A, then A; is a nonsmgular M-
matrix. Hence A" > 0, and if e is the column vector of all ones, then ]|A'1e|| = ||A'1|| The
following theorem demonstrates that the entries in A7 determine the relative sensitivity of the jth
stationary probability to perturbations in the transition probabilities.

Theorem 1 If E; denotes the matriz obtained by deleting the jth column of E, then

T — T;
f] i _ =T g g-1
—= =17 EjAj e
7
Furthermore,
T W

< IIE;I1145 )

and, for a particular j, there always ezists a perturbation E for which equality is attained.

Proof: By applying a symmetric permutation to P, the states may be reordered so that a particular
stationary probability occurs in the last position of #7. Thus it suffices to prove the theorem for
j=n.

With the partitioning
A, b
7rT=(-7FT Tn ), A:(; 6)7
7T A = 07 implies 7 = —mpc T A;1. Replacing the last column by the vector of all ones produces a

nonsingular matrix
( An € )
CT ]

o AZY(I —exT) —maA7le
N - ).

with inverse

The stationary distribution of the original chain is the solution of the nonsingular system
7' N=el where ef=(0 --- 0 1),

and the stationary distribution for the perturbed chain is the solution of another nonsingular system
#T(N—-F)=¢l where F=(E, 0).

Consequently,
-7 = —#TFN7?,

SO

—r A-1
T —ftn = —#T (E, 0) ( “’;A" e) = 7, (FTEaA7le),
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and therefore .
I o iTE A e
= ole.

Tn

Applying Holder’s inequality and ||A;'e|| = ||AY|| yields

Tn — Tp

SFIHIERAZ ell < | Eall 1AZ -

Tn

To see that equality is always attainable, let k be the position where the largest component of A le
occurs,

et Azte =147 el = (1472,
and let E = ce(ex — €,)T. Then
#T E, = eel, |En]| = €
implies .
L _ - - -
T = B A e = e A7t e = A7 = Bl AT
n

Corollary 1 An irreducible chain is absolutely stable if and only if 7rj||Aj'1|| is small for every
I<j<n

The results of Theorem 1 and its corollary suggest the following definitions.

Definition 2 Let A; be the principal submatriz obtained by deleting the Jjth row and column from
A, and let 7; denote the jth stationary probability.

The relative condition number for w; is defined to be

pi =147l

The absolute condition number for m; is defined to be
aj = [l 47 ),
and the absolute condition number for the entire chain is defined to be

o = max{a;}.
J

Applying the new notation to Theorem 1 gives

7l'j—7l'j

<plEll, w5 — 7] < ;B

Notice that if 7; is relatively well-conditioned, then it is absolutely well-conditioned, but not con-
versely, cf. Example 2.

Now we prove that the sensitivity of the stationary distribution is uniform in the sense that some
7; is relatively well-conditioned if and only if the entire chain is absolutely stable.




Theorem 2 For every1 < j < n,
I — ;| < minp: ||l

Consequcnily, some 7; is relatively well-conditioned if and only if every w; is absolutely well-
conditioned.

Proof: As in the proof of Theorem 1 assume that the states have been permuted so the best condi-
tioned stationary probability is in the last position, p, = min;{p;}. If

ve( )
“\T 1

is the matrix obtained by replacing the last column of A by ones then
7 —#T = —#TFN-Y, F=(E, 0).

Nl <A;1(I-—e?T) -wnA;1e> 3 (A;1 0) (I— T —W,,e)

7 T 0 1 7T Tn

From

it follows that
FTEn A7 (e; —mje) if j<n.

R, I
m—T; =7 FN ™ '¢; =
P ! {%TE,,A,jl(—wje) if j=n.
Since ||ej — mje|| = max{m;, 1 — 7;} < 1 and ||A;; || = ||4;}|| = pn, We have that

|7 — 75| < pullEnll < pnllE]l, 1<j<n. |

Corollary 2 If at least one stationary probability is relatively well-conditioned, then all large sta-
tionary probabilities must be relatively well-conditioned.

Corollary 3 If there is at least one large stationary probability that is absolutely well-conditioned,
then all stationary probabilities must be absolutely well-conditioned and the chain is absolutely stable.

