Collecting Interpretations of Expressions

(Preliminary Version)
Paul Hudak
August 1986
Yale University

Department of Computer Science
Research Report YALEU/DCS/RR-497

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

Collecting Interpretations of Expressions
(Preliminary Version)

Paul Hudak

August 1986

Yale University
Department of Computer Science
Research Report YALEU/DCS/RR-497
Box 2158 Yale Station
New Haven, CT 06520
Arpanet: hudak@yale

Abstract

A collecting interpretation of expressions is an interpretation of a program that
allows one to answer questions of the sort: “What are all possible values to which the
expression exp might evaluate during program execution?” Answering such questions
for functional programs is akin to traditional data flow analysis of imperative programs,
and when used in the context of abstract interpretation, allows one to infer properties
that approximate the run-time behavior of expression evaluation. In this paper col-
lecting interpretations of expressions are developed for the standard semantics of three
abstract functional languages: (1) a first-order language with call-by-value semantics,
(2) a first-order language with call-by-name semantics, and (3) a higher-order language
with call-by-name semantics (i.e., the full untyped lambda calculus with constants).
It is argued that the method is simpler (for example, no powerdomain construction
is needed) yet more expressive than existing methods (indeed, it is the first collecting
interpretation for either lazy or higher-order programs).

This research was supported in part by the National Science Foundation under Grants
DCR-8403304 and DCR-8451415, and the Department of Energy under Grant
DE-FG02-86ER25012.

1 Introduction

Abstract interpretation [5,6] has been shown to be an effective methodology for express-
ing many compile-time analyses of programs. Its chief attraction is that it expresses a
compile-time analysis as an abstraction of, or approximation to, the standard (or possi-
bly non-standard) semantics of the source language. This results in a unified framework
within which one can reason about compile-time analyses, and allows correctness proper-
ties to be proven straightforwardly. The most widely known example of applied abstract
interpretation is strictness analysis on flat domains[4,11,17], but other applications include
strictness analysis on non-flat domains[12,15], reference counting[10], sharing of partial
applications[9], various data-flow analyses [5,20], and even applications in logic program-
ming.

The Cousots’ seminal work [5,6] on abstract interpretation concentrated on inferring
properties of imperative programs. However, recent interest in purely functional languages®
has honed interest in abstract interpretation of such languages. This began with Mycroft’s
thesis [16] and has recently flourished in scope and application (see the forthcoming book
[1] for a summary of recent results).

In this paper we investigate an idea closely related to abstract interpretation, namely a
collecting interpretation. Roughly speaking, a collecting interpretation is a program anal-
ysis that collects properties about program points, where the points are not considered in

- isolation, but rather in the context of a particular program. A collecting interpretation
* thus bears a strong resemblance to traditional data flow analysis, and when used together
with abstract interpretation provides useful compile-time information that may not oth-
erwise be obtainable. Examples of the formal treatment of a collecting interpretation in a
denotational setting include the Cousots’ original static semantics, the minimum function
graph (mfg) semantics in [14], and the collecting interpretations used in [10,19,20].

The collecting interpretations investigated in this paper are considered within the
framework of functional programs, where the notion of a “program point” shall refer,
quite simply, to an ezpression, and thus the result is called a collecting interpretation of
expressions. Furthermore, since there is no “store” component in a typical denotational
semantics of a functional language, we must state what it is we are collecting. The answer
is simply either concrete or abstract values and environments. Thus the collecting inter-
pretations developed here answer the following sort of question: “What are all possible
values to which the expression exp might evaluate during program execution?”

Three collecting interpretations of expressions are presented in this paper, one for each
of three abstract functional languages:

° éla, for first-order languages with call-by-value semantics (Section 4).

10f which there are now many, including ML, ALFL, Hope, Ponder, Orwell, FEL, SASL, KRC and
Miranda.

. c‘fln, for first-order languages with call-by-name semantics (Section 5).
o &), for higher-order languages with call-by-name semantics (Section 6).

The first of these is equivalent in power to an mfg semantics {14]; the second two are new
developments. In all three cases the methodology used is relatively straightforward, and
is easily related to the standard semantics.

