Recognition and Selection of Idioms

for Code Optimization*
Lawrence Snyder
Technical Report #132, September 1978
Abstract

Idioms are frequently occurring expressions that programmers use
for logically primitive operations for which no primitive construct is
available in the language. For example, in ALGOL-60 the expression
abs (X-X+2x2) is idiomatic for parity of X. With optimization as a
motive, two problems, idiom recognition and selection, are defined.
Recognition is solved in O(n log n) time (worst case), O(n) time
(average case) on a uniform cost RAM. Selection is solved in O(n)

time. Ambiguity is solvéd.in O(hz) time and is related to resolution
theorem proving.

*This work was supported in part by National Science Foundation Grant
MCS78-04749. :

1. Introduction

In natural languages an idiom is 'the syntactical, grammatical
.or structural form peculiar to a language" [1]. Perlis [2] has
observed that pfogramming language usage also encourages the develop-
ment of idioms and with Rugaber has compiled an impressive list of
idioms used in APL [3]. For programming languages we may define an
idiom as a construction used by programmers for a logically primitive
operation for which no language primitive exists. For example,

ALGOL-60 programmers use
abs (X~X%2x2) (1.1)
to test the parity of an integer X.

Idioms probably arise in every programming language. In APL, with
its rich operator repertoire and weak control structures, idioms tend
to arise at the "expression level." In scalar languages such as ALGOL-
60, they tend to be found at the "statement level." The current discus-
sions of gtructured programming may be viewed as discussions about state-

ment level idioms.
The importance of idioms is embodied in two properties:

(1) didioms are a vehicle by which experienced programmers can
pass their knowledge of the language to beginners, and,

(i1) idioms often admit important optimizations.

The first point manifests itself in the classroom, textbooks and in
much of the current discussion of programming style. The second

point motivates this report.

As an example of a potential optimization, we note that expression

(1.1) can be realized by a masking operation rather than the more
expensive arithmetic. This may not be a large savings, but it is
comparable with the improvements using classical optimizations [4].
For a language like APL, however, where a single expression can repre-
sent a prodigious amount of computation, Miller [5] has shown that the

savings from optimizing idioms can be very handsome. For example,
(v=C)/V (1.2)

is the delete-C idiom of APL for removing occurrences of the element

c from.a vector V. The two loops of the literal translation (to form

a mask of occurrences of V and to compress them out) can be combined
into one loop saving code, instruétion executions and the allocation/de-

allocation of a vector temporary.

The first task in realizing idiom optimizations is to Zdentify
a list of idioms and their corresponding code segments. Idiom identi-
fication is obviously language sensitive and is beyond the scope of
this investigation. (For APL Perlis and Rugaber [3] have identified
idioms, Holls [6] has compiled another set, and Miller [5] has begun
finding efficient code segments.) Hereafter we will assume that a

list of idioms I Cm for

I has been identified and names C_,...,
m 1

17

their code pieces have been assigned. We represent idioms by their

parse tree.

1""’Im’ if any,

in a given arithmetic expression E. That is, find for each node v

The second task is to recognize the idioms I

in £ which idioms match a subtree rooted at v. One might abstract
this as a common subexpression recognition task for a new composit

expression

E I, ... 1

(where o is a dummy operator), but this is not correct because the
variable operands of idioms are "free variables" that match constants,
variables or expressions*. Thus, unlike common subexpressions that
occur at the "bottom" of parse trees, idioms can occur throughout. For
example, in Figure 1 the parity idiom (Il) is recognized in the midst

of the parse tree, and is replaced by the name of the code segment.

The free variable X matches the expression B+C.

I (+)

Figure 1: Recognition of the
parity idiom.

*0f course, explicitly given constants (e.g. 2 in (1.1)) must match
exactly.

The important consequence of the fact that idioms match throughout
a parse tree is that two instances can overlap. To illustrate this

phenomenon, consider two APL idioms. The zero-C idiom

I,: (X2CH)\(X=C)/X (1.3)

*
sets all occurrences of the element C in vector X to zero . The

merge-by-B idiom

I,: (B\U)+(~B)\W : (1.4)

3t
uses a boolean vector B to control the merging of elements from vectors

U and W according as B[I] is 1 or 0, respectively.
Now, consider the APL expression
((R2X)\(R2S)/R)+(~RzSI\T (1.5)
*k
whose parse tree is given in Figure 2 . The recognized instances of

2

idioms I, and I3 share an expansion operation (\) and this means that they

cannot both be replaced. This is obviously true from a syntactic

point of view, since once the instance of 12 has been replaced by the

C2 vertex, I3 no longer matches, and vice versa. But there is a more
fundamental reason why both optimizations cannot be realized: the
logically primitive nature of idioms. In general what occurs in the
hybrid idiom code is a loss of the usual correspondence between the
nodes of the parse tree and instruction sequence in the code segment.
Thus, it is usually difficult to decompose the code and recombine
pieces of the two segments toaccomplish the overlap.

*Zero-C would probably be written A\(A<X=(C)/X or as A<X#C and A\A/X
on separate lines [3]; we repeat the operands simply as a visual aid.
Note too, that delete-C is a subidiom of zero-C.

**We write R=S as ~R#S; use of such identities is discussed in
section 5.

Figure 2: Recognition of idioms

12 and 13 in expression

(1.5), where they overlap.

