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Abstract

Three dimensional (3D) models of sound propagation in the ocean can
lead to very large scale computations. With the advent of parallel com-
puting, we have the chance of doing these computations at an acceptably
fast rate.

We describe our work towards porting a 3D parabolic equation solver
to current parallel computers. The code is FOR3D, developed at NUWC,
and is based on the Lee-Saad-Schultz model. This model takes the az-
imuthal coupling into account, and marches the solution out in range,
with an AD scheme, which requires alternated sweeps, solving indepen-
dent tridiagonal systems alternating in the depth and azimuth directions
at every range step. '

Our parallel implementation is in Linda, a language that allows parallel
algorithms to be expressed in terms of a machine-independent model of
parallel computing. Codes parallelized in Linda will run on any parallel
computer on which Linda is implemented. We will focus on a cluster of
workstations viewed as a distributed memory multiprocessor.

We report on the improvement in performance that can be obtained
through a combination of algorithmic improvements and parallel comput-
ing. We touch upon some software engineering issues that have a strong
bearing on the process of porting existing codes to parallel architectures.

We demonstrate that workstation clusters can be very effective for
scientific codes, particularly when a fast interconnect or switch is used.




1 Introduction

In this paper, we describe our progress in implementing a portable parallel
version of FOR3D, a code developed at the Naval Undersea Warfare Center
(NUWC) for the prediction of sound propagation in the ocean. Section 2 de-
scribes the equations solved by the original FOR3D code. In Section 3 we discuss
some general considerations on implementing a parallel version of the code. A
brief description of Linda is given in Section 4 and the hardware used for our
experiments is described in Section 5. In Section 7 we show performance data,
we discuss possible future directions of our research in Section 8, and in Section
9 we present our conclusions.

2 Description of the Problem and Numerical
Approach

FOR3D solves the following parabolic equation, which models one-way outgoing
propagation:

ur = k(=1 4+ VIF X+ ¥)u 1)

where u is a function of depth (z), azimuth (¢) and range (r), ko is a constant,
the reference wavenumber, and the differential operators X and Y are given by
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where n(r, 8, z) is the index of refraction and p is the density. In FOR3D, p can
be a step-wise linear function of z and 6 [5].
A local solution to (1) can be written down symbolically as:

u(r + Ar, 6, z) = e'i"°A'e‘k°A"/mu(r, 6, z). 3)

The numerical scheme designed by Lee, Saad and Schultz [4] makes use of
the following rational approximation to the square root operator:

«/1+X+Yz1+%X—%X2+%Y.

By assuming near commutativity of the operators X and Y, (3) becomes:
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Then, the exponential operators are further approximated by rational functions,
giving the following marching scheme:

I+aX I+4+pPY
I+aX I+8Y

u(r+ AT, 0,2) = u(r,e,z) ) (4)
where a = § + ikoAr and 8 = itkoAr.
A finite difference discretization of (4) leads to a problem of the form

ABU* = A*B*U (5)

where U and U+ are the computed solution vector at the present range r and at
r+ Ar, respectively, and A and B represent the discretizations of the operators
I+ aX and I+ BY respectively, computed at range r + %Ar.

The computational domain at each range step is an N, by Ny grid, originally
numbered column-wise, i.e., by depth first, then by sector. With such ordering,
the matrix A is block-diagonal, with tridiagonal blocks in the diagonal. Sim-
ilarly, if the gridpoints are numbered by sector first (i.e., row-wise), then the
matrix B is block-diagonal, with tridiagonal blocks in the diagonal.

At each range step, computations are arranged in two AD half-steps, alter-
nated with a transposition (reordering) of the partial solution vector:

¢ z-half-step: Compute right hand side and solve
AU = A*B*U (6)

¢ Transpose intermediate solution U

o O-step: Solve )
BUt =T (M

¢ Transpose new solution U™ back to original ordering.

The FOR3D code is described in detail in [1].

3 Parallel Implementation: Some General Con-
siderations

In this section we briefly outline some general features of our approach to paral-
lelizing FOR3D, independent of any particular parallel hardware/software sys-
tems. In the subsequent sections we will describe how this approach is imple-
mented on clusters of workstations using LINDA.

The basic structure of a range step in FOR3D consists of a set of independent
tridiagonal solves in depth followed by another set of independent tridiagonal
solves in the azimuthal direction. In addition, matrix vector products involving




tridiagonal matrices are required in each of these directions to form the right
hand side.

Our approach to parallelizing these computations is to assign one or more
of the (depth dependent) tridiagonal systems to each processor. Each processor
forms the tridiagonal matrices it needs, and hence the matrices are not involved
in the communications. The solves are done locally, using Gaussian elimination
adapted to the structure of the matrices.