In the remaining sections several applications of the theory will be discussed.

2 Notation

Domains as used here are c¢pos — chain-complete partial orders with a unique least element
called “bottom.” For a domain D the bottom element is written L p, or just 1 when the
domain is clear from context. A% — B denotes the domain B + (A — B) + (4 — A4 —
B) 4+ ---. We write “d € D = Exzp” to define the domain (or set) D with “canonical”
element d. P(S) denotes the powerset of S, and {} is the empty set. Unless stated
otherwise, we will treat P(S) as a domain, ordered pointwise by set inclusion.

Lambda expressions of the form “Ax. exp” carry with them implicit type information
that is usually clear from context. When it is not clear, the notation “Ax: D. exp: E”
will be used, having the standard meaning of a function in (D — FE). Similarly, all
domain /subdomain coercions will be omitted when clear from context. It is convenient to
write “n-ary” lambda expressions as “Ax1 232 ... ,. exp,” and when n-= 0 we interpret this
to mean just exp.

Double brackets are used to surround syntactic objects, as in &[[exp]; square brackets
are used for environment update, as in envle/z]; and angle brackets are used for tupling,
as in (e, e, €e3). The notation envle;/x;] is shorthand for env|e;/x1, ..., en/®,], where
the subscript bounds are inferred from context. Thus new environments are created by
L[ei/2;]. The sth component of a tuple ¢ is written ¢ | 7; alternatively, tuples may be
“destructured” in let or lambda expressions. For example, “let {(z,y) = exp in body” is
equivalent to “let @ = expll, y = expl2 in body.”

3 Preliminary Discussion

3.1 Previous Work

Collecting interpretations for expressions have not been studied very extensively before.?
One obvious approach would be to extend the Cousots’ original work so that expressions

2Although [16] contains something called a collecting interpretation, it is not a collecting interpretation
as we have defined here.

in the presence of side-effects would cause changes to the state, and the states could be
collected accordingly. However, we are interested in a more direct approach, and for
interpretations based on both applicative-order and normal-order evaluation.

The most promising approach to date for a true collecting interpretation of expressions
is Jones and Mycroft’s minimal function graph (or mfg) semantics, which collects, for every
function in a first-order program with call-by-value semantics, all argument tuples and
results that could occur during program execution. They do this by essentially simulating
the call/return behavior of function calls, by extending the base domain so as to contain
an extra bottom element; one bottom represents the fact that no demand for the value was
made, and the other bottom represents non-termination in the classical sense.® However,
if one is interested primarily in the value returned from the call (which seems all to be
required by a collecting interpretation), then it seems unnecessary to introduce this extra
level of detail into the semantics. This will be discussed in more detail later.

A significant difficulty that has been faced by researchers attempting to formulate
collecting interpretations for the applicative idiom is the apparent need to “lift” a function,
say f: D — E, to a function f': PD(D) — PD(E), where PD(...) is a powerdomain
constructor. An early attempt to get these functions to behave properly (in particular,
to preserve monotonicity and continuity) can be found in [16], but problems with that
approach led to an improvement in [18]. This in turn was improved upon in [21], where
powerdomains were abandoned in favor of a category-theoretic approach.

The approach presented in this paper avoids these problems by completely obviating
. the need to “lift” functions using powerdomains. The resulting approach seems to be much
simpler, does not have deep semantical problems rooted in powerdomains or categories,
and has allowed us to extend the current state of research in collecting interpretations in
the following ways:

o A collecting interpretation for ezpressions is developed rather than for functions as
a whole (the latter being what an mfg interpretation accomplishes).

e Extensions are made to languages with lazy evaluation.

e Extensions are made to languages with higher-order functions.