This inability to decompose and recombine is obvious for the one

(mask) instruction implementing the parity operation, but it is less
clear for zero-C and the merge-by-B idioms. To understand the diffi-

culty, we recognize

CZ(T,X,C):
comment implements T < (XzC)\(XzC)/X;
for i<l step 1 until pX do

TCi] « if X[11#C then X[i] else 0;
and

C3(T,B,U,W)‘:

comment implements T < (B\U)+(~B)\W;
j<0; k<«0;

for i+l gtep 1 wntil oB do

Tli] « if Blil=1 then U[j<j+1] else Wlk<«k+1];

as reasonable code segments for zero-C and merge-by-B, respectively.
The apparent way to combine these two pieces of text is to leave the

expansion operation that is common to I2 and 13 uncompleted by the

C2 routine and then complete it as part of the C3 routine. But as

can easily be seen in Figure 3, one of the required operands to C3,

the value U(3 4 5 in the figure) resulting from (R=S)/R is never
explicitly produced by C2! The difficulty of merging C2 and C3
is now apparent. Since both idioms cannot lead to optimizations it

is probably wise to chose the one with the biggest payoff.

31415 1
R S

Figure 3:

32435

30405 02030

10101 31415 10101
f\ '

31415 1 31415
R S ' R

Evaluation of expression (1.5) where
Re=+3 1415, Se-vl, T+>2 3,

Thus the third task (in addition to identification and recognition) is
selection of a nonoverlapping subset of the recognized idioms of a
parse tree that maximizes the benefit of the optimizations. For a
scalar language, size is probably an adequate benefit measure since
the savings tend to be proportional to the number of nodes eliminated.
Thus the selection problem is equivalent to finding the idioms forming
- a maximal cover. For a language like APL the payoff is usually
sensitive to the size of the operands and complexity of the idiom
code segment as compared to the corresponding naive code. Thus, we
hypothesize a more general payoff function m(E) that measures the
benefits of each of the recognized idioms of E. This allows different
occurrences of the same idiom to be sensitive to their particular
operands. Selection is solved by finding the maximum global benefit

with respect to E.

Finally, we note that the idiom recognition and selection problems
appear to be related to the algebraic simplification problem. The key
difference is that when viewed as rewriting problems, algebraic simpli-
fication has both left-and right-hand sides chosen from the same domain
while the idiom case has left-and right-hand sides chosen from different
domains. Thus, substitutions can be iterated in the former case, but

not in the latter.

The plan for the remainder of the paper is to give definitions in
Section 2, ancillary theorems in Section 3, recognition algorithms
in Section 4, selection algorithms in Section 5, and conclusions in

Section 6.

10.

2. Preliminaries

In this section the terminology of the introduction is restated
in more precise terms. It is assumed that the reader is acquainted
with standard tree terminology; if not, details can be found in

Knuth [7].
2.1 Definition of the idiom recognition problem

Hereafter, a tree T will be finite, rooted, oriented, and of
bounded degree, d. The vertex set is denoted VT = {vl,...,vn}; the
notation ITI will denote the cardinality n of VT' The degree of a

vertex v, degree(v), is the number of its descendents.

Let I be a countable set of operand or variable symbols and ¢ a
. .
countable set of operator symbols for which an arity function
a:¢ +~ {0,...,d} is defined. Elements of & with zero arity are

constants. A labelling of a tree T is a function

AT:VT -+ Zud (2.1)

satisfying for all veVT

(i) AT(V)GQ = a(AT(v)) = degree(v) (2.2)

(i1) AT(V)EZ = degree(v) = 0. (2.3)

Thus, the operator arity must match the degree of the vertex it labels

and variables can only label leaves.

The notion of an idiom matching a portion of an expression

requires first that operators match and secondly, that multipl

— e oo e o . b s o s

*In examples, the usual arithmetic operators and constants are used
but there is no intended significance to any of the expressions used
in the examples.

11.

occurrences of the same operand of the idiom must match identical

subtrees. These conditions are formalized as

Definition 2.1: Let I and E be trees, veVgp and T be a connected sub-
graph containing v of the subtree rooted at v. I matches E at v if

and only if

(1) there is an isomorphism ¢ from VI to T called the extermnal
match preserving orientations and labellings of the operator
nodes, and

(ii) for all u, weVI such that AI(u) = AI(w) € I there is an
isomorphism 1, called the internal match at u,w, between
the subtrees rooted at e(u) and e(w) that preserves orienta-

tions and all labellings.

Operator labeled vertices in the range of ¢ are said to be
externally matched; vertices in the range of 1 are said to be inter-
nally matched. 1f U is the subtree rooted at u, we say that the

variable XI(u) matches U. See Figure 4 for an example.

Idiom Expression

Figure 4: Idiom I matches E at v. ¢ is the external match, 1 the

internal match. Vl matches 2xZ.

Idiom Recognition Problem: Given a tree E, the expres-
sion tree, and a finite set of trees I = {Il,...,Im},

the idiom set, mark each node v of Vg with an integer i

1f and only if Ii matches E at v.
A solution to this problem is a function u called the I marking of E
and defined for all veVE by

j i E .
{i,...,3} f Ii matches E at v, ’IJ

uv) = matches E at v,
{0} if no idiom matches E at v.

2.2 Definition of the selection problem

The following presentation is greatly simplified by introducing an
‘extension to the notion of idiom. The trivial idiom If for an operator
fed is an a(f)+1l node tree with root labeled with f and leaves labeled
by distinct variable symbols. No confusion should result if vertices
marked with 0 are interpreted to mean that the trivial idiom IA(V)

matches E at v. Thus, trivial idioms are introduced to matéh only

those vertices that do not match conventional idioms.
Let u be an I marking of E. A selection from u is a function

o:Vv. » {0,...,m}

E
such that for all veVE, o(v)eu(v).

