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Abstract
We show that each FFT network is a subgraph of the smallest
hypercube that has at least as many nodes as it. In particular, the n
stage FFT with (n + 1)2" nodes is a subgraph of the n + [log(n + 1)]
dimension hypercube.

1 Introduction

The FFT network [WaFe80] and its many isomorphic relatives (butterfly, omega,
etc.) are often mentioned as candidate networks for the topology of parallel com-
puters. Algorithms for sorting, Toeplitz matrix calculations, parallel shared mem-
ory management, and many other basic problems have been designed for such FFT
based computers.

Other researchers have concentrated on the hypercube as underlying network
for parallel computers and several such machines (eg. iPSC cube, Thinking Ma-
chines Connection Machine) have been built. Thus one would like to know if the
algorithms designed for FFT machines can be simulated easily on a hypercube
machine.

One standard method of simulating one machine with another is to map the
connection graph of the first computer onto the connection graph of the sec-
ond. Previous work has included mapping trees to hypercubes [BCLR86,BhIp85],
meshes to hypercubes [Gr87], and rectangular meshes to square meshes [AIR082].
Recently, Heath and Rosenberg [HeRo87] showed that there exists a mapping
which identifies the M node FFT with a subgraph of the smallest hypercube con-
taining at least M nodes. This paper gives a much simpler mapping.

Using this mapping a FFT machine can be simulated on a hypercube machine
at a cost of one hypercube communication step per FFT communication step. Each
hypercube node need only simulate the processing at the FFT switch assigned to
it and send messages across its edges to neighboring switches.

This work was supported in part by the National Science Foundation under Grant
MIP-8601885




2 Definitions

The FFT network

The nodes of the n-stage FFT network are divided into (n + 1) levels and 2"
columns. (See Figure 1) Each vertex is addressed (/,c) where 0 < I < n and
0 < ¢ < 2" —1. The edges of the FFT are divided into two sets: the straight edges
S, and the cross edges C. The sets S and C are defined as follows:

s = {(@aa+Le0<i<n0se<2" -1}
¢ = {(@e)@+1,c02)) |0<l<n0<c<2—1}

We call the edges between nodes at levels ! and I+ 1 levell edges. The operator
@ denotes bitwise exclusive-or of its two arguments. From node (l,c) the level !
straight edge simply increments I, while the level I cross edge complements the /th
bit of ¢ in addition to incrementing I.
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Columns
- : cross edge - - : straight edge

Figure 1: A 3-Stage FFT

Fact 1 For every pair of columns ¢; and c3, there exists a unique path of length
n connecting nodes (0,¢;) and (n,cp). The lth edge in the path is the level [ cross
edge if ¢; and c; differ in bit  and the level I straight edge otherwise. (Bit 0 is the
lowest order bit).

Graycodes _
The graycode sequence Gy, is defined inductively as:

Gy =0
Gpn = Gp-10n-10Gp-y
where o = string concatenation.




For 1 <1< 2" — 1 let Gu(¢) be the ith element in G,,.
Example 1
Gs = 0102010 Gs(4) =2

Fact 2 Every contiguous subsequence of G,, contains at least one element an odd
number of times.

3 The FFT as a sgbgraph of the Hypercube

In order to show that the FFT is a subgraph of the hypercube we describe an
embedding which maps the vertices of the FFT onto the nodes of the hypercube.

The Embedding We first label each edge of the FFT by a single dimension
of the hypercube. For convenience, let 8 = [log(n + 1)], so that the number of
available dimensions equals n + 3. Every level I cross edge is labeled Gg(l + 1).
Every level | straight edge is labeled [ + 8. Thus, the labels on cross edges are
disjoint from the labels on straight edges.

The origin vertex s = (0,0) of the FFT is mapped to the hypercube node
#(s) = 0. The remaining FFT nodes are assigned hypercube addresses in the
following way. To compute the hypercube address ¢(v) of vertex v in the FFT,
pick any path from the origin s to v. The ith bit of ¢(v) is 1 if and only if dimension
i appears as the label of an 0odd number of edges along the path. For example, if
in a 4-stage FFT the path from s to v = (1,4) which traverses edges labeled with
dimensions 0,1,3,1,4,0,3,2,0 were chosen then the hypercube address of v would
have 1’s in positions 0,2, and 4 and thus ¢(v) = 10101,.