3.2 Intuitive Overview

Intuitively, what we desire as the “answer” to a program is an object, call it cache, such that
cachefexp] returns the set of all possible values that exp could evaluate to during program
execution. Doing this we run immediately into a small technical difficulty, namely finding

3This same approach was used in [10], but there non-termination was not an issue, so the two “bottoms”
were Synonymous.

a way to uniquely reference each expression. We solve this problem by assuming that each
expression has a unique label from a primitive syntactic domain Lab. A labelled expression
is written [[l.e]], where | € Lab, and we define the syntactic functions expr and label such
that exprl.e] = [e]] and label[l.e] = [I]. We often omit the label from an expression
when its presence is not needed. (Labels are similar to occurrences and places as used in
[3,7,10,16,20].)

So now our cache should have functionality Lab — P (D), if we assume D to be the
domain of values we are collecting. Although P(D) denotes the powerset of D (i.e., not
a powerdomain), we will treat it as a domain, ordered pointwise by set inclusion, whose
bottom element L p(p) is the empty set {}. That the empty set is the appropriate bottom
element can be made clear by a simple example. Consider the program:

pr=1[{ f1 =if true then l;.f5(1) else l5.f5(2),
fa=Azz }]

and suppose cache is the result of a collecting interpretation of expressions for pr. Then
cache(ly) = {1}, but cache(ly) = {}, because [f,(2)] is never called during program ex-
ecution. Thus, unlike most other domains, the bottom element 1pp) does not denote
non-termination (although elements of P(D) may contain L p, indicating that one possible
outcome is non-termination), but rather indicates the absence of any result at all.

This point becomes even more important in a language with lazy evaluation. In par-
ticular, just because one occurrence of a bound variable is evaluated doesn’t mean that
another is, and that is one reason why labels are necessary; i.e., to distinguish the different
occurrences. For example, in the program pr above, if f; were really defined by:

fa = Az. if (I3.2 = 1) then ({42 + 1) else (5.2 + 2)

then cache(ls) = cache(ly) = {1}, but cache(ls) = {}. This is not merely an artifact
of the analysis, but rather a very deliberate behavior, since the same sort of differences
within a suitable abstraction can provide exploitable compile-time information for use by
the industrious compiler writer.

3.3 A Motivating Example

We conclude this section by presenting one motivating application of this work to the ever-
popular field of strictness analysis. Consider the typical definition of a map function such
that map f lst builds a new list from lst by applying f to each of lst’s elements. Higher-
order strictness analysis will tell us strictness properties of map, but only as a function of
f’s strictness properties. Thus despite strictness analysis, the compiler-writer is not free
to turn f’s application in the body of map from call-by-name to call-by-value, because at
compile-time f is unknown. However, a collecting interpretation might be able to help in
two different ways:

1. It could determine that all possible functions bound to f in the body of map were
strict, thus allowing the optimization mentioned.

2. It could determine that all possible functions bound to f at o particular application
of map were strict, thus allowing an optimized version of map to be used there, and
presumably a more conservative map to be used elsewhere.

The strictness analysis research community has for the most part ignored this problem,
although it has been pointed out in [8|, where empirical studies have indicated that higher-
order strictness analysis (as opposed to just first-order) makes no significant impact on
program performance (and the above problem is the primary reason why).

4 First-Order Language, Applicative-Order Seman-
tics

For this section and the next two, standard semantic functions such as &, (“Ist-order,
applicative-order”), &, (“lst-order, normal-order”), and &, (“higher-order”) will be de-
fined. Their counterparts in the collecting interpretations will be denoted using a “top-
hat,” as in éla, fln, and f/,.

We begin our development with a collecting interpretation of expressions for a first-
order language with applicative-order reduction semantics. The reason for starting with
such a restricted language is that it is essentially the same language for which an mfg
semantics was developed by Jones and Mycroft. From this starting point we will next
consider lazy evaluation, and then higher-order functions.

The abstract syntax of a first-order language can be given as follows:

!l € Lab labels

k,p € Con constants
* € Bw bound variables
f € Fo function variables
e € Exp expressions, where e — L.k | l.a | lp(er...en) | L.f(e1...4)

pr € Prog programs, where pr + { fi(z1..2,) = ¢ }

Note that all expressions are labelled; we assume that every label in a program pr € Prog
is unique. A program is a set of mutually-recursive first-order equations. For simplicity
we assume that f; is always a function of no arguments, and thus a program is “run” by
evaluating fi(). There are two standard ways of interpreting such programs, depending on
whether one wishes to model applicative-order or normal-order reduction in the lambda-
calculus, and corresponding more colloquially to call-by-value or call-by-name evaluation,
respectively. In this section we consider an applicative-order semantics; in the next we
consider normal-order.

