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Abstract

Explicit methods for the solution of fluid flow problems are of considerable interest in
supercomputing. These methods parallelize well. The treatment of the boundaries is of
particular interest both with respect to the numeric behavior of the solution, and the com-
putational efficiency. We have solved the three-dimensional Euler equations for a twisted
channel using second-order, centered difference operators, and a three stage Runge-Kutta
method for the integration. Three different fourth-order dissipation operators were stud-
ied for numeric stabilization: one positive definite, [8], one positive semidefinite, [4], and
one indefinite. The operators only differ in the treatment of the boundary. For compu-
tational efficiency all dissipation operators were designed with a constant bandwidth in
matrix representation, with the bandwidth determined by the operator in the interior.
The positive definite dissipation operator results in a significant growth in entropy close
to the channel walls. The other operators maintain constant entropy.

Several different implementations of the semidefinite operator obtained through fac-
toring of the operator were also studied. We show the difference both in convergence
rate and robustness for the different dissipation operators, and the factorizations of the
operator due to Eriksson. For the simulations in this study one of the factorizations of the
semidefinite operator required 70 - 90% of the number of iterations required by the posi-
tive definite operator. The indefinite operator was sensitive to perturbations in the inflow
boundary conditions. The simulations were performed on a 8,192 processor Connection
Machine system model CM—-2. Full processor utilization was achieved, and a performance
of 135 Mflops/s in single precision was obtained. A performance of 1.1 Gflops/s for a fully
configured system with 65,536 processors was demonstrated.



1 Introduction

Explicit methods are of considerable interest in supercomputing. Supercomputer archi-
tectures are parallel architectures. Some of todays supercomputers have thousands to tens
of thousands of processors. The next generation supercomputers with a performance of
a trillion floating-point operations per second are all expected to have thousands to tens
of thousands of processors [6]. Explicit methods parallelize well, but depend critically
on the use of artificial viscosity to stabilize the numerical scheme. The treatment of the
boundaries is important numerically and computationally. With a lower order difference
operator at the boundary, the boundary operator can be designed to contain a subset of
the points of the operator in the interior. The complete set of stencils for the interior and
the boundary can be represented as a matrix of constant bandwidth. Such a collection of
operators results in good load balance and communication efficiency on parallel comput-
ers. Several methods for the introduction of artificial viscosity have been proposed, with
the one proposed by Eriksson [4] being one of the most common. It is positive semidefi-
nite. We have also included a positive definite [8] and an indefinite operator in our study.
We demonstrate how different implementations of the same dissipation operator affect
the robustness of an operator. We also demonstrate the importance of a conservative dis-
sipation operator on the flow in a twisted channel with grids of up to 65,536 points. The
simulations were carried out on Connection Machine systems, model CM—-2. Most of the
results were obtained on a 8,192 processor configuration. A performance of 1.1 Gflops/s
was demonstrated on a 65,536 processor system. The data parallel implementation is

described in [7].

The Euler equations are stated in the next section, in which also the boundary con-
ditions are treated in detail. The artificial viscosity is treated in section 3, and the com-

putational results presented in section 4. Summary and conclusions are given in section
S.

2 The Mathematical Model

2.1 The Interior
Our simulations are based on the conservative formulation of the Euler equations in order

to allow for shock capturing. The conservative Euler equations are
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where the variable vector q is given by

p
pu

a=J7" | e |- (2)
pw
[

The components of the variable vector q have the following meaning:

p density
pu x-component of linear momentum
pv y-component of linear momentum
pw z-component of linear momentum
e total energy.