In passing, it is of interest to note that the existence of a small p; means that the (n — 1)st
singular value of A is large, cf. [1]. The following example from [24] shows that Theorem 2 can be too
pessimistic with regard to the relative conditioning of small 7; for restricted classes of perturbations.

Example 3 The transition matrix

l1—¢ €
P_( o l—a)’ <o,

gives rise to

A=(€ _6), al = 1 (a €).

-a « T a+e
If only the elements in the second row of P are perturbed, say each by magnitude > 0, so the
perturbed matrix remains stochastic, then
Ty — %2 _ n
T at+e+

<3
(87




Thus the tiny probability 7, is relatively well-conditioned. This is because the chain is absolutely
stable, as « is close to one, and because the perturbation leaves untouched the transient part, which
is represented by the small element ¢ in position (1,2) of P. Section 6 discusses the sensitivity of
nearly transient chains in greater detail.

Theorem 2 shows that the existence of one relatively well-conditioned w; implies that all x; are
absolutely well-conditioned. This raises the question whether the existence of one absolutely well-
conditioned =; implies that all 7; must be absolutely well-conditioned. The example below shows
that the answer is “no”.

Example 4 For small 0 < € < 1, let

1—€¢ €/2 ¢/2 1
P=1[¢2 1-¢ ¢2), T= (1 1 ¢).

12 12 0 2+e€

Since
€ —€/2 —¢/2
A=| —€¢/2 € —¢/2],
-1/2 -1/2 1
the relative condition numbers are
P1—-P2—§+§; an Ps-—;,

and the absolute condition numbers are

a—-a—l 2+4 a,da—'2
P T e \3T3) MG S

As e - 0, oy = ag — oo, but a3 — 1. Although 73 is absolutely well-conditioned, it is not
relatively well-conditioned because it is small. The other two probabilities w; and 7 are large but
not absolutely well-conditioned. Thus, none of the probabilities is relatively well-conditioned and
the chain is not absolutely stable.

Small stationary probabilities w; are the ones that appear least likely to be relatively well-
conditioned. Therefore it makes sense to try to determine those features of the matrix that may
be responsible for the small size. The following theorem shows that a relatively well-conditioned T
cannot be small. It also shows that a nearly reducible matrix A that is far from being uncoupled
produces small ;.

A; b
Theorem 3 If Q is a permutation matriz such that QTAQ = ( ;, 61) , then

c; i

J

J
el
< < o
I A AT

Proof: Let 77Q = 4T = (g~ x;) - Since YT A = 0 implies 7= —mjcl A7, Holder’s inequality
gives the lower bound
-7 _
l-mj=1¢ e= 7r_,-|c}’Aj le| < mjp;.
To obtain the upper bound, use ||c]TH = —-c}'e = §; and &7 = —ETbj, and again apply Holder’s
inequality,
T =T —T
millej Il = w385 = =" b; <I% || Il = L =m)lle5]. m




4 Condition Numbers

We showed in the previous section that the sensitivity of stationary probabilities is determined by
the smallest p;. In this section we relate this measure of sensitivity to the condition numbers that are
traditionally used in this context: the norm of the group inverse and the norm of the pseudo-inverse.
We will show that all these condition numbers are equivalent in the sense that any two of them are
related by small multiplicative constants.

We first show that the sensitivity of the probabilities is proportional to the condition number of
a certain non-singular linear system. If

A, b A
=7 m), A=(;3 ) N=(;‘ i)

C C

then 7 represents the solution to the non-singular system 77N = eI .

Theorem 4 If p, = ||A7}|| then
1< [IN7Y| < 2pa.

Proof: An upper bound on the norm of the inverse

1 (AN —emT) —maAglte AV 0\ [I—edT  —mpe

T Tn 0 1 T Tn
is given by
IN=H < 2max{1, pu} = 2pn
because Ae = 0 implies e = —A; b, so p, = ||A7}|| > 1. The lower bound comes from the last row
of N-1. m

Thus ||N~!|| < 2p, guarantees that N is well-conditioned if 7, is relatively well-conditioned. As
a consequence, any stable algorithm can accurately solve the system 77 N = eI.