In the second phase of the range step, each processor solves one or more tridi-
agonal systems in the § direction. The matrices for this phase are again formed
locally, and are not involved in any inter-processor communication. However
the right hand sides of the tridiagonal systems in this phase depend on the
intermediate solution obtained from the first half-step, and data movement is
required between these phases.

This data movement can be conceptually viewed as matrix transposition and
can be implemented in several different ways. The simplest approach involves
each processor sending data to every other processor and receiving data from
every other. The global nature of the communication reflects the global data
dependencies inherent in the FOR3D model. Any 3D model that takes full 6-
coupling into account will have analogous global communication requirements.
It is important to exploit any features of the parallel hardware and software
to make this phase as efficient as possible to minimize the overhead cost of
parallelization.

Because of the well-structured nature of the computational kernel in FOR3D,
we achieve good load balance across processors.

4 Linda

Linda is a coordination language that complements traditional languages for
computation. In our application, we used Fortran-Linda from Scientific Com-
puting Associates. A few simple commands are added to Fortran. The resulting
language is architecture-independent, which makes the code highly portable.
The Linda coordination model is based on a form of virtual shared memory,
called “tuple space”, that is designed specifically to accommodate inter-process
coordination. Linda-style shared memory has been efficiently implemented in
settings such as distributed-memory parallel machines and local area networks,
whose architectures preclude communication via conventional shared memory.
A tuple space stores tuples, which are ordered aggregates of data objects. Linda
provides three basic access operations with built-in synchronization: the out op-
eration generates a tuple and adds it to memory; the in operation looks for some
“matching” tuple and removes it, blocking if necessary until one is available; the
rd operation is like in, but copies rather than removes the matched tuple. Tu-
ple space is an associative memory: in or rd statements specify a “matching
template” or anti-tuple which may include either values or typed place-holders




or both. Linda also provides a process-creation mechanism integrated with the
tuple space abstraction: the eval operation generates and places in tuple space
an unevaluated tuple. When each field of the unevaluated tuple has been fully
evaluated, the unevaluated tuple turns into an ordinary tuple which can be read
or removed using the standard operations.

For a more detailed description of Linda and its applications, see [2].

5 Hardware

For our experiments, we used a network of IBM RS6000/560 workstations. With
the Ethernet interconnect, only one processor pair can communicate at a time.
A faster interconnect was recently added, IBM’s AllNode (or V7), a switch which
supports multiple, high-bandwidth, low-latency connections between processors.

6 Parallel FOR3D

In our parallel version of FOR3D, the computational domain is initially dis-
tributed so that each processor gets a sector (i.e. a number of azimuth values).
In homogeneous networks, each processor works on a data set of approximately
the same size, but the code accepts data sets of different sizes, to provide flexi-
bility for good load balance when working on heterogeneous networks. For each
range step, the computations in the depth direction are performed locally, then
the partial solution is transposed across processors, so that each processor can
locally compute the azimuth step, and then the solution is transposed back.

Instead of approximating 4 by Ut = B"'A~*A*B*U (solved by steps (6)
and (7) in section 2), we use the ordering U+ = B~!B*A~1A*U. This order-
ing of the operators facilitates the organization of the computation, because it
permits us to group the computations in each alternated direction. The two
transpose operations at every range step make sure that the data for each half-
step is local to each processor, therefore these steps are performed with perfect
parallel speed-up. All communication between processors is done at the trans-
pose phase.




o z-half-step: Compute right hand side and solve (Each processor computes
a portion of the solution.)

AU = A*U (8)

¢ Transpose intermediate solution U

o f-step: Compute right hand side and solve (Each processor computes a
portion of the solution.)

BUt = B*U 9)
¢ Transpose new solution Ut back to original ordering.

Master-worker model

Linda allows the user to design a parallel application using the master-worker
model, in which one of the processors acts as master, assigning data and tasks
to the spawn processes. Although it is not essential, we chose to use this model
for our parallel FOR3D. The master process is in charge of processing and
distributing the environmental data, and for gathering output for visualizing
the solution when requested by the user. It is possible to program the master
processor to become a worker in cases when it is likely to stay idle for long
periods of time.

Fig. 1 illustrates the sequence of computation and communication at a par-
ticular set of range steps, for a case of a master process and three workers.
The arrows represent data being communicated among processors. We need to
point out that this picture is an oversimplification of the communication pat-
tern, and it does not necessarily represent the Linda model. Linda preprocesses
the communication pattern in order to minimize overhead.