Here 7,£, n and ( denote the variables in the computational domain. The transformation
between the computational domain and the physical domain represented by t, z, y, and
z is assumed to be continuously differentiable and non-singular:

T =1

f = é(t, :E’ y’ Z) .

n = 77(757 z,Y, Z)

C - C(ta z, Y, Z)

The Jacobian matrix J is defined by
1 0 0 0
J — ét éa: fy éz (3)

m N 7]y 7]2
Ct Cx Cy Cz

The subscripts denote partial differentiation. The functional determinant of the Jacobian
matrix, |J|, corresponds to the reciprocal cell volume:

1 0 0 0

(Ve)T
|J| = det J = det bbb G det [ (V)T |, (4)
Nt N ny Nz (VC)T
Ct C:l: Cy Cz
where 5 5 5
Vi=(% & %) (5)

The flux vectors F, G and H have the following components (inviscid case):



U
F = 37| pwU+pé | =-Uq-pld|7"| V¢ (6)
pwU + p€, U—&
\(6 +p)U — p&
pV
puV + pns 0
G = -3 pwV4py | =-Va-pJ|™ ( Vi ) (7)
pwV + pn.
(e+p)V —pm
pW
puW + p(, 0
H = 37| pW+pl, |=-Wq-pl3|7"| V( |, (8)
pr +pCz W - Ct
(e +p)W — pC

and U, V and W are the contravariant velocity components:

- 1
vVi]=J Z . (9)
w

w

J’ denotes the 3 x 4 matrix which is obtained by deleting the first row of J. In the flux
vector expressions, p denotes the pressure, which is related to the total energy according
to

p=(y=1)(e— LW +v’+w?), (10)

where - is the ratio of the specific heats ¢,/c,. We assume that 4 is a constant having
the value 1.4.

2.2 The Boundary

In deriving the appropriate boundary conditions we consider the linearized Euler equations
in non-conservative form for convenience. The non-conservative, or primitive, variables
are

(11)

p
U
v
w

p

Using equations (2), (10) and (11) it is possible to establish a relationship between q and
r. For the linearized problem the boundary conditions leading to a well posed problem for
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the non-conservative formulation will also lead to a well posed problem for the conservative
formulation. By the chain rule equation (1) is transformed into

or or or or
—=A—+B—+C— 12
or o¢ On a¢’ (12)

where

-1 -1 -1
o] dH o
A= (2a) Fda g _ (04} 0GIq o _ (94} OHIq .,
Or dq Or or dq Or or dq or

The matrix A has the elements

U pé&  p&  pt 0
0 U 0 0 &/p

A=-{0 0 U 0 &/p |- (14)
0o 0 0 U &fp

0 pa’és pa®éy pa®t, U

B is obtained by replacing U and ¢ with V and . C is obtained by using W and ¢ instead
of U and ¢.

2.2.1 The channel in- and outlet

We first consider the boundary conditions for { = 0 and { = 1, the inflow and outflow
boundaries. Furthermore, we assume that the flow field only depends on (, i.e.,

or or 0 (15)
or ac
Linearizing these equations around rg, i. e., r = rg + r’, yields
or’ or’
— —C=—=0, 16
or ¢ (16)
where
C = C(I‘O)
o
ul
r' =
wl
pl

Note that rq is assumed to be a constant, i.e., it does not depend on the space coordinates.
Hence, C is a constant matrix. Since the FEuler equations are hyperbolic, the matrix C
can be diagonalized by a similarity transformation such that

or' or'

E+A8_C =90, (17)
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where
Wo O 0

0
0o W, 0 0
A=-T7'CT=| 0 0 W, 0
0 0 0 Wsh+ao
0 0 0 0 Wo — ao
The variable W, is the previously defined contravariant velocity, and ao = ao|V{|2, ao
being the speed of sound. The variable vector i’ = T~'r' is referred to as the characteristic

variable vector. Let .
{ G = G/IV(]2

(18)