4.1 Standard Applicative-Order Semantics for First-Order Pro-
grams

We assume a domain D whose structure depends on the base types implied by Con. For
example, if integers and truth values were the only base types then D = Int + Bool. Now
define two environment domains, one for bound variables, the other for function names:

bve € Bve = Bv— D (bound variable environments)
fve € Fve = Fv— (D* — D) (function variable environments)

and then define the semantic functions &, and P, by:

£ia: Lab — Bve — Fve — D (gives meaning to expressions)
Pia: Prog— D (gives meaning to programs)

1a lab bve fve = case expr(lab) of
(k] : Asalk]
[x] : bve[]
[p(er...en)]: Kialpl(€1a labeller] bve fue, ..., Eiq label]e,] bve fue)
[f(e1...en)] : fre[f](Era label[er] bve fue, ..., Eia label[e,] bve fue)

Pla[[{ fi(®1..2n) = ei}]] = fue[f1]
whererec fve = L[strict(A(y1...yn). €1a label[e;] Lly;/x;) fve) [fi]-

Note that the meaning of program is just the meaning of f;, which is assumed to be
a function of no arguments, as discussed earlier. The function strict is similar to that
used in [22], and essentially makes its functional argument return bottom if it is applied
to any bottom arguments. A;, and Ky, give meaning to atoms and primitive functions,
respectively, and are assumed to be given. Except for the presence of labels in the syntax,
this semantics is very straightforward and conventional.

4.2 Applicative-Order Collecting Interpretation for First-Order
Programs

We now define a collecting interpretation of expressions that is consistent with the standard
semantics just defined.

Bue = Bv—D

Fue Fv — (Ansx — Ans)
Ans = D®RCache

Cache = Lab— P(D)

<‘:’1a . Lab — Bve — Fve — Ans
Pia: Prog— Ans
Kia: Con — (Ansx — Ans)

10 lab bve fve = case expr(lab) of
[(Analkl, L[{Aralel} /1ot
[e]: (boels], 1[{bvelo]} /tab)
[p(er...en)] : let € = &g {abel[[e,-]] bve fve, 1 =1,..,n
(d,c) = Kia[P] (€l ..€3,)
in (d, ¢ LIAJ_[{d}/lab])
[f(er---€a)] : let e = &4 label[e;] bve fve, 1 =1,..,n
(d,c) = fve[f](e}...€)
in (d,cU L[{d}/lab])

Pla[[{ fi(ml---wn) = 6:‘}]] = f'Uel[fI]l
whererec fve = L[strict’(A({dy, ¢1)...(dn, cn)).
let (d,c) = &1, labelle;] L[d;/z;] fue
in (d,eUeiU...Ucy))/ fil
where strict’ is analogous to strict in the standard semantics, but checks for bottom only
in the first element of each tuple argument, and where ¢; LI ¢; denotes the standard least-
upper-bound of ¢; and ¢;. As used here, that means A¢d. (¢ ¢d) U (¢ 2d). For now treat
the domain construction D X Cache as just D X Cache; we return to its precise definition
later.

The equations for é1o should be fairly self-explanatory. é1a lab bve fve returns a pair
containing the standard denotation together with a cache containing a “history” of the
evaluation of expr(lab). This history is gathered by adding to the cache the value of every
expression as it is computed. It is fairly easy to prove that this semantics is consistent
with the standard one.

5 First-Order Language, Normal-Order Semantics

We next consider an abstract language whose syntax is identical to that given in the last
section, but which we now interpret using normal-order semantics (i.e., lazy evaluation).