It is not clear, though, that 7 should be computed from 77 N = eI when the chain is absolutely
stable but p, is large. Although Theorem 1 insures that some p; must be small, it need not be p,
as Example 2 demonstrates. It appears that instead of the last column one should insert e into the
column associated with the smallest p;. However, the determination of the smallest p; is expensive,
and this may be the reason why this is dismissed as “naive” in [19] and not included in a comparison
with other methods.

Surprisingly, with regard to the conditioning of the system, it does not matter which column of A
is replaced by e. The following theorem demonstrates that the norm of N=! and the norm of the
group inverse A# [14, 4] are small multiples of the smallest p;j. The group inverse matters because
its norm indicates the absolute stability of the chain [15],

7 — 7 = #EA¥,.

Hence, |7; — #;| < ||E|| ||A#||, and the results of the previous section hold for all perturbations E
that preserve the stochastic nature.




Theorem 5 If A# is the group inverse of A and if a is the absolute condition number for the chain
then

1 -
5 14# < IN7H < 2]1A%] +1

and

—

bt # ; .
@ < |47 < 4 min {p:}.

[\

Proof: We derive the upper bounds first. The group inverse of A can be written as [4, 7, 14, 17],

47100
A#F = (I—ewT)( " )(I—eﬂ'T)
0 o0
((I — e )AY(I — exT) —ma(I - efT)A;Ie)
7T A7V (I - e7T) T 7L A7 e

A symmetric permutation can bring any principal submatrix Aj of A to the upper left-hand corner

of QTAQ. Then (QTAQ)* = QTA#Q, and |
T =2TQ= (3" ;)

imply

-1

QTA*Q

(r-et(”

-1
0 0)(1_6¢T)

((1 — e )ATI (I~ ePT) —mi(I— P A e ) .
_ETAJ.‘I(I - eET) ijTAj'le

The penultimate equality gives the second upper bound [|A#|| = ||QT A#Q|| < 4p; for any j. The
first upper bound follows from

I —
N_1=( T ;)A#+6nef,
—c —

which can be verified by using the second expression for A#; so that

N7 < 2l14%)| + 1.

To establish the lower bounds, use the expressions for QT A#Q and A# to write

mA7 = (I ) qTa*q (i)

and

=T
s (1T e

-7
Hence ||A#|| < 2||N~1|| and, for every j,

o =747 < 24%). =

This theorem establishes three facts: the conditioning of N is proportional to that of the best
conditioned submatrix of order n—1 of A4; the norm of the group inverse is proportional to the norm



of this best conditioned submatrix; and the condition number used traditionally for linear system
solution and the condition number used traditionally for Markov chains are equivalent.

So far we have viewed the stationary probabilities 7 as a solution to two different linear systems:
the singular system 77 A = 0 and the non-singular system 77 N = eg;. There is a yet a third linear
system of which 7 is a solution,

M=l M=(A e).

The augmented matrix M is of order n x (n + 1) and has full row rank. If the perturbed system is
#T(M + E) = eI, then
7l —# = #TEMT,

where M1 is the Moore-Penrose pseudo-inverse [4, 10], and

|mj — &5 < (|17 | Ell || 1)
The next theorem shows that M1 is a small multiple of the smallest p;.

Theorem 6 ”A#Il
— < IM1]] < 2(14%)).

Proof: Properties of the Moore-Penrose and group pseudo-inverses [4] allow us to write

A# A#
M’:MTMMT::MTM( T)MMT.—_MTM( T)
™ T

A# A# A# A# A# A#¥A 0 4

(0)= Co (o) = (5 )mrae () = (%7 ) erase

0 0 0 0 0 0 o0
Combining these identities with

I
MMt=1, MM= (

and AA# = A# A = I — exT produces

A#
270 < ety < 2maxfya®y, 13,

To show that ||A#|| > 1, use the last equality to derive a lower bound on the maximal row sum,
l4#A4) > 1-m+> m=2)"m, 1<j<n
i#j i#j
Since there exists at least one 7; > 1/n,

n—1

l4*4l > 2
n

>1, n>1,

and [|4#]| > 1/[14]| > 1. =
Therefore, the condition number of the augmented system is proportional to the group inverse.

Below is a summary of the results on condition numbers of irreducible chains.

10




Corollary 4 For a n-state irreducible Markov chain, the following statements are equivalent.

o At least one stationary probability 7; is relatively well-conditioned.
o The chain is absolutely stable.
o The matriz N and the system 7T N = eI are well-conditioned, regardless of the size of py,.