[e=B ev il e B en ]

ij = G/IV(]2 -
(z Cz/'vCl2
By a different scaling of the similarity transformation in [9]
& G Glag 1/(24)) 1
(s 0~ gy/a?) Cz/(2p0a0) —Cz

i

g 2/ (2p00)
T=| 0 & —Cfad &f(2000) —&f(26000) (19)
—(e —(y 0 §2/(2p0a0) - Z/(poGO)
0 0 0 1/2 1/2
and . . . .
—Qy (s 9 _gx Qy/a%
(e 0 ¢ _ —Gy _Cwla(?)
T = | af¢ a%gy —a3§x 0 —C: . (20)
0 PodoCz  Podoly  Po@al; 1
0 —po@oCs _POGOCy —Poao(, 1
Hence, . . . .
o —p'Gy + U — W'+ PGy /af
P2 Plgm +v'(, = w'(, _~Plcw/ag2)
M=|¢s|= plagC, + u'aiCy — v'ai(s — p'C. : (21)
P4 ' pooGe + v'poaoty + w'poao(; + p’
Ps —u'poao(s — v'podoly — w'poao(; + p’
Thus, the problem of solving the linearized problem (16) implies solving the scalar model
equation 5 5
a—f + 1/8—? =0, (22)
where v is an eigenvalue of A. The solution of the quarter plane problem
%?-i—v%?mO, >0, (>0
6 = f(¢), =0 (23)
¢ = g(T)a C =0
must be constant along the characteristic lines
(—vr=M, (24)

)
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Figure 1: Domain of Influence of Characteristics with Negative and Positive Slopes

where M is a parameter and the coefficient v is a constant. Solving for 7 yields

1 M
The situation depends critically on the sign of the eigenvalue v. If v is non-positive the
solution will be completely determined by the initial conditions given along the positive
(-axis. No boundary conditions are needed at ¢ = 0. In fact, no boundary condition could
be prescribed unless it is compatible with the initial data. However, when the sign of v
is positive the quarter plane will be divided into two regions: one in which the solution
depends on the initial data, and one in which the solution is determined by the boundary

conditions at { = 0, see Figure 1. The eigenvalue v takes the following values:

v = 174
Vg = 174
Vg = w
Vg = w + a
Vs = W —a.

The necessity of inflow boundary conditions depends on data through the contravariant
velocity W. The outflow boundary conditions are treated analogously. One way of hav-

ing a well posed problem is to prescribe only those variables corresponding to ingoing
characteristics:

(i) Subsonic inflow: 0 < W <éd=v; > 0,5 =1,...,4,v5 < 0.
Prescribe the characteristic variables ¢1, ¢a, ¢3 and ,.
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(ii) Subsonic outflow: 0 < W < d = 11 > 0,1, > 0,v3 > 0,14 > 0,15 < 0.
Prescribe the scalar characteristic variable ¢s.

(iii) Supersonic inflow: 0 <a < W = v; > 0,7 =1,...,5.
Prescribe all characteristic variables, i. e., prescribe all original variables.

(iv) Supersonic outflow: 0 <& <W = v; > 0,5 =1,...,4,v5 > 0.
Prescribe no characteristic variables, i. e., prescribe no original variables.

2.2.2 The channel walls

The particle trajectories in four dimensions are defined by (t,z(t),y(¢),2(t)), and the
velocity field is (1,u,v,w). The geometry is such that the solid walls of the channel are
described by the level curves ¢(t,x,y,2) = const and n(t,z,y,2z) = const with normal
directions V’¢ and V'n, respectively. V' is the four-dimensional gradient operator
T _ (0 4 98 3

V=5 5 o %) (26)
The scalar product of the four-dimensional velocity field and the normal vector V'€ is the
contravariant velocity U, equation (9). Consequently, U = 0 at the boundaries described
by &(t,z,y,2) = 0 and £(t, z,y,z) = 1. Similarly, V = 0 at the boundaries 5(¢,z,y,2) = 0
and n(t,z,y,z) = 1. At each solid boundary one boundary condition is prescribed.