5.1 Standard Normal-Order Semantics for First-Order Programs

This semantics is identical to that given earlier, except that the equation for fve:

fve = L[strict(A(yr...yn). Eralles] Llyj/25] fve) / £
is changed to:
fve= J—[(A(yl---yn)- <§"lallei]] -L[yj/a:j] f’l)e) / fi]

In other words, the functions are not forced to be strict.

5.2 Normal-Order Collecting Interpretation for First-Order Pro-
grams

The key change to the collecting interpretation strategy derives from the observation that
we must not merge the cache resulting from the evaluation of an argument to the cache
resulting from a function call, until the corresponding bound variable is evaluated (if in
fact it is ever evaluated). This change is easily made by adding the argument cache to
the bound variable environment, and then extracting the necessary information when the
variable is evaluated. Note the change in functionality of Bve and Fve.

Bue = Bv — Ans *
Fve = Fuv— (Ansx — Ans)
Ans = DXCache

Cache = Lab— P(D)

fl,, : Lab — Bve — Fve — Ans
}51,, : Prog — Ans
Kin: Con — (Ansx — Ans)

&1 lab bve fve = case expr(lab) of
[Aalk], L[A1} /28]
[«] : let {d,c) = bve[]
in (d,cU L[{d}/lab]) *
[p(e1..en)] : let € = E1n label[e;]) bue fue
(d, c) = Kin[lp] (7€)
in (d,c LIAJ_[{d}/la,b])
[f(e1...en)] : let € = &1, label[e;] bve fue
(d,c) = foe[f](e)...ep)
in (d,c L L[{d}/lab])

}51n[[{ filzr.zy) = e}] = f’l)e[[fll]
whererec fve = L[(A(Y1...yn). Ein labelle]] Liy;/2;5] fve) [fi] =

The three lines marked with a star indicate the only changes from the previous collecting
interpretation. In some sense the result is actually simpler than the previous one, since
there is no need to “force” the merging of the argument caches, just as in the new standard
semantics there is no need to “force” the strict evaluation of arguments.

6 Higher-Order Language, Normal-Order Semantics

We now arrive at a language with the full power of untyped lambda calculus with constants.
Its abstract syntax is given by:

I € Lab labels
k € Con constants
x,f € Id identifiers, either bound variables or function names
e € FEaxzp expressions, where e« L.k |l.z|Lf]|l.(Az.e) | l.(e1 e2)
pr € Prog programs, where pr «— { fi=¢; }

and again we assume that all labels in a program pr € Prog are unique.

6.1 Standard Normal-Order Semantics for Higher-Order Pro-
grams

We will again assume a domain D whose structure depends on Con, but now it will typically
be the solution of a reflexive domain equation such as D = Int + Bool + (D — D).

env € Env=1d— D

En Lab — Env — D
P Prog — D

&y lab env = case expr(lab) of
(%] = Kaulk]
[«] : env[z]
[Az.e] : Ay. & label[e] env]y/z]
ler e2] : (En labele] env) (& label[es] env)

Pull{ fi = & }] = env[1]

whererec env = L[&, label[e;] env [fi]

As is the first-order semantics, this semantics is quite conventional.

6.2 Normal-Order Collecting Interpretation for Higher-Order Pro-

grams

The introduction of higher-order functions necessarily complicates our collecting interpre-
tation somewhat, because now we must take into account the fact that the application
of the value of some expression might induce other values to be added to the cache.
We solve this problem in a way similar to our solution of other higher-order inferenc-
ing strategies [9,11] — that is, we add a higher-order function to the domain of our an-
swers. In particular, the domain Ans = D KICache in the previous analysis becomes
Ans = D RCache R (Ans — Ans) in the new analysis, and the environments must map
identifiers to Ans. The result follows.