A selection o from y is said to be overlapping if there exist

ico(v) and jeo(v') such that ¢ is the external match of Ii at v, €'
is the external match of Ij at v', e(u) = €¢'(w) for some u in Ii and
some w in I, and A_ (u)e¢d, A, (w)€9o.

i I, I,

Note that some of the operators of the overlap region must

match operators in both idioms. Thus, two instances of the shift-

right idiom of ALGOL-60, X+2, do not overlap in

since the vertex in common matches the operand in the upper instance and
an operator in only the lower instance. A nonoverlapping selection

is called a truevselection.

In order to choose among the various idioms recognized in an
expression, it is necessary to know how great the savings are from each
idiomatic optimization. Thus, a payoff for an I marking of € is a

function
miVe X {0,...,m} > [N (2.5)

such that for all veVg mv,0) = 0. Note that this definition permits

different occurrences of the same idiom to have different payoffs.

Let 0 be a true selection of u and let 7 be a payoff, then
benefit(c) =) m(v,0(v)). (2.6)

veVE

Benefit is the total improvement of the selected optimizations over

the entire expression.

Idiom Selection Problem: Given yp, an I marking of E,
find a true selection ¢ such that

" benefit(o) = MAX {benefit(d')} 2.7)
o7 a true
selection of u

Idiom selection is discussed in Section 5.

13.

3. Comparison bounds for idiom recognition

In this section the idiom recognition problem is analyzed in
order to discover which characteristics of the problem contribute to

its complexity.

3.1 Internal and external matches

It is useful to introduce additional vocabulary for speaking
about matches. Let ex(v) (resp. in(v)) denote the number of times
over all idiom matches in the I marking of E that vertex v is exter-

nally (resp. internally) matched.

Theorem 3.1: Let I = {Il,...,Im} be an idiom set. There are constants

c and c' such that for all expression trees £ (|E| = n),

(1) ex(v) <c < |11| +o.0+ |Iml,

(ii1) in(v) < c¢' log o B
for all veVE.

Proof: (i) Immediate since el-l(v) = ez_l(v) implies € = & and
thus each v can, at most, be the image of every vertex of every idiom
once. (1i) Assuming there is just one idiomlIl, we will establish

a bound of ¢y log2 n from which the general bound

c 1og2 n =

~—B

c, log, n (3.1)
i=1 i 2

will follow, where each c; depends on the characteristics of Ii'

‘Select a vertex v in E and let H = {<u1,w >,...,<ur,wr>} be such that

v Internally matches ui in an instance of Il rooted at Voo l<i<r. 1If

k22 is the maximum number of occurrences of any symbolic operand of

14.

15.

Il’ then there are at most k-1 pairs in H with the same second term,

i.e. there are at most s<r:(k-1) distinct vertices at which I1 matches

So, let {<ul,w >,...,<us,ws>] < H be pairs with all Wy distinct.
Observe that each W, is above v in E and so {<ul,w >,...,<us,ws>} may

be ordered by distance from v (wl closest). Denote by TV i

and T .
, u,i

b

the domain and range, respectively, of li the internal matching func-

tion establishing the internal match (i.e. 1i(v) = ui). Clearly,

Tv,i(:Tv,i+1 and Tu,i and Tu,i+1 are distinct. If h is the height of
Il’ then
2|T

v,il < ITv,i+h|

because w, is a common ancestor of both v and u, and thus by choice

i i
of h, Tv,i+h contains W, and therefore Tv,i and Tu,i' Since
ITv,sl <

we have that

2]
h
2 ITV,l’ < n.

Solving for s and multiplying by k-1 to bound r, we have
T < Cl 1og2 n.

Having established our claim, we have from (3.1) the desired bound.

O

Thé bound of in(v) = log2 n-1 is achievable as the reader can
easlly verify with the idiom v+v and an expression tree that is a
complete binary tree with + operator labels on the internal nodes and
all leaf nodes labeled with the same symbolic operand, say A. For

this case each leaf has log2 n internal matches. (See Figure 5.)

Figure 5: Internal matches of vertex v for idiom V+V.
The matched instances of the idiom requiring
internal matches of v are indicated by dotted
lines.

3.2 Ambiguity

A set of idioms I is said to be wnambiguous if for every
expression E, the marking p of I in E satisfies [u(v)| = 1 for vsVE.

Otherwise the marking is ambiguous.

Determining whether or not an idiom set is ambiguous can be done
in O(nz) in the size n of the idiom list. To see this, observe

that the ambiguity requirement may be restated as

there exists a tree T and two idioms I1 and 12 both match-
ing T at its root.

This is equivalent to the statement from resolution theorem proving

(81,

there exists a unifier T for I1 and 12,

16.

17.

provided that the trees be thought of as well-formed formulae in

the obvious way. Recall that a unifier is a well-formed formula
resulting from the simultaneous substitution of formulae for variables
in I, and I,. A "most general unifier" is a smallest formula unify-

1 2

ing Il and Iz. In the context of the ambiguity of idiom sets, the
most general unifier is a smallest witness to the ambiguity of Il
and I2. The existence of efficient procedures to find a most general

unifier enables one to prove:

Theorem 2.2: Let I = {1 Im} be a set of idioms and let

1000
[Ill +...+ IImI = n. There is an O(nz) algorithm that deter-

mines whether or not I is ambiguous.
Proof: From the previous remarks, the algorithm must only compute

Vv e ‘
1<i<j<m un1f1able(Ii,Ij) (3.2)

where unifiable (Ii,Ij) is the unification predicate. Then I is
ambiguous if and only if (3.2) is true. The time bound follows from
the linearity of the Paterson-Wegman linear time unification algorithm

£91.