We now show by using the energy method, that these boundary conditions lead to a
well posed problem. Consider equation (12) in one dimension. This equation is obtained
formally by setting C = B = 0. We only consider the linear problem and treat the entries
of A as constants. There exists a constant matrix S [9] such that ST'AS is symmetric.
In the é-direction the equation is

o} 5}

S =S TAS—S 1y,
5.5 T o r (27)
We choose the symmetrizer as
Po  Po 0 0 pPo
0 ap 0 0 —dag
S=[0 0 12 0 0 (28)
0 0 0 +V2a 0
0 Poa?) 0 0 Poa%
with the inverse
p 0 0 0 —1/(poa)
0 1/(2a0) 0 0 1/(2p0a?)
S'=1] 0 0 1/(v/2a0) 0 0 . (29)
0 0 0 1/(v/2a0) 0
0 —1/Ca) 0 0 1/(2p003)



A solution of the symmetrized problem exists if and only if there is a solution to the
non-symmetrized problem. Let ¥ = S~!r’. Then

—H Iz =2(F, %) = 2, ST" ASK). (30)

Integrating this expression by parts leaves only the boundary terms, since S™!AS is
symmetric.

—(%Hf’“% = 2(¥,ST'AS¥;) = [f’TS“lASf']Z::. (31)

From the definitions of A and r' together with equations (28) and (29) and ¢ € [0,1], it
follows that

FTG-1ASH = —-U, {ﬂ.__ _&E+_317,i+ 1 ( I2—|—’Ul2—|—wl2)}
Po Phag | 2phap | 2ag (32)
- _L2
Pody
or
FTSTTASH = —Upho(€,7) — U'hi(€,7), (33)

since p',u/,v',w’ and p’ all are functions of ¢ and 7. Uy is the reference level around which
we have linearized the problem. At a solid boundary it is natural to choose Uy = 0. This
choice holds even if the boundary is not constant in time since

Up = & + uols + vo€y + wols.

The variable &; describes how the geometry moves with time. Note that

U'=u't, + 0, + w'E,.
Thus, U’ does not depend on §;. This is an immediate consequence of the fact that the
first component of the four-dimensional velocity field is a constant, namely 1. Hence

[f"TS‘lASf’Ezl = —U'(1,7)ha(L,7) + U'(0, 7)hy (0, 7). (34)

From the above expression and equation (31), setting U’ = 0 at the boundaries implies
E(7)|l2 = [|F(0)]|2 for 7 > 0, which gives |[t'(7)||2 < const, since S~! is a bounded
operator. The problem is well posed.

2.3 Symmetry Properties

We assume a time independent geometry. Since the channel is a twisted parallelepiped, it
is natural to assume that the solution possesses some kind of symmetry properties. The
coordinate transformation

z(&,n,() = £&cos(w() —nsin(w()
y(&,m,() = &sin(w() + ncos(w() (35)
z(§,n,() = ¢



Figure 2: Computational and Physical Domain

describes a twisted parallelepiped a twisting factor of w. Using equation (35) it is readily
established that

o
A
!

0 = 0 G =
cos(w() n: = — sin(w() (e
sin(w() ny, =  cos(wC) | ¢
wn N = — w£ Cz =

e
8
fl

(36)

TALTAS
I

l
o oo

This gives the flux vectors

oU
pul + pcos(w()
F = —| pvU + psin(w() (37)
pwU + pwn
(e+p)U
oV
puV — psin(w()
G = —| pvV + pcos(w() (38)
pwV — pwé
(e+p)V
oW
puW
H = - pvW . (39)
pwW +p
(e+p)W




Replacing ¢ and n by —¢ and —n in equation (1) yields
dq  OF 4G  9H

gr = @€ oy T ac (40)

where the flux vectors are defined by (37), (38) and (39). All variables are evaluated at
the point (—¢, —n, (). Define

ﬂ(ﬁaﬂa() = —’U,(—f, _777{)
{ 6(6?777{) = —’U(—f, _777{) . (41)
w(ﬁaﬂv() = w(_ﬁa _77,{)