All entries of the group inverse A¥ are small.

The matriz M = (A e) and the system 7T M = e';l;_'_l are well conditioned.

All entries of Kemeny and Snell’s “fundamental matriz” 7 = (A+exT)~1 are small.

[ ]

The last statement is derived from the identity Z = A# + exT [14], so

4% -1 < l12)] < A% + 1.

Corollary 5 An irreducible chain can only have stationary probabilities that are all absolutely sen-
sitive if all probabilities are relatively sensitive. This, in turn, can only happen, if the matrices N=1,
A#* Mt and Z have large norms.

5 Algorithms

In light of the perturbation results from the previous sections, we now discuss direct methods for
computing the stationary probabilities.

It turns out that the algorithms in [1, 2, 6, 12, 17, 16, 23, 25] all amount to solving the non-
singular system NT7 = e, by Gaussian elimination. Let A,T: = L, U, be the LU factorization
of AT (this is the LU factorization of AT without the last row of L). Pivoting is not necessary
because A7 is column diagonally dominant and the growth factor is at most one [8]. Although the
pivots are positive in exact arithmetic, as AT is a nonsingular M—matrix, finite precision arithmetic

may produce a zero or negative pivot [6]. However, this can be avoided with a diagonal adjustment
scheme [11, 25, 2].

If at least one stationary probability is relatively well-conditioned, i.e., if the chain is absolutely
stable, then the results of the last section obviate the problem addressed in [1, 2, 12] of having
to locate a well-conditioned principal submatrix A4; in A because N7 = e, is a well-conditioned
system. Hence one can compute the LU factorization

w= (% == (o, (0 ).
eT 1 TUust 1 0 1/,
The solution of the lower triangular system Lz = e, is simply z = e,,, and the solution of U = e,
amounts to solving U,z = —L; ¢ and setting

1
T= T 1).
4 1+eT:c(z )

Accordingly, the linear system N¥x = e,, can be solved in three steps:

11




1. Factor AT = L,U,, possibly with diagonal adjustment.
2. Solve L,y = c and U,z = —y.

3. Normalize 77 = 1 +leT:c (2T 1).

The diagonal elements of U, produced in step 1 can be used to estimate the absolute stability [17].
A backward error analysis [12, 2] insures that this algorithm is stable, and numerical experiments
suggest it is as accurate as the methods recommended in [19]. A symmetric pivoting strategy
combined with a diagonal adjustment scheme is proposed in [11, 25] to solve nearly uncoupled
Markov chains, which are inherently ill-conditioned.
Alternatively, the full column-rank system
MTr = eny1, M=(A e)

can be solved either by applying the QR factorization to M, which requires (4/3)n3 floating point
operations [10], or else by applying the QR factorization to A [9].

6 Sensitivity of Nearly Transient Chains

In this section we examine the sensitivity of stationary probabilities in the special case of irreducible
chains with nearly transient states, i.e. chains in which the states can be ordered so the transition
matrix is almost block triangular. We prove two results, one for special classes of perturbations and
one for general perturbations.

The first theorem establishes a result similar to the one in [24]. It says that small stationary prob-
abilities of an absolutely stable chain are relatively well-conditioned if only the states corresponding
to these probabilities are perturbed and all other states remain unaffected.

Theorem 7 If E can be symmetrically permuted so that

0 _
B=(g). IEI=¢

and 77 = (7T 77 is partitioned conformably then

|7 — ;]

~t——" < 4¢ min p;, 1<j<n.
L I

Proof: According to [15] and Theorem 5,
77 — %7 = #T EA* = #T B, A%
and ||A#|| < 4min; p;. W

The second theorem concerns nearly transient chains whose matrix is almost block upper trian-
gular,

f‘r\ f:\
Py P12) }r

P= ( Pyl =e<< 1,
Py Pp/}s’ 1Pl

12




and makes no restrictions on the structure of the perturbations. We show the following: If A;; =
I — P;; has an inverse with small norm; if Ays = I — Py, has a principal submatrix of order s — 1
whose inverse has small norm; and if € is small then 7, is relatively well-conditioned and the chain
is absolutely stable.