Env = Id— Ans
Ans = DRCache R(Ans — Ans)

Cache = Lab— P(D)

f:‘h : Lab— Env — Ans
}A’h : Prog — Ans
/%h : Con — Ans — Ans

&, lab env = case expr(lab) of

[[%] :
=] :

[Az.€] :

[e1 e2] :

let d = Kh[[k]]
in (d, L[{d}/lab), Ky[K])
let (d,ds, f) = env[z]
in (d,dsu L[{d}/lab], f)
let f = Az:Ans. &, label[le] env[z/x]
d = Ay:D. &, labele] (Aid. (env <d)|1){y/]
in (d, L[{d}/Lat], 1
let {di,c1, f1) = én label[[e1]] env
(dy, ca, f2) = € = &, label[e;] env
(d,c, [) = f1 €, (note : d = dy dy)
in (d,e; Uel L[{d}/lab], f)

Pll{fi = ei}] = env[1]

whererec env = L| &, label [ei] env [fi]

Note that in the equation for [Az.e] there is a call to &, in an environment derived
from enwv that “simulates” the standard environment. Although this lone call to &, is used
only to create the D-value for [Az.e], it can actually be removed in the following (albeit
devious) way. First define g recursively by:

g =y:D. (y,L,\d,c,f). g (v d))

10

Thus g essentially “coerces” its argument in D into an element in Ans. We then redefine
d in the equation for [Ax.e] as:

d=Xxy:D. (f (g y))i1

In this way &, is being used not only to cache results, but also to simulate the standard
semantics completely, as we did for the first-order cases. A point related to all this is the
observation that in the equation for [e; eg], the equality d = (d; ds) holds.

For completeness, we provide a partial specification of Kn:

Killef] = Mdp, ¢p, f,). if dp then { Ac a. ¢, cp,
)\(dcaccafc>- < Aa. d., c,
Ad. {d,, L, fe)))

else (¢ a. a, ¢,

Mde, ¢c, fo). (Aa. a, L, Aa.

N>
N>
S
S~

}&'h[[-l_]] = >‘<dl7cl)fl)- (Ad. d1 + d, C1,
Mda, ¢, fo). {d1 + dg, cq, err))

6.3 Correctness

In what sense are our collecting interpretations “correct”? In this section we explore
answers to this question for the higher-order analysis — similar results hold for the first-
order case.

First of all, there is the question of obtaining a deterministic result — that is, a unique
least fixpoint of the semantic equations. It so happens that if the domain construction
D, R D, is interpreted to mean D; X Ds, the conventional cross product of two domains,
then a monotonicity problem arises, because as approximations (such as 1) become refined
to true answers, the weaker elements must drop out of the cache — the “dropping out” is
what causes the non-monotonicity. This same problem arises in applications involving non-
determinism, and the typical solution is to resort to a suitable powerdomain construction.
Fortunately, there is a far simpler solution in our context: Simply define the special domain
construction such that if {dy, ¢1), {ds, ca) € (D ®Cache), then (dy,c1) T (dg, co) iff di T dy.
In other words, we essentially ignore the cache when computing the fixpoint. The cache
that results will then need to be shown “correct” independently, but for now let us first
state a small theorem about the fixpoint analysis:

Theorem 1: For all finite programs pr € Prog, (}5;, pr)ll = Py, pr.

Proof: By structural induction on pr, and fixpoint induction on the semantic equations
(details are omitted in this summary). The proof depends upon the following property of

Kh:
(Rile] e1...en) 11 = Kufe] (erl1)...(enl1), n >0

11

which is easily proved for the partial specifications of K and K given, and is assumed to
be true of the remaining specifications. [

Now the question returns to what can be said about the cache. This turns out to be a
subtle problem, since one can define several kinds of caches, depending on one’s intuition
about what it means for a program to be “evaluated.” A full discussion of this issue is
beyond the scope of this paper, but we wish to point out that there are at least three kinds
of collecting interpretations that we think are worth distinguishing, and their behavior
can be captured by considering the expression bot; + boty, where the bot; are arbitrary
expressions that happen not to terminate in the “current” environment. Then the three
types of collecting interpretations can be described as:

1. A sequential collecting intepretation is one that mimics a sequential interpreter. For
the above example such a collection would result in a cache that has values for
subexpressions in bot;, but not boty, assuming left-to-right evaluation.