The master process gathers the solution vector for visualization when neces-
sary (in most applications, the solution is not printed out at every range step),
while the workers can continue marching the computations in range. When
new environmental data needs to be inputed (again, this is not usually done at
every range step), it is the master processor’s job to process the new data and
distribute it among the workers.

7 Parallel Performance

In the current implementation, the transpose step is the communication bot-
tleneck. The cost for the transpose step increases linearly with the volume of
data being transposed. Since we get perfect speed-up for the arithmetic compu-
tations, the amount of speed-up that can be achieved for a given problem size,
as we increase the number of workers (processors), is basically bounded by the
cost of the transpose. In Fig. 2 we show run time curves for two problem sizes,
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Figure 1: Communication and computation pattern




Table 1: Runtimes for 3D and N x2D models
Run-time for one range step computation.

Grid size N,=799 x Ny=180

Number of

Processors 3D | Nx2D
1 420 3.20
2 280 1.61
3 197 1.12
4 1.62| 0.85

for increasing number of processors. The solid lines indicate perfect speed-up
(i.e. the one-processor time divided by number of processors). We can see that
arithmetic times agree with the perfect speed-up curve, but as more workers
are added, the time for the transpose dominates, making the parallel code less
efficient. Fig. 3 shows speed-up curves for the same problems. These results are °
obviously heavily dependent on architectural features of the network or parallel
machine. In Fig. 4 we can see the substantial improvement in efficiency achieved
by the same processors when going from an Ethernet interconnect to the faster
AllNode switch interconnect.

When @ coupling can be ignored, FOR3D can solve the equations in N x 2D
mode, i.e. as a collection of independent two-dimensional problems. Basically,
the f-half-step is skipped. In this case, the code is not only faster, but obviously
more parallelizable, since no transpose is needed. Table 1 shows runtimes per
range step for a particular gridsize. We can see how the times for N x 2D follow
perfect speed-up closely.

Finally, as an example of the improvement in performance that can be ob-
tained through a combination of algorithmic and hardware improvements, code
optimization, and parallel computing, we show in Table 2 the progression in’
computing time from a run of the original FOR3D code on a Sparc II worksta-
tion to our parallel version on five IBM RS6000/560 workstations.

8 Future Directions

In order to make FOR3D more efficient, we envision improvements to the se-
quential as well as the parallel versions.
One such improvement to the sequential code will be to replace

(I+aX)" (I+aX)= %1+(1_ %)(14_&)()-1
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Figure 2: Parallel Performance of FOR3D A
Run-time for two grid-sizes, as a function of the number of processors. Total

time is the combination of transpose time plus arithmetic time. Dashed lines
represent extrapolated values.
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and

(I+BY) ' (I+8Y)= %u (1- %)(I+BY)'1 =—I+2(I+BY)™!

in (4). This substitution eliminates the need to compute the right hand sides
in the 2 and @ half-steps. We will report more on this at a later time.

In order to reduce the number of transpose steps needed, another idea is to
use alternating sweep ordering, in which the (z and 6) half-steps are followed by
(6 and then z) half-steps, thus eliminating the need for one of the two transposes
per range step.

Since the cost for the transpose depends on the volume of data transfered,
one variation of the algorithm is the use of substructuring (reduced system)
techniques to solve the tridiagonal systems for the 6 half-step. Instead of trans-
posing the whole array, partial Gaussian elimination is applied to sections of

10
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each system, and only a small reduced system is exchanged and solved through
the network. This method doubles the operation count for the tridiagonal solves,
but in most cases it will greately reduce the cost for the transpose, because the
volume of data being transfered is reduced to the size of a separator set (about
N, vs. -M‘-;‘—N’- per processor) [6, 3, 7, 8].

We finally point out that more parallelism is to be obtained in real appli-
cations by simultaneously solving for several frequencies. The computation for
each frequency is completely independent. '

9 Summary and Conclusion

We have described the implementation of a functioning portable parallel code
for computational ocean acoustics. The tremendous advances in workstation
technology have made the workstation cluster approach to parallel computing
very attractive. Our experiments on a cluster of high-end workstations with a
fast interconnect show that high performance can be achieved in a cost effective
manner.

We used the coordination language Linda for our implementation. Linda is
easy to use and has low overhead. Code written with Linda will run in any

11




Table 2: Speed improvement
Run-time for one range step computation.

Grid size N, = 799, Ny = 180

Sparc II
Original (sequential) code 49.0 sec
New (sequential) code 24.2 sec

IBM RS6000/560
New (sequential) code 4.2 sec
Parallel code: 5 procs. 1.3 sec

parallel computer that supports Linda.
The experience gained by designing this application will be useful in paral-
lelizing other similar acoustic codes.
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