Our interest in ambiguity derives first from the possibility
that the presénce of an ambiguous pair may signal the presence of
a "hybrid" idiom (the unifier) that subsumes both special cases,
and from the unexpected link it provides with resolution theorem

proving.

18.

4. Linear-time idiom recognition

Theorem 3.1, giving a constant bound on the number of external
matches and a logarithmic bound on the internal matches, suggests a
worst case bound of O(n log n) for recognition. We establish this and
give an algorithm with a linear expected case bound using an approach

suggested by R. E. Ladner and M. R. Brown.

The general approach of the algorithm is to use two passes over
the tree. The first (bottom up pass) is to mark all nodes with integers.
The second pass then performs the actual recognition from top down.
Viewed more abstractly, the numbering phase prepares for the internal
matching operations by identifying with the same unique number all
roots of identical subtrees. This operation is performed uniformly
without regard to whether the subtree is actually involved in an
internal match. The second pass performs the matching, and uses
the numbering to perform the internal matches. In order to simplify
the presentation, we assume all trees are binary; generalization to

arbitrary degree is a straight forward matter.
4.1 The numbering phase

The numbering phase assumes (1) that the expression tree E has
been "threaded" with h = height(E) "threads" in such a way that all
nodes at the same height are on the same linked list, and (2) the nodes
at height 0, the leaves, have been numbered with integers 1,...,t,
so that 1iké operands are assigned the same number. (See Section 4.3

for a discussion of this operation.)

At step k, the algorithm will number the nodes at height k. All

19.

nodes at height k with the same numbers assigned to their left and
right descendants will receive the same number. In order to do this
numbering efficiently, we employ two bucket sorting operations. The
first sorts all nodes at height k on the number of their left descen-
dant. The second sorts all elements that landed in the same bucket on
the number of their right descendant. Elements that land in the same
bucket as a result of the second sort have left and right descendants

numbered the same and they are all assigned the same unique number.

With proper attention to chaining the algorithm works in linear
time. We use the following forward-linked lists in the algorithm,

all of which are terminated by NIL:

4;1 (a) HEIGHT[k], all nodes of E at height k (using LINK field of

TREE);

(b) BCHAIN1, all "in use" buckets for the first bucket sort
(using LINK field of BUCKET); |

(c) BCHAIN2, all "in use'" buckets for the second bucket sort
(using LINK field of BUCKET);

(d) BUCKET1[i].HEAD, all nodes in BUCKET1[i] (using LINK field
of TREE);

(e) BUCKET2[1].HEAD, all nodes in BUCKET2[1] (using LINK field

of TREE).

The actual text of the algorithm is given in Figure 6. The outer
>loop processes each height of the tree. For the nodes at each height,
lines 3-15 perform the first bucket sort. Lines 16-46 perform the
second bucket sort (20-33) and assignment of unique numbers (34-45) for

each nonempty bucket produced by the first bucket sort. The linear

Algorithm:
;ngut:

output:

NUMBER

TREE[1:n] a vector containing n node entries with
fields

LEFT contains TREE indices referring to left
descendant, NIL for leaves

RIGHT contains TREE indices referring to right
descendant, NIL for leaves

LINK contains TREE indices for chain (4.la)
initially, later it is used for (4.1d),
(4.1e)

NUMBER contains an integer i, 1<I<UNIQUE<n.
Initially only leaves assigned such that
TREE[r].NUMBER = TREE[s].NUMBER
= TREE[r].OP = TREE[s].OP.

OoP contains the label (operator or operand)
for the node

BENEFIT benefit value of subtree rooted at .
this node (used in Section 5)

SELECTCHAIN header of list of operand vegtices
of idiom selected here (used in Section 5).

HEIGHT[1:d] a vector containing TREE indices used
as header for (4.la) chains, d = depth of the
tree

UNIQUE, integer, initially the largest value used
to initialize number field of leaves.

the TREE vector with all entries in NUMBER field

filled such that for nonleaves TREE[1i].NUMBER

TREE[J].NUMBER < TREE[TREE[1i].LEFT].NUMBER

TREE[TREE[j]. LEFT].NUMBER

TREE[TREE[1].RIGHT].NUMBER

TREE[TREE[j].RIGHT].NUMBER

BUCKET1[1:n] a vector containing elements with
fields

LINK contains BUCKET1 indices to implement
(4.1b), initially NIL

HEAD contains TREE indices as header for
(4.1d), initially NIL

BUCKET2[1:n] a vector like BUCKET1, with LINK
implementing (4.lc) and HEAD as header to (4.le).

BCHAINL, BCHAIN2, headers for implementing (4.1b),
(4.1c), initially NIL

>

20.

for i « 1 step 1 until d do
begin
while HEIGHT[i] # NIL do
begin
NODE « HEIGHT[i];
HEIGHT[1i] « TREE[NODE].LINK;
LNUM <« TREE[TREE[NODE].LEFT].NUMBER;
if BUCKET1[LNUM].HEAD = NIL
then begin
BUCKET1[LNUM].LINK « BCHAINI;
BCHAIN1 < LNUM
end;
TREE[NODE].LINK « BUCKET1[LNUM].HEAD
BUCKET1[LNUM].HEAD « NODE

end;
while BCHAINI # NIL do
begin

Bl < BCHAINI;
BCHAIN1 <« BUCKET1[B1].LINK;
while BUCKET1[BI1].HEAD = NIL do
begin
NODE <« BUCKET1[B1].HEAD;
BUCKET1[B1].HEAD « TREE[NODE].LINK;
RNUM « TREE[TREE[NODE].RIGHT].NUMBER;
if BUCKET2[RNUM].HEAD = NIL
- then begin
BUCKET2[RNUM].LINK « BCHAIN2;
BCHAIN2 < RNUM
end;
TREE[NODE].LINK <« BUCKET2[RNUM].HEAD;
BUCKET2[RNUM].HEAD <« NODE
end;
while BCHAIN2 # NIL do
begin
B2 « BCHAIN2;
BCHAIN2 < BUCKET2[B2 J.LINK;
UNIQUE <« UNIQUE + 1;
while BUCKET2[B2].HEAD = NIL do
begin
NODE « BUCKET2[BZ].HEAD;
TREE[NODE].NUMBER <« UNIQUE;
BUCKET2[B2].HEAD <« TREE[NODE].LINK
end
end T
end
end;

Figure 6: Algorithm for numbering an
expression tree.