2. A parallel collecting interpretation is one that mimics a parallel interpreter — that is,
one that evaluates in parallel all arguments that it “knows are needed.” Thus for the
above example “contributions” from both bot; and boty should appear in the cache.

3. A dependent collecting interpretation is one that includes in the cache only those
values that can effect the final answer. Interestingly, in the above example there is
no single value that can effect the outcome (since the outcome is always bottom) and
thus the cache should be empty!

All three of the collecting interpretations defined in this paper are parallel ones. This was
done primarily for simplicity, since one has to add machinery to check for bottom values
in order to achieve one of the other two.

From this discussion it should be clear that the behavior of a collecting interpretation
can be pretty much whatever we define it to be. However, there is at least one notion of
correctness that we think should be captured by any collecting interpretation; namely, if a
program terminates with an atomic result (i.e., not a function), then the cache should con-
tain any values that the result “depends” on. This notion of dependence can be formalized
in the following way:

Let G be the functional describing &; i.e., & = fia G (the precise definition of G is
easily derived from the equation defining &, given earlier). Then define G’ by:

G' E lab env' = if (lab' = lab) A (env' = env)
then 1
else G E lab' end'

and let &/ = fiz G'. Thus &} is just like &, except at point (lab, env), where it returns the
value L. Further, let P/ be derived from & just as P, is derived from &j.

12

Definition: A program pr is said to depend on the value of lab.exp in the environment
env if and only if P} # P,.

In other words, if we can change the behavior of a program pr by causing exp in
environment env to diverge, then it must be the case that pr depends on that evaluation.*
This leads to a second theorem:

Theorem 2: Given any finite program pr € Prog, let {d,c, f) = P, pr, and assume
d# 1 and d ¢ (D — D). Then if pr depends on the value of lab.exp in environment enwv,
then (& lab env) € c(labd).

Proof: (Omitted.)

The reason for the constraint d & (D — D) relates to the definition of dependence, and
will be discussed more fully in a future paper.

7 Discussion

We should. point out that one may collect not only all values that a particular expression
evaluates to, but also all environments that it was evaluated in. This is a straightforward
extension of any of the collecting interpretations given, and similar to saving all argument
tuples in an mfg interpretation. It may be useful in the following sense: suppose [;.e;
and [ly.e, are expressions within the same lexical environment, and let Sy = cache(l;) and
Sy = cache(ly). Then if we wish to ask what all pairs of values possessed by e; and e
are during program execution, the best answer we can currently give is S; X Sy; i.e., the
cartesian product of the two sets. But this may be inaccurate in that certain of those
pairs may not have really occurred. This is exactly the same distinction made between the
“independent attribute” and “relational attribute” methods discussed in [13] and later in
[16].

There are two ways to fix this problem, both rather straightforward. The first method
collects, in addition to the value of an expression, the bound variable environment in effect
when the expression is evaluated. That is, the functionality of the cache is changed to
Lab — P(D x Buve). Thus the answer to the previous question would be:

S = { {d1,dz) | (d1,bve;) € Si, (da, bveg) € Sy, and bve; = bvey }

The necessary changes to accomplish this for each of the collecting interpretations given
earlier are straightforward, and the details are left to the reader.

Alternatively, one could name each lexical environment explicitly (say with names from
some syntactic domain Lex), and return a cache with functionality: Leax — P(Lab — D).

4This can be thought of as a generalized notion of “strictness” [11].

13

In this setting the answer to the previous question would be:

S={{fly, fl)| f € (cache lex)}

where lex is the name of the lexical environment containing e; and e,. This method has
the advantage of avoiding the test bve; = bves,® but it provides no more power than the
previous method. For this reason, and since the changes necessary to invoke this method
are only slightly more complex than the previous method, the details are omitted.

8

Abstract Collecting Interpretations of Expressions

Abstractions, of course, may be made of any of the previous collecting interpretations.
Preliminary versions of such abstractions have been developed for strictness analysis (thus
solving the problem mentioned in Section 3.3) and reference counts [10]; a future paper
will detail these applications. Another application may be found in [2].