At this point we need to establish three properties of the embedding:

¢ is well-defined, i.e., the address #(v) is independent of the path
chosen from the origin to v, and

¢ is injective, i.e., each node in the FFT is assigned a distinct hyper-
cube address.

¢ is dilation 1, i.e., if edge (u,v) is in the FFT then (¢(u),#(v)) is an
edge of the hypercube.
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Lemma 1 (¢ is well-defined)

For each vertez v = (l,c) in the FFT and any two paths P and Q from s = (0,0)
to v in the FFT, the hypercube address assigned to v using P s the same as the
address assigned using Q.

Proof: We start with three facts about cycles in FFTs.

For every cycle O in the FFT the number of level [ edges along O is even. Since
O is a cycle every edge from one level to the next higher must be matched by an
edge coming back down.

For every cycle O in the FFT the number of level I cross edges along O is even.
Each level [ cross edge leads to a vertex whose column address is the same as the
previous vertex except that the /th bit is complemented. Thus an even number of
complements at each level are necessary to return to the first vertex.

For every cycle O in the FFT the number of level ! straight edges along O is
even. The total number of level | edges is even as is the number of level I cross
edges so the number of level I straight edges must also be even.

Now consider the hypercube dimension labels associated with a cycle in the
FFT. Since all level | edges of each type are assigned the same label each hypercube
label must appear an even number of times.

Next consider the cycle which starts at s follows P to v and then @ back to
s. Since each hypercube dimension appears an even number of times the parity of
the number of appearances along P must be the same as the parity along @ for
every dimension. Therefore the address assigned to v is the same whether P or Q
is used.

Lemma 2 (¢ is injective)
For every pair of vertices u = {l3,c1),v = (l2,c3) in the FFT,

u# v = ¢(u) # (v).

Proof: We assume ¢(u) = ¢(v) and derive a contradiction. W.l.o.g. assumel; > I5.
Let u' = (n,c;) and v' = (0,cz). Consider the path in the FFT which starts at u,
traverses straight edges up to u', follows the unique path to v/, and then traverses
straight edges up to v. Let v" and u” be, respectively, the nodes at level /; and
I along the path between v’ and u'. (See Figure 2) Since u and v are mapped to
the same node in the hypercube the path must cross every hypercube dimension
an even number of times.

Now consider all the level ¢ edges in the path. For ¢ > l; or ¢ < I3 there are two
level i edges in the path, one of which is known to be a straight edge. However,
the hypercube dimension assigned to a level ¢ straight edge is only assigned to
level ¢ straight edges. Thus the only other edge which could cross this hypercube
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dimension is the other level ¢ edge which must also be a straight edge. Therefore
the paths from u to 4’ and u' to 4" must be the same making » = ". Similarly
v=1".

For any remaining levels there is only one path edge on the level. If this
edge were a straight edge then it would be the only edge crossing its hypercube
dimension. Thus all the edges on these levels must be cross edges. However,
no subsequence of dimensions from a graycode crosses every dimension an even
number of times. Thus the path does not exist and we have a contradiction.

Figure 2: A Path from u to v

Lemma 3 (¢ is dilation 1)
For every pair of vertices u = (l3,¢1),v = (l,c2) in the FFT,
(u,v) is an edge of the FFT = (¢(u), ¢(v)) is an edge of the hypercube.

Proof: Every FFT edge was assigned a single hypercube dimension.

Lemmas 1, 2, and 3 establish our main result:

Theorem 1 Each FFT is a subgraph of the smallest hypercube containing at least
as many nodes as the FFT.

4 Conclusions

Since the FFT graph is a subgraph of the hypercube graph, hypercube machines
can be used efficiently to simulate FFT machines or FFT algorithms. No more
time need be spent forwarding messages on the hypercube than on a FFT. Thus
the only overhead is the initial assignment of FFT vertices to hypercube nodes.
However, the hypercube addresses of all N = (n + 1)2" FFT vertices can be
calculated sequentially in time O(N) or in parallel on the hypercube in time O(n).




Once the FFT vertices have been assigned to hypercube nodes, FFT algorithms
can be run by placing the inputs in the hypercube nodes assigned FFT vertices at
level 0 and reading the outputs from those assigned vertices at level n.
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