21.

complexity follows trivially since each node must be removed from
the height chain, placed in a bucket for the first sort, removed
from the bucket, placed in a bucket for the second sort, and
assigned a unique number. These are all constant time operations
and except for a pinch of overhead (e.g. loop control) accounts for

all of the activity of the algorithm.
4.2 The matching phase

The idioms are stored in a table with each entry linearized
in parenthesis-free prefix notation. The entries are grouped and
ordered lexicographically so that they may be easily referenced by
indexing. Operands will be represented by the notation Vi to
indicate that this is the ith distinct operand of the idiom and Gi

denotes that this operand is a repeated instance of the ith distinct

operand. Accordingly,

2 1 1
V1 V1 V2 v1
would appear as
~i-+lV1V2
+ Vl V1

22,

when represented in tabular form. The tabular format will allow for
simpler indexing to be used to traverse the idioms in a depth-first
discipline. Thus, a position in a idiom can be denoted by a pair

. s g . .th . th
(1,j) of indices and T(i,j) refers to the j position of the i
idiom.

All of the external matches will be performed simultaneously in

a single depth-first traversal of the tree. In order to keep track

of the matches in progress, match descriptors will be used and will

have the general form
(v,i,j,vl,...,vp)

where v is the vertex at which the idiom will be rooted (if it

matches), i,j are indices into the idiom table, and v ,...,vp are

1
vertices of € at which the first p (distinct) operands of the idiom

Ii are rooted.

On the recursive depth-first traversal, the algorithm has two
operations to perform before processing descendant nodes, and
one operation to perform afterwards. Before visiting and descendant
nodes, it must initiate descriptors for all idioms that could be
rooted at this vertex. Secondly, it must update all descriptors
for matches in progress and create a new list of the matches that
are continuing. After processing all descendant nodes, it must be

determined which idioms initiated at this node matched and mark them.

The text of the algorithm is given in Figure 7. The initiate
descriptors operation (line 4) compares TREE[v].OP with the first

column in the idiom table T and for each match, say on row i,

23.

24,

constructs a descriptor (v,i,l) indicating that the root of idiom
i matches at v. The descriptor is temporarily saved in list A and

will later become part of the ACTIVE list (line 14).

The update operation (lines 6-13) continues those matches in
progress as indicated by the existence of descriptors on the ACTIVE

list. The operations performed are indicated in Table 1.

Algorithm: MATCH
input: TREE as described in NUMBER algorithm

output: marked tree
initial call: match(root(TREE))
legend: -ACTIVE is a global list of match descriptors,
-A is a global temporary,
—the list operation concatenate is denoted by
a comma as in A « A, (v,i,1) e concate-
nate(A,((v,i,l))), _
-for each <sublist> in LIST do is an iteration
statement that removes successive instances of
<sublist> from list and instaniates the
generic parameters.

procedure match(v):

1. begin

2. local list SUSPEND;

3. A <« SUSPEND <« NIL;

4, for i « 1 step 1 until m do

5. if T[i,1] = TREE[V] OoP then A<« A, (v,i,1);

6. for gggh (u 1,35V 50005V) in "{n ACTIVE do

7. TTLE Tl4,jH e 0 P

8. then if T[i,j+1] = TREE[v].OP

9. E,b,,%g A< A, (u,i,j+1,v1,... ’VP)

10. else if T01,5+1] = 'V, '

11. then if TREE[v].NUMBER = TREE[vk].NUMBER
12. ERE& SUSPEND <« SUSPEND, (v,i,j+1,vl,...,vp)
13. else SUSPEND <« SUSPEND, (u,i,j+1,v1,...,v »V)
14. ACTIVE « A P
15. if TREE[v].LEFT = NIL then match (TREE[v].LEFT);
16. if TREE[v].RIGHT # NIL then match (TREE[v].RIGHT);
i7. A <+ NIL;

18. for each (u,i,j,vl,...,vp) in ACTIVE do

19. if u = v then mark(v,i)

20. else A « A, (u,1,3,v,,...,v)3
21. ACTIVE « A, SUSPEND P

22. end;

Figure 7: match algorithm

If v is an operator or constant that matches the indicated idiom
(line 8) then the idiom index, j, in the descriptor is updated and

it remains in the ACTIVE list. If the idiom symbol is a variable
operand, then it is either the first occurrence of that operand

(line 13) in which case the j entry of the descriptor is updated and
the value of v is included as well, or else it is a repeated
occurrence (line 12) in which case the value in TREE[v].NUMBER is
compared with that of the corresponding operand. If it matches or

if it was a first occurrence, the descriptor is added to a local list
called SUSPEND. 1In all other cases the descriptors did ndt match

and they are discarded.

The role of SUSPEND is to save the descriptors of those idiom
matches in progress that have reached a leaf of the idiom. Their
removal then allows lower regions of the tree to be processed with-

out the ACTIVE list being cluttered with unnecessary overhead.