References

[1]

2]

(3]

4]

(5]

(€]

S. Abramsky and C. Hankin. Abstract Interpretation of Declarative Languages. Ellis
Horwood, 1987.

A. Bloss and P. Hudak. Path semantics. submitted to the Third Workshop on the
Mathematical Foundations of Programming Language Semantics, November 1986.

A. Bloss and P. Hudak. Variations on strictness analysis. In Sym. on Lisp and
Functional Programmaing, pages 132-142, ACM, August 1986.

G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analysis for higher
order functions. In LNCS 217: Programs as Data Objects, pages 42-62, Springer-
Verlag, 1985.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM Sym.
on Prin. of Prog. Lang., pages 238-252, ACM, 1977.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th
ACM Sym. on Prin. of Prog. Lang., pages 269-282, ACM, 1979.

5 Actually, this equality test is too strong in the higher-order case, where it is only necessary that the
environments be comparable to account for the possibility of their being nested.

14

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

17]

(18]

V. Donzeau-Gouge. Denotational definition of properties of program computations.
In Program Flow Analysis: Theory and Applications, pages 343-379, Prentice-Hall,
1981.

Jon Fairbairn and Stuart C. Wray. Code generation techniques for functional lan-
guages. In Proc. 1986 ACM Conference on ILisp and Functional Programming,
pages 94-104, ACM SIGPLAN/SIGACT/SIGART, Cambridge, Massachusetts, Au-
gust 1986.

B. Goldberg and P. Hudak. Inferring sharing properiies of partial applications in
higher-order functional languages. Research Report in preparation, Yale University,
Department of Computer Science, August 1986.

P. Hudak. A semantic model of reference counting and its abstraction (detailed sum-
mary). In Sym. on Lisp and Functional Programming, pages 351-363, ACM, August
1086.

P. Hudak and J. Young. Higher-order strictness analysis for untyped lambda calculus.
In 12th ACM Sym. on Prin. of Prog. Lang., pages 97-109, January 1986.

J. Hughes. Strictness detection in non-flat domains. In LNCS 217: Programs as Data
Objects, pages 4262, Springer-Verlag, 1986.

N.D. Jones and S.S. Muchnick. Complexity of flow analysis, inductive assertion syn-
thesis, and a language due to dijkstra. In Program Flow Analysis: Theory and Appli-
cations, pages 380-393, Prentice-Hall, 1981.

N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In Proc. 18th Sym. on Prin. of Prog. Lang., pages 296-306, ACM,
January 1986.

G. Lindstrom. Static evaluation of functional programs. In SIGPLAN ’86 Symposium
on Compiler Construction, pages 196-206, ACM, June 1986. Published as SIGPLAN
Notices Vol. 21, No. 7, July 1986.

A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative
Programs. PhD thesis, Univ. of Edinburgh, 1981.

A. Mycroft. The theory and practice of transforming call-by-need into call-by-value.
In Proc. of Int. Sym. on Programming, pages 269-281, Springer-Verlag LNCS Vol. 83,
1980.

A. Mycroft and F. Nielson. Strong abstract interpretation using powerdomains. In
Proc. ICALP, Springer Verlag LNCS No. 154, pages 536-547, 1983.

15

[19] F. Nielson. Abstract Interpretation Using Domain Theory. PhD thesis, University of
Edinburgh, October 1984.

[20] F. Nielson. A denotational framework for data flow analysis. Acte Informatica,
18:265-287, 1982.

[21] P. Panangaden and P. Mishra. A category theoretic formalism for abstract interpre-
tatton. Technical Report UUCS-84-005, University of Utah, 1984.

[22] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. The MIT Press, Cambridge, Mass., 1977.

16

ey, bdod Jheg

aledgyepuy :qouediy
02990 1D ‘UsABY MSN
uolje)g ojex 8917 Xog
L6V-AA/SOA/NATYA Hoday Yoreasay
soudlog teindwoy jo jusurjredacy
L)1s124a1U) 9B

9861 1snsny
fepnH [ned
(uotstop Areutwiijei])
suoissexdxy] jo suorjejardiajuy 3uryos[[o)

