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Abstract

We present a new algorithm for solving the exterior orientation
problem. Unlike most of existing methods, it minimizes the 3-
D reconstruction error rather than the 2-D projection error. The
objective function can be optimized in full by straightforward and
efficient coordinate-wise optimizations. An initial guess for camera
orientation and position is not required. This algorithm has been
tested on synthetic data with varying noise, percentages of outliers,
and numbers of data points. We also show the result of applying
the alogrithm to hand-eye calibration. Both the accuracy and the
speed are very encouraging.

1 Introduction

Given a set of 3-D points, and its 2-D camera view, the problem of determining the |
rotation and translation that relate the object reference frame to that of the camera
is referred to as the ezterior orientation problem [3] or the hand-eye calibration
problem [7] when the goal is to locate the camera in object reference frame, and
as the object pose estimation problem [6] or the object localization problem [4] when
the goal is to locate the object in the camera reference frame. The rotation and
translation are referred to as the ezierior orientation of the camera or the pose
of the observed object. It is also an important problem in computer graphics for
placement and control of the virtual camera for viewing and rendering [1].




There is extensive work on object pose estimation for 3-D object recognition [8, 4]
and photogrammetry [3]. Most existing methods are essentially based on mini-
mizing the error of collinearity equation resulting from fitting the predicted 2-D
projections given hypothesized exterior orientation to observed ones. The classic
Newton method to minimize this objective function works by iteratively linearizing
the collinearity equation around the current approximate solution and solving the
linearized system for the next approximate solution. This method usually requires
a good starting point. It is reported [6] that for the Newton method to work, the
initial approximate solutions have to be within 10% of scale for the translation and
within 15° for each of the three rotation angles.

Instead of doing the nonlinear perspective projection, we can use its inverse, the
backprojection, which is linear. It is equivalent to fitting the 3-D points in the
camera reference frame to the bundle of the lines of sight associated with the image
points. This approach requires estimating the missing depth for each 2-D projec-
tion explicitly. It is inappropriate if a classical iterative nonlinear optimization is
employed to solved the problem. One algorithm that minimizes 3-D reconstruction
error was presented in [2]. It was shown to be globally convergent. No initial ap-
proximate solution to true pose was required. However, reasonable initial depths
needed to be chosen. It also suffers from slow convergence.

In this paper, we introduce a new depth reconstruction method with which the
unknown depth parameters are constrained to a compact set. The new algorithm
convergences dramatically faster and is much more accurate. Furthermore, the
convergence rate and the accuracy are not affected by the choice of initial depths, as
long as they are sufficiently larger than the focal length. The objective function can
be augmented with the camera intrinsic parameters to solve the complete camera
calibration problem.

2 The Problem Formulation

Given a set of 3-D object coordinates °P; = (X;,Y;, Z;)*,i =1,... N, in the object
reference frame, and the corresponding coordinates in the camera reference frame
°P;, these two frames can be related by a rigid transformation as

(1) cP.‘ = CROOP,' + cTo,

where
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are a rotation matrix and a translation vector, respectively.

Define p; = (zi, 4, f)%, i = 1,...N, to be the perspective projection of °P; on
the image plane, where f is the focal length. Using the pinhole imaging model, p;
satisfies the collinearity equation

_ nXi+ T _ nYi+ T,
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or
(4) pi = P(°P;;°R,, °T,).

Equation (4) serves as a basis for most algorithms. The problem can be formulated
as that of minimizing the error of collinearity equation

(5) E_ w;||pi — P(°Pi; °Ro, °To)||?

with respect to °R,, °T,.

The depth reconstruction is equivalent to reconstructing the 3-D coordinate in the
camera reference frame, °P;, which is constrained to lie on the line-of-sight defined
by the ideal image point p; by

(6) °P; = d;p; for d; € RY,
where fd; is the depth of the object point in the camera reference frame. The lines

of sight may not pass through the object points due to distortion and noise. We
seek to minimize the error of such 3-D reconstruction

™) E =" wil|°Ro°P; + T, — dipil]®
i

with respect to °R,,°T,, and {d;}.