During the marking phase after the descendants have been visited,
(lines 15-16) the ACTIVE list is scanned for elements initiated at this
vertex, (line 19). Any that are found represent instances of matching
idioms. (We are vague about the aétual marking here in anticipation
of incorporation of the selection algorithm; see Section 5.) 1In

addition all elements that were SUSPENDed are reactivated (line 21).

25.

value of T(i,j+l)

26.

value of _
TREE[v].OP operator constant operand Vk operand Vk
operator 1 MM 2 3
constant MM 1 2 3
variable MM MM 2 3
operand
1 = match = update j; descriptor remains ACTIVE (8)
2 = update descriptor with v; SUSPEND (13)
3 = match Vi of descriptor with v; SUSBEND (12)
MM = mismatch
Table 1: Summary of updating operations; numbers in parentheses

refer to lines of the match algorithm.

It is clear that the algorithm halts since without lines 2-14,
17-21 it is a standard depth—fifst—traversal algorithm. That the
external matches are performed properly is clear from line 8. The
internal matches rely on the fact that matching is an equivalence
relation; that the descriptor contains the number correspomrding

to each of its distinct operands and that two vertices with the

same numbers are roots of identical subtrees.
4.3 Recognition complexity

An antecedent condition to the numbering algorithm is that the
leaves of the expansion tree £ be numbered by an integer from 1 to
UNIQUE with like-labeled leaves receiving the same number. This
requirement permits us to use the bucket sorting procedures. 1In
general use, this is a realistic assumption since the‘leaves will
actually refer to symbol table and/or constant table entries.

Standard hashing techniques augmented with some straightforward

bookkeeping in the symbol table will enable the required leaf number-

27.

ing to be realized in linear expected time [7]. This, together with
the guaranteed linearity of the numbering and matching operations,

allows us to conclude for a random access machine model,

Theorem 4.1: The recognition problem for an expression tree E has

expected running time of O(n), where n = |E|.

O

Even though these assumptions are realistic in practice, an
adversary could present us with an expression tree that causes the
hashing algorithm to achieve its worst case performance. Thus, we
may prefer a balanced search tree scheme, say AVL or B-tree 101,
giving a guaranteed O(n log n) bound to number the leaves in worst
case. By considering the worst case behavior, we can also dispense
with the assumption of random access machine model. In pérticular,
we use the random access feature for the numbering operation, e.g.,
bucket sort, but with.O(n log n) time available, the numbering is
not needed. A direct test of both external and internal matches by an
augmented version of the match routine can be used. (Create (in line 11)
a second kind of descriptor for internal matches when suspensionvtakes
place and make them ACTIVE; details are left to the reader.) This
strategy must make all of the comparisons required by Theorem 3.1

(but no more) and thus operates in O(n log n). We conclude

Theorem 4.2: The recognition problem for an expression tree E has

worst case running time of O(n log n) where n = |E|.
g

Finally, we observe that this direct method achieves the worst case

only for the pathological cases (as illustrated in Figure 5); as long
as the amount of overlap tends to be small, the direct method operates
efficiently, independent of the distributional characteristics of the

leaves.

28.

29.

5. Idiom selection

As the results of Section 3 established, the amount of "over-
lap" of idioms can be substantial. But idioms are logically primitive
and thus the target code cannot be easily factored and recombined
to merge parts of idioms. Thus a true selection of the recognized

idioms, i.e., a nonoverlapping subset, must be found.

The trouble with finding true selections is that there are poten-
tially a large number of arrangements of a given set of idioms into
nonoverlapping subsets. For example, consider the schematic expression

tree of Figure 8 for which eight idioms have been recognized.

Figure 8: Schematic of nonoverlapping subsets
of 8 recognized idioms.

30.

Of course only maximal nonoverlapping subsets need to be considered
since if a subset is not maximal the global benefit can be improved

by adding idioms to make it maximal.

In this section, we concentrate on computing the maximal benefit
rather than finding the selection that yields the maximum benefit.
It will be seen from the algorithms given later that it is a simple
matter to accumulate the information about the oﬁtimal selection as
the benefit is being computed. Then when the maximal value is known,

the selection(s) that realize it can be fetched directly.
5.1 A different formulation of benefit

In this section the function benefit(c) of a true selection of
an I marking of E will be formulated as an easily computed recursive
function B(rootE). Recall from Section 2 that when u(v) = 0, it is

assumed that this refers to the trivial idiom for the label XE(v).

Suppose that Ii matches E at v and let ¢ be the external match.

Define
Li(v) = {VeEIdegree(e_l(v)) =0}.

Thus, Li(v) contains all vertices in E that correspond to leaves in

Ii. In addition, define recursively,

B(v) = MAX m(v,i) +) B(u)
ieu(v)u{0} ueLi(v)

where for the trivial idiom Lo(v) = the immediate descendants of v.

Theorem 5.1: Let u be an I marking of E and ¢ a true selection that

maximizes the benefit of yu in E. Then

benefit(o) = B(rootE) (5.1)

Proof: Induction on the height of the tree E.
(Basis) When height is 1, only one nondegree 0 vertex is involved,

i.e., Ve = {rootE}. Thus

B(rooty) = MAX m(rooty,1i) + Y B(u)
ieu(rootE)U{O} ueLi(rootE)
= MAX n(rootE,i)
ieu(rootE)u{O}

MAX n(rootE,i).
ieu(rootE)

Moreover, for each

benefit(c”) = Z m(v,07(v))
' veVg

= ﬂ(rootE, o (rootE)).
Since any selection is a true selection

benefit (o) = MAX n(rootE,i)
ieu(rootE)

and the equality holds, since by definition w(v,0) = O.
(Induction) Suppose the theorem holds for all trees of height h or
less, and let E be an expression tree of height h+l. Let dl""’dp

be the immediate descendants of root let T ..,Tp be the subtrees

e’ 1’
of E rooted at dl,...,dp, and for any idiom keu(rootE), let Lk(rootE)

{ul,...,uq} and let Hl""’Hq be the subtrees of E rooted at u,.