Using this definition and equations (9) and (36) it follows that

U(=¢&,-n,() = —tcos(w()—vsin(w() — dwn = —Q
V(-£,-n) = asin() - veos(wl) +awé = ~V . (42)
W('—ga -, C) = W= w

Finally, we define

:5(5’777{) = ,0(—57 '_'777{) . (43)

é(ﬁa 7, C) = 6(“5, /B C)
Using definitions (41), (43) and equation (42) in equation (40) yields the original Euler
equations, in which each variable has been replaced by its barred counterpart. At the
inflow boundary v = v = 0, which, according to equation (41), is equivalent to prescribing
% = ? = 0. For the remaining three variables combinations of p, w and p are prescribed as
needed. It is clear that equation (15) holds for the barred quantities as well. The inflow
boundary conditions remain unchanged. At the outflow at most one boundary condition
is needed (one combination of p,w and p). Thus, the outflow boundary conditions are
valid for the barred variables. According to equation (42) U and V are zero at the solid
walls, if and only if U and V are zero at the wall boundaries. The boundary conditions
remain unchanged, and (2) is a solution of (1), if and only if

{P(ﬁﬂ?,{) = P(—ﬁ,—ﬂaf)

q= 37| s (44)

also satisfies (1). A necessary condition for uniqueness is that the solution of (1) satisfies
the symmetry conditions

/\Afz\/\
A
=3
I

N e N N’
[
l
£

I
g

¢)
¢)
) - (45)
¢)
¢)

I
|
[

AN AN N N AN
!
mmgnmm
|
[ I 333

The following proposition has been proved:
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Proposition 2.1 Suppose data satisfies (45). Then, if there is a solution to (1) for which
the symmetry condition (45) does not hold, this solution cannot be unique.

3 Artificial viscosity

We have chosen a finite difference method with explicit time-stepping. Centered spatial
difference operators are used in the interior and one-sided operators at the boundaries.
Non-linear phenomena, such as shocks and aliasing, cause numerical instabilities. To
remedy this situation numerical dissipation is introduced. It is created through a fourth-
order difference term (in q), which is turned off near shocks so as not to cause any spurious
effects. At shocks we use a second-order difference to filter the solution. In this section we
consider three different dissipation operators at and near the boundary: a positive definite
operator [8], a semidefinite operator [4], and an indefinite operator. The operators only
differ in the treatment of the boundary, and can be represented by matrices of a bandwidth
determined by the difference operator in the interior of the domain. We consider three
different factorizations of the semidefinite operator, in addition to the unfactored operator.
The different factorizations yield dissipation operators with different stability properties.

3.1 Interior Points

The semidiscrete Euler equations for a time independent geometry, including artificial
viscosity, are

Ok
-

= |J;u|[D§Fjut + DyGis + D§H i — Davsnl, (46)

where
Fiu = Flam)
Gju = G(qjm)
Hju = H(qju)

The discrete difference operators Dg, Ai and A® are defined by
Digirt = ($j10 — bj—1u)/(2A8)

Aldin = bivim — bim . (47)
Al = imi— bi—1m

The remaining operators are defined analogously. Furthermore, we assume a time inde-
pendent geometry for which

Ab=Anp=A(=1.

The complete coordinate transformation will be discussed in detail in section 3.3. The
following formulations of D 4v ;x; have been proposed [5, 4, 8]:

Davé&jm = |Jjul " oju{f[ALAL] + " [ATAT]? + 1AL A gjm (48)
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Ag_ [Iijl‘—l O'jklsgAiAéAqu'kl]
AL ju| " e AL AL AL G
A [T jul ojue AL A AL &l

DavQm

+ +

ALAL I m] romet AL AS Gn]
AZA?I_[|ijll_1o-jkl€nAzA1qjkl]
ASAE_[|ijl‘_10-jkl€CAC—A§|-qjkl])