Either of the exterior orientation and the extra depth variables can be solved in
closed form given parameters in the other group. The overall solution can be cheaply
obtained by coordinate-wise optimization over each group of parameters iteratively.
General nonlinear optimization methods are not needed. The coordinate-wise opti-
mization algorithm can be concisely expressed by formulating the objective function
as a clocked objective function [9], which is optimized over distinct groups of vari-
ables in phases !

(10) Eelocked = E((CRO) cTO)A1 {di}A)$'

Within coordinate-wise optimization on each group of parameters, each parameter,
say z, in other groups is clamped, as denoted by Z.

2.1 Solving for the exterior orientation

Find °R, and T, that minimizes

(11) E = w|°Ro°P; + °To — dipil%,
i

!Notations (to be employed recursively):

(8) E(z,y,...)s : coordinate-wise optimization of E on z, then y, ..., iteratively.

9) z* : solving for z analytically.




which is a 3-D-3-D pose estimation problem or a absolute orientation problem.
When the exterior orientation is represented by an affine transformation with or-
thonormality constraint on the 3-by-3 matrix, the problem can be solved in closed
form by using singular value decomposition [2]. The exterior orientation can also be
represented by a dual number quaternion which corresponds to a screw coordinate
transform, in which case, the problem can be solved in closed form by computing
the eigenvectors for a particular 4-by-4 matrix [10].

In our implementation, the 3-D-3-D pose estimation problem is solved using the
method of [10].

2.2 Solving for the depth parameters

Find {°P;} that minimize

(12) E = Zw;||°1—i’o°P.- + "To — cP,’“2
i
subject to
(13) P; € {dip;|d; € R}
(14) > lI°Pi— P> = 3" ||°Pi - °PI?
R i

with respect to {°P;}i=1,. ~. (13) constraints each coordinate in the camera ref-
erence frame to lie on the line of sight, therefore the remaining degree of freedom
is one, i.e., the depth parameter. (14) is actually a weak rigidity constraint that
requires the second-order moment of the set of coordinates in the camera reference

frame to be equal to that in the object reference frame. 5P and P can be any linear
combination of the coordinates in each reference frame, respectively. We choose to
use the means.

The feasible set corresponding to (13) is a N dimensional subspace of R3N | which is
convex. If we always start the search from distant coordinates, (14) can be replaced
by an inequality

(15) Y lIePi - <P|12 < S_|I°P; - °P|I?
H s

which makes the corresponding feasible set convex. Now the problem becomes a
least squares problem on the intersection of two convex feasible sets, which can be
solved by projecting the unconstrained optimum SR,°P; + €T, on the feasible sets
corresponding to (13) and (14) in turn as:

_ c oP,+cT to.
(16) py = T,
and
(17) °p; = Ei”opi_oplp cp-

illPy <P '




3 Experiments

3.1 Synthetic Data

To demonstrate the robustness of the algorithm, we perform extensive experiments
on synthetic data with varying number of points, noise, and percentages of outliers.

A set of 3-D points for {°P;} are generated uniformly within a box defined by
Xi, Yi, Z; € [-75,75]. The three rotation angles for °R, are uniformly se-
lected from [20,70]. T, and T, are uniformly selected from [50,75], and T, from
[250,300] for °T,. The set of 3-D coordinates in the camera reference frame
°P; = “R,°P; + °T, are generated according to the following control parameters:

Number of points N.

Signal-to-noise ratio SNR. A Gaussian noise N(0, o) is added to both coordinates

of the perspective projection of each °P;, where the variance o is related to SNR
by SNR = —20logo dB.

Percentage of outliers PO. ‘A fraction (= PO %) of the 3-D points are selected
as outliers. Each of such points °P; = (°X;, °Y;,“Z;)* is replaced with another 3-D
point (X;,Y/, Z[)*, where X] and Y are uniformly distributed within [T} —5, T, +5]
and [Ty — 5, T, + 5), respectively, and Z! = ©Z;.

The preprocessed 3-D points are then perspectively projected onto the image plane.
The focal length is set to 10 mm.

In addition to controlling the parameters described above, we also control the initial
depth d for each run.

The following four experiments were conducted:

E1l Set N = 20,d = 10000. Estimate the mean of three rotation angle error against
SNR (20 dB-80 dB in 10 dB step) for different PO (0 % to 20 % in 5 % step).