Suppose o(rootE) = 0. Then

benefit (o) = 2 m(v,o(v)) + ... + Z m(v,o(v)). (5.2)

veT1 veTP

U L I

31.

32.

Since height(Ti) < h (1<i<p), by hypothesis, (5.2) can be written
B(dl) + ...+ B(dp)

= n(rootE,O) +)y B(@d)
deLO(rootE)

< B(rootE) (5.3)
Alternatively, suppose o(rootE) = k, then

benefit(o) = w(rootE,k)‘+) m(v,0 (v)) +

veH1

ve. + Z m(v,o(v)) (5.4)
veH

and again height(Hi) < h, (l<i<q). The hypothesis permits (5.4) to

be written

ﬂ(rootE,k) + B(ul) + ... + B(uq)

< B(rootE).
Thus (5.3) and (5.4) imply
benefit (o) < B(rootE). _ (5.5)
~Now suppose that

B(rootE)‘= n(rootE,O) +) B(d) (5.6)
deLO(rootE)

The {dl""’d } = Lo(rootE) are roots of Ti(lsiSp) and each has
P

height less than h. Thus, by hypothesis, (5.6) is
w(rootE,O) + benefit(ol) + ...+ benefit(op)

where the ci(lsiSp) are benefit maximal selections for the T Define

io

c‘(rootE) =0 and o7 (v) = oi(v) for all veT, and all i(l<i<p). Note

i

that ¢ is a true selection, and thus

33.

B(rootE) < benefit (o).
Finally, suppose

B(rootE) = ﬂ(IOOtE,k) + Z B(u) (5.7)
ueLk(rootE)

k # 0. Then the {ul,...,uq} = Lk(rootE) are roots of trees Hl""’Hq
all of height less than or equal to h and so by hypothesis (5.8) may

be writtén as
n(rootE,k) + benefit(ol) + ... + benefit(oq)

where o0.,...,0 are the benefit-maximal true selections of H ,...,H ,
1 q 1 q
respectively. Define o’(rootE) =k and 07 (v) = oi(v) for all veHi

and all i(l<i<q). Note that this is a true selection from u. Thus
s(rootE) < benefit (o).

From this and (5.5) and (5.7) it follows that (5.1) holds in general.

g
5.2 The linear selection algorithm

The function B of the previous section easily computes the maximal
benefit by a recursive routine that is almost a translation of the
definition. But because we anticipate combining this algorithm with the
recognition algorithm, a version is presented that is synchronized

to a depth-first traversal of the tree.

The algorithm takes a root of a subtree as a value. After
computing the benefit for all subtrees and accumdlating these values
in b, a local variable, each idiom benefit is computed. This computa-
tion is facilitated by assuming that the benefit of each descemndant ver-

‘tex has been saved in the BENEFIT field associated with each tree vertex.

Again, we assume the trees are only binary and leave the easy general-
ization to the reader. The text of the algorithm is given in Figure 9.
Since the summation is bounded by the number of leaves in idiom u, s,
a constant, and k is bounded by m the number of idioms, the entire

algorithm is time bounded by O(n).

Algorithm: BENEFIT
input: marked tree represented as in NUMBER
output: value of maximum benefit

benefit(v):
begin
local b;
if TREE[v].LEFT = NIL
then begin benefit (TREE[v].LEFT);
b <« TREE[v].BENEFIT end
else b « 0;
if TREE[v].RIGHT = NIL
then begin benefit (TREE[v].RIGHT);
b < b + TREE[v].BENEFIT end;
let u(v) = Upseeestys

for i <« 1 step 1 until k do
b « max(b,m(v,u;) +) TREE[w].BENEFIT);

weLu‘(v)
i

TREE[v].BENEFIT < b
end» :

Figure 9: Benefit Algorithm
5.3 Combined algorithm and refinements

We are now able to present the complete solution by combining
the match algorithm (Section 4.2) and the benefit algorithm (Section
5.2) and then augmenting the result to save the true selection. The
true selection is saved using the SELECTCHAIN field of the TREE nodes.

Each node holds a descriptor of the form

(i,vl,...,vp)

34‘

35.

where i is the idiom matching at that node (0 = trivial idiom) and
Vl""’vp are the roots of the distinct operands (direct descendants
for trivial idiom). (Only one instance of each operand must be kept

since the others are redundant.)

The BENEFIT field of the TREE nodes is used to hold the benefit

values as before. To compute

) TREE[w].BENEFIT
wel
u,
i
which was used in the benefit algorithm, we add an additional field
(bene) in the match descriptor to hold the accumulated benefit of
the operands of the idiom. This field is updated when the SUSPENDed

descriptors are returned to the active list (lines 29-30). The actual

text of the algorithm is shown in Figure 10.