Davdm

+ +

where

v

ikl = |ij1]ij1
ikt = Uit + Vi) + | Wikl + au(|VEml2 + IVnirlz + 1V ril2)

3

f=e"=¢l =19,

(49)

(51)
(52)
(33)

with no smoothing at shocks. The constant ¥4 has a value of approximately 0.01. For a

better treatment of shocks we add one of the following quantities to D av &;x:

‘lekll_lo'jkl{ﬁszAiAg— + ey ALAT + €§k1A§|-AC—}éljkl(54)

— AT oS A diu] — AT [Tl o€l AL &in] — AT k| o ieS A dir) - (55)

The coeflicient in front of the difference operator in the é-direction is given by
£
6§k1 = damax(T; 4, T?kla T§_1,k1)
with

ré — IDi+1,61 — 2Djk1 + Pim1,kl]
T pisrm + 2050 + Pi—1m

(56)

(57)

A typical value of the constant ¥5 is 1/4. The other coefficients are defined analogously.
The max-function is used to increase the second-order dissipation coefficients near the

shock. The fourth-order coefficients

can no longer be treated as constants. Instead we set

E:& = szkl = ma..X(O, 794 - ezkl)
€C = sjkl - maX(O, 794 — 6jkl)'

(58)

Near shocks the pressure gradients are very strong, causing the max-function to switch

off the fourth-order dissipation.
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3.2 Boundary Points

In this section we define and determine the conservation properties and null spaces of
the dissipation operator proposed by Eriksson [4], a positive definite operator [8] and an
unsymmetric operator. The only difference between the three dissipation operators is in
the handling of the boundaries. Furthermore, we also derive three different factorizations
of the operator due to Eriksson.

A simple - but by no means complete - analysis of the discrete fourth-order dissipation
can be based on the equation
9¢

87’ - D4¢7 (59)

where Dy, is the matrix representation of the dissipation operator. To see if D4 is moment
preserving in time, we study the equation

j=N
_2 9% 2 PDydy, (60)

where Dy is a fourth-order scalar operator, and @, is the p-th order moment defined by

[4] .
Q=D i"¢;, p=0. (61)
7=0

We use the notation Dy for fourth-order operators at interior points as well as boundary
points. The last equality in equation (60) follows from (59). We will determine the
null space of the dissipation operators, and whether or not the dissipation operators are
definite.

3.2.1 A positive semidefinite fourth-order dissipation operator.

Denote by [A1A_]? the fourth-order operator in any direction. Applying this operator to
an interior point yields

D¢ = [ALA_Pd; = Gj_0 — 4¢jo1 + 6¢; — 4djp1 + Gjta- (62)

Eriksson [4] has shown that for periodic boundary conditions this operator is positive
semidefinite, preserves zeroth, first, second and third order moments, i.e., that equation
(60) vanishes identically for p = 0,1, 2, 3, and that the null space consists of all polynomials
of degree less or equal to three. With the boundary conditions we consider, the fourth-
order dissipation operators cannot be used as presented in section 3.1. Eriksson has
suggested a procedure for specifying the boundary operators such that the total operator
(including the boundary modifications) inherits as many of the properties as possible of
the operator in the interior with periodic boundary conditions.

13



With respect to uniformity of the computations and communications in a data par-
allel implementation, it is desirable that the dissipation operators in matrix form have
constant bandwidth. We adopt the convention that 0° = 1. Thus, we need not treat
the zeroth moment separately. The most general form of the fourth-order dissipation
operator, subject to the constant bandwidth constraint, is

(874] a1 Q9

o B1 B2 Bs
1 -4 6 —4 1

1 —4 6 —4 1
IN-3 7YN-2 7YN-1 N
n—2 On-1 On

since we want to recover the operator given by (62) for a grid function with compact
support. Carrying out the summation over j in equation (60) and rearranging the terms
yields