Theorem 8 Let A b A A
a=(#5). ~=(in &)
where A, is the principal submatriz obtained by deleting the nth row and column of A. If ||Ax|| = ¢
and €||A73|| < 1 then
pn < 2max {[l45'Il, 145 11}
h 1—e|lAz; ||

Proof:

A Au) ( 0 0)
A, = =T+ K=TI+ T 'K).
( 0 Az + Az O + ( )

If |T-'K|| < 1 then, §2.3.4 in [10],
=2

=147 < 1T LK) < — g

Since A is a M-matrix, A;' > 0, A;; < 0 and b < 0. Let 7 = (47 #7) be conformably
partitioned with A,,. Then Ae = 0 implies

0< —AflApe=e+ Al <e
and ||AT' A12|] = ||A7{ A12¢]| < 1. An analogous derivation shows ||A5;} Ag|| < 1. Thus,

T-1x — (-AﬁlAleszlAzl 0)
A2_21A21 0
with
1T~ K|| < max{|| A7} A12455 Az |, [|AZ5 A21 1} < (A5 Azal| < €l AZ7 ).
Moreover, ' '
1 (Aﬁl —A1'11A12A521>
0 Az}
and
1T~ < (1 + | A1 Arzl) max{[JAT}]), 142211 } < 2max{|| AT, |4z 1| }.
So
pn < (1T~ < 2 max {||4%]], ||A;21|]}.
S1-|IT-K|| 1-ellAz |l

7 Small Probabilities In Nearly Transient Chains

Again, let P be the transition matrix of a nearly transient chain and let

f’r\ fj\
An A12) }r

A:I—P:( . lAn=e<< 1.
Ay Axp) }s 142
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If 77 = (77 7% ), then due to the transient nature 77 — 0 as ¢ — 0. In particular, 71 =

—7% Ap1 AT implies

—T -

71 1] < ell ATl
This means, the smaller the norm of the inverse of the leading principal submatrix, the smaller the
stationary probabilities for the corresponding states.

For nearly transient chains with a finer block structure, say

Au * * e * * 7-(1

Fyy Ays x ... * * 72

F3; F33 Az ... * * T3

A= . . . . . s T = .

. . . Ak—l,k—l * .

Foi Fro Fis ... Frpo1  Akk Tk

and
Fiy1,j

Fiy2,

= 1gigE-1,
Fi

the same should be true: the trailing stationary probabilities tend to be larger than the leading

ones. We will quantify this statement by providing bounds in terms of ¢; on the probabilities 7;
associated with each block.

To this end, we present a lemma that makes it possible to proceed inductively by applying the
above 2 x 2 case to successive diagonal blocks, moving from top to bottom. First apply the 2x 2 case
to the probabilities associated with A;;, giving ||71|| < €1||A7!||. The lemma provides a perturbation
of size € that essentially uncouples A;; from the remaining blocks. As a consequence one can apply
the same considerations recursively to a perturbation of the remaining blocks.

In particular, the lemma shows that the remaining probabilities are the exact probabilities of a

perturbed problem of the same form (the only difference being that the sum of the probabilities is
less than one).

Lemma 1 Let

An A12)
A= Aol <e.
<A21 A )’ 421 < €
If
A= Az—lifg‘fhz
73 Aase

then Ass + A is a singular M-matriz with

Trg(Azz + A) =0, (A22 + A)e =0, ”A“ <e

Proof: We first verify that A satisfies the required equations. From 77 A = 0 and Ae = 0 we get

T _ =T =T
r] = Ty A2z = —7] Aja, ry = Agze = —Aje,
SO one can write
1'21"{
A=-— 7
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Since #7 A = —rT , it follows that 73 (A22 + A) = 0, and thus A satisfies the first equation.

To prove that A satisfies the second equation, observe that 77 A = 0 and Ae = 0 imply

7_1'3’1‘2 = —igAzle = 7?{/1116 = —ﬁgAlze = r'lre.
Thus,
1‘21'?
A=- rie’
1

so Ae = —ry and (Azz + A)e = 0.