1. procedure match(v):

2. begin

3. local b;

4. local list SUSPEND, SELTEMP;

5. A < SUSPEND <« NIL;

6. for i « 1 step 1 until m do if T[i,1] = TREE[v1.oP

then A <A, (v,1,1,0);

7. §2£,§§£h,(u,i,j,bene,vl,...,v) in ACTIVE dg

8. if T(1,+1 Jed P

9. then if T[i,j+1] = TREE[v].OP

then A « A, (u,i,j+l,bene,vl,...,v)

10. else if T1,j+11 = 'Y, ' P

11. then if TREE[v].NUMBER = TREE[Vk].NUMBER

12. then SUSPEND < SUSPEND, (u,i,j+l,bene, VisesesVp)
13. else SUSPEND < SUSPEND, (u,i,j+l,bene,v1,...,v »V) 3
14. ACTIVE + A; b« 0; SELTEMP « (0); P
15. if TREELvI].LEFT = NIL then begin match(TREE[v].LEFT);
16. b « TREE[TREE[v].LEFT J.BENEFIT;

17. SELTEMP <« SELTEMP, TREE[v].LEFT epd;

18. if TREE[v].RIGHT # NIL thep hegip match (TREE [v J.RIGHT);
19. b « TREE[TREE[v].RIGHT].BENEFIT + b;
20. SELTEMP < SELTEMP, TREE[v].RIGHT end;
21. A <« NIL;
22. for each (u,i,j,bene,vl,...,vp) in ACTIVE do
23, Lf u = v then begin if b < nw(v,1) + bene

24, then SELTEMP « (i,vl,...,vp);

36.

25. b « max(b,n(v,1) + bene) end :

26. else A « A, (u,i,j,bene,vl,...,vp);

27. TREE[v].BENEFIT <« b; TREE[v].SELECTCHAIN <« SELTEMP;
28. ACTIVE <« Aj;

29. for each (u,i,j,bene,vl,...,vp) in SUSPEND do

30. ACTIVE <« ACTIVE, (u,i,j,bene + b,Vl,...,vp)

31. end

Figure 10: Combine recognition and
selection.

There are several possible improvements to the algorithm. First,
there is no reason to apply the match algorithm to the repeated subtrees.
Thus, if the repeated instances are coalesced during the numbering
phase of the numbering algorithm to form a directed acyclic graph, then
the match algorithm can be easily changed to operate on the dag. An
additional advantage to using dag's is that many of the operands will
be repeated by internal assignments, rather than explicit text, which

are naturally represented this way.

Another modification to the algorithm would be to make the compari-
son operation more exotic. For example, if the number of recognized
idioms could be materially increased by recognizing ~A#B when A=B is
written, then the comparison operation could be made to test this by
building "escape" indicators in the idiom representation. Then, spec-
ialized routines could be written to implement those more sophisticated
tests. Commutativity and other identities could be treated in this

manner, though empirical studies of language usage might be indicated

‘before substantial effort is diverted to these refinements.

37

6. Summary and directions for further research

Idioms have been motivated and the identification, recognition
and selection problems have been defined. For the recognition problem
we have a worst-case algorithm operating in O(n log n) time and an
average-case algorithm that is O(n). Ambiguity has been shown to be
solvable in O(nz), and certain characteristics of the recognition
and selection probléms have been exposed in the ancillary lemmas.

Two main lines of further research are obvious.

First, there is the language dependent question of idiom identi-
fication. We know a lot of APL idioms, but others will certainly be
found. Little has been done for other languages and identification
of idioms is a worthy task for the programmers expert in other
languages. If other languages tend to have many idiomatic expressions
it would suggest the utility of macro facilities for higher level

languages.

The second line of research is to extend certain of the investi-
gations begun here. One problem related to the ambiguity test is to
find the.potential overlaps in a set of idioms in an efficient way.
The problem is that certain apparent overlaps cannot obtain due to

conditions placed on the operands. For example,

cannot overlap since a V, internal match 1s incompatible with a V

3 5
internal match. A naive scheme analogous to the ambiguity test appears
to have potential for improvement. (The ambiguity test itself can

probably be improved!) There is also the question of actually computing

the coefficients, ¢ and c¢', of Theorem 3.1.

Finally, our complexity bounds for the algorithms are derived
on the assumption that the input expression E grows without bound, and
thus the size of the idiom set can be ignored. 1In a sense we are

"matching the idioms to the expression.'" But what if the idiom set is

large compared to a typical expression? Then we might wish to "match
the expression to the idioms." This suggests that better algorithms are

possible and that preprocessing of the idioms might be useful.

.39

Acknowledgement

I wish to thank Alan Perlis for many useful and enjoyable discus-
sions concerning idioms and Richard Ladner and Mark Brown for sugges-

ting the numbering scheme.
References

[1] Websters 3rd International Dictionary.
[2] Private cbmmunication.
[3] A. J. Perlis and J. S. Rugaber.
. The APL Idiom List.
Yale Computer Science Technical Report #87, (1977).
(4] D. Gries
Compiler Construction for Digital Computers.
Wiley, (1971).
[5] T. C. Miller.
Tentative Compilation: A Design for an APL Compiler.
Department of Applied Physics and Information Sciences.
Technical Report 78-CS-013.
University of California at San Diego (1978).
[6] T. P. Holls.
APL Programming Guide: Vector Optimizationms.
IBM DPD Scientific Marketing Report, While Plains, NY (1978).
(7] D. E. Knuth.
The Art of Computer Programming, Fundamental Algorithms,
Addison—Wesley, rev. ed. (1973).
(8] J. A. Robinson.

Computational logic: the unification computation.

(91

[10]

Machine Intelligence 6, pp. 63-72.

M. S. Paterson and M. N Wegman.

A linear time unification algorithm.

Proceedings of STOC 8 (1976).
D. E. Knuth.
The Art of Computer Programming.

Addison-Wesley, (1973).

Sorting and Searching.

.40