E2 Set SNR = 40 dB, d = 10000. Estimate the mean of three rotation angle errors
against PO (0 %-20 % in 5 % step) for different N (10 to 50 by step of 10).

E3 Set PO = 10 %, d = 10000. Estimate the mean of three rotation angle errors
against SNR (20 dB-80 dB in 10 dB step) for different N (10 to 50 by step of 10).

E4 Set N = 20,PO = 0. Estimate the mean of three rotation angle errors and the
number of iterations (including associated error bars) against log;, d (from 1 to 5
by step of 1).

All the experiments were conducted on a Silicon Graphics IRIS Indigo with MIPS
R4400 processor. The average CPU time for each run, including the time for gen-
erating the synthetic data set, is as follows:
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Figure 1: Illustrate performance characteristics of the algorithm with respects to
number of points N, signal-to-noise ratio SNR, and percentage of outliers PO. (left)
N =20. PO =0, ¢ = 5%, + = 10%, x = 15%, o = 20%. (middle) SNR = 40
dB. N: B =10, ¢ = 20, + = 30, x = 40, o = 50. (right) PO = 10%. N: B = 10,
4 =20, + = 30, x =40, o = 50. Each data point represents 1,000 trials.
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Figure 2: Illustrate insensitivity of the algorithm to initial depth d. Each data point
represents 1,000 trials.

| number of points | average CPU time (sec) |

10 0.056
20 0.075
30 0.089
40 0.10
50 0.12

The first estimate of the exterior orientation is computed from the initial 3-D-3-
D pose estimation problem. An initial approximate solution to the pose is not
required. Only the initial depth has to be chosen. From the result of E4, we found
that the performances and the numbers of iterations are not affected by the choices
of initial depths, as long as they are several magnitudes larger than the focal length.
Actually, with this open-ended requirement on the initial depths, the algorithm can
be thought of as initialization-free.
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Figure 3: The projections of 27 calibration points as seen through: (left) Cohu
camera and (right) Sony camera.

Notice that the performance of the algorithm is degraded (gracefully, though) with
increasing percentage of outliers. We expect that the performance can be improved
by using robust methods. Even more aggressively, we are currently investigating an
enhancement that solves the problem when the correspondences between the 3-D
points and their 2-D projections are totally unknown.

3.2 Hand-Eye Calibration

Our experimental setting for hand-eye calibration consists of a Zebra Zero robot
arm, a Cohu camera with an 8 mm lens, a Sony XC-77 camera with a 12.5 mm lens,
and two Imaging Technologies digitizers attached to a Sun Sparc II workstation via
a Solflower SBus-VME adapter. The robot arm is programmed to reach each of
the predefined 27 calibration points by a marker affixed to its end in turns by using
inverse kinematics. The corresponding 2-D projections of the calibration points are
acquired by tracking the marker through the camera. The tracking system is more
fully described in [5].

Given the 3-D coordinates of the calibration points and their corresponding camera
view, we compute the rotoation and translation that relate the coordinate system
of the robot arm and that of the camera. Since the true rotation and translation
are unknown, we measure the 3-D reconsruction and 2-D projection error given the
estimated pose. The results for two cameras are summerized as follows:

| camera [ 3-D error (mm) [ 2-D error (mm) [ CPU time (sec) |
Cohu 1.97 0.00027 0.15
Sony XC-77 5.52 0.0018 0.15

The 3-D reconstruction errors are measured by comparing the calibration points
to the 3-D points reconstructed using the estimated pose and depths. The 2-D
projection errors are measured by comparing the observed 2-D projections to those
obtained by projecting the calibration points to the image plane.




4 Conclusions

Most of previous methods for solving the exterior orientation problem usually re-
quire some “guidelines” to figure out a reasonable initial approximate solution to
start the nonlinear search. They are also expected to be slow because of the general
nonlinear optimizations involved. In other words, the problem is solved only in a
limited sense even with extensive computations.

We presented a clean and efficient algorithm that provides a nearly closed-form
solution to the problem. With its robustness and efficiency, the problem can be
solved for more arbitrary and dynamical settings.
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