As for the bound on the norm of A, notice that r; and r, both consist entirely of non-negative
elements since A is a M-matrix, so A consists entirely of non-positive elements. This means

To 7’{

All =
jai= |2

el =lr2ll < e

Moreover, since all elements of A are non-positive, the off-diagonal elements in A33 + A are more
negative than those of Az;. This implies with (A2 + A)e = 0 that the diagonal elements must be
non-negative. From 7 > 0 it follows that A2 + A must be irreducible, for otherwise a component of
72 would be zero. According to Corollary 1 in Section 3.5 of [26], the signs of the matrix elements
and the irreducibility imply that every principal submatrix of Ass + A is a M-matrix. Therefore
Az + A is a singular M-matrix. ®

Now we can prove the following theorem which says that in a nearly transient chain, the size of
the m; in the jth block is controlled by the smallness of the preceding off-diagonal columns 1, ...,
J —1, and by the condition of a perturbed jth diagonal block. The size of this perturbation is again
determined by the smallness of the off-diagonal columns 1, ..., j. This implies that the trailing
solution components tend to be larger than the leading ones.

Theorem 9 Let

Ay * * ... * * T
F21 Ass * cen * * T2
F3; F3y, A3z ... * * T3
A= . . . . . , T = .
: : : Ap_1p-1 % :
Fri Frz2 Frz ... Frp-1  Agk Tk
with
Fjy1,j
Fit25
. = &5, 1<j<k-1
Fr;
Then
171 < e1kr, w1 = lAT],

and there ezxist matrices Xj41j+1, 1 < j < k— 1, that satisfy
IIAj+1,j+1 - Xj+1,j+1” S €1 + con + ij
and

7l € (e + - Gandminn, w1 = (1K
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Proof: The statements for 7, follow from the 2 x 2 block partitioning. Now apply the same argument
recursively to the matrix

Ay L. * *
F32 A33 e * *
Agy = + A,
: : Ap-1k-1 *
Fro Fes ... Frp-1  Akx

where A is given by Lemma 1. For instance, X is the leading diagonal block of A2 with || X5 }|| = &a.
Lemma 1 insures [|A|| < €; and ||A22—X3|| < A < €;. Since the norm of the first off-diagonal column
is bounded above by €; + €2, Lemma 1 gives ||73 || < (é1 + €2)k2. W

8 Concluding Remarks

The goal of this paper was to better understand how individual stationary probabilities change as
the transition probabilities are perturbed.

Because most of our results were not intended to exploit any underlying structure, we measured
all perturbations relative to 1 rather than relative to the magnitude of A = I — P or relative to the
structure of P. In other words, if P = P + E is the transition matrix of a perturbed chain, then
the relative perturbation is ||E||/||P|| = || E||, instead of ||E||/||A|| or max;; |es;|/pij. The latter two
measures result in a significantly different interpretation of the notions of condition and sensitivity
to perturbations. For example, we regard

P(e):(l_e ie) and A(e):I——P:(e _6)

€ 1 —€ €

for small € as a sensitive Markov chain because small perturbations (relative to 1) in the transition
probabilities can greatly affect the stationary probabilities. In the terminology of this paper, the
relative condition numbers for m; and m are ||AT}|| = [|45}|| = 1/e. However, if we had instead
decided to measure perturbations relative to the magnitude of A or relative to the structure of P,
then we would have to view the stationary probabilities as insensitive to perturbations [15, 27].

The main results in our paper are the following: Given are two transition matrices P and P+ E
of irreducible n-state Markov chains. Note that E is not necessarily constrained to be “small.” The
relative sensitivity of a stationary probability =; is

7fj -—7rj

=T 4-1
7"j =7 E;Aj"e.
where E; is the matrix obtained by deleting the jth column of E, and A; is the principal submatrix
obtained by deleting the jth row and column from A = I — P. Moreover,

m; — 7

< IE; 1457

with equality possible for each j. The absolute sensitivity of 7; is governed by the fact that
|mj — #;| < min |47 | E]).

In particular, if at least one «; has low relative sensitivity, or if at least one large ; has low absolute
sensitivity, then all stationary probabilities have low absolute sensitivity, and the chain is absolutely
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stable. Furthermore, all other relevant condition numbers for the problem 7T A = 0 are small
multiples of min; || 4] }|].

In the case of nearly transient chains we showed that under special perturbations even small
probabilities may have low relative sensitivity. In addition, we gave conditions under which a nearly
transient chain is absolutely stable under more general perturbations.
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