%%2 bo(co- 07+ By - 17 +1 - 2P)

= %o

+ ¢1(a1.0P+51.1P_4.2P+1.3p)

+ ¢2(a2.01’+ﬂ2.lp+6.2P_4.3P+1.4P)

+ ¢3( 3.1P_4.2P+6.3P_4.4P+1.5P)

+ DL ilAcA)r (64)
+ ¢n-3 (V=5 —4(N —4)? + 6(N —3)P — 4(N — 2)" + yn_3(N — 1))

+ o2 (V= 4P = 4(N = 3)P + 6(N — 2)P + yv—o(N — 1) + én-2N?)

+ o1 (N =37 —4(N = 2)P + yv-a (N = 1) + 6§21 N7)

+ ¢ (N =2)P + v (N —1)P + 6y NP).

The coefficients following ¢, ¢3, ¢n_3 and dn_o become fourth-order differences if

=f3=YN-3=06ny_2=1
B2 = Yn—2 = —4.

Clearly, this choice is optimal for moment preservation, since ¢;[A+A_]?j? vanishes at
all interior points whenever p < 3. As for the boundaries, moments of order exceeding
one cannot be preserved, since there are only two unknowns in each stencil, with the

stencils containing three and four points, respectively. Preserving the zeroth and first
order moments yields

a0:6N:1
a1 =61 =98 = fo= 2
BIZ’YN—I:'Sa
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1 -2 1
-2 5 —4 1
1 -4 6 —4 1
D, = ST e (65)
1 -4 6 —4 1
1 -4 5 =2
1 -2 1

The null space of the interior operator is obviously a polynomial of degree less or equal
to three. To show this property the recurrence relation (62) is solved for a homogeneous
right hand side. For the solution to belong to the null space of the boundary operators,
the third and second order terms must vanish identically. Hence the null space of Dy
consists of polynomials of degree less or equal to one, the best possible with three point
boundary stencils. Finally [4]

N-1
$TDid = S [ALA_¢;) 2 0.

j=1
This inequality holds for the operator defined by (62) as well. Hence, the boundary
operator is also semidefinite. We have shown that moments of order p < 1 are preserved.
Increasing p implies the introduction of zeros in the first and last column, making the
operator indefinite (in any energy norm). Similarly, increasing the null space dimension
of (63) implies a loss of semidefiniteness. With respect to moments, null space dimension,
and definiteness the operator (65) is optimum.

Proposition 3.1 With respect to moments, null space dimension and definiteness the
optimal restriction of (62) to a finite grid with non-periodic boundary conditions is given

by (65).

3.2.2 A positive definite fourth-order dissipation operator.

To see how a positive definite dissipation operator affects the rate of convergence we
introduce the following operator (see also [8]):

5 —4 1
—4 6 —4 1
1 —4 6 —4 1
D, = L e e (66)
1 -4 6 —4 1
1 —4 6 —4
1 -4 5

This operator is obtained by deleting the first and last rows and columns of (65). This is
equivalent to prescribing Dirichlet boundary conditions.
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Proposition 3.2 The symmetric operator D, defined by equation (66) is positive definite,
t.e., it preserves no moments and its null space consists of only the null vector.

Proof
By straightforward arithmetic
B N-1
¢"Dadp = [2¢0 — $1)* + D [AL A4 + 265 — ¢na]® 2 0.
1=1

Hence, the operator is positive semi-definite. If ¢T Dy = 0, then each term must equal
zero, and

Gir2 — 2¢541 + @5 = 0,

which has the solution ¢; = o + B3, where o and f are determined by the boundary
conditions such that
{ ol = 2¢o

dn-1 = 2¢n

(5 ) (5)-()

Since N must be a positive integer, « = # = 0. Thus ¢; = 0,5 = 0,...N <= ¢ = 0.
Hence, Dy is positive definite. Since the column sum of the first column is different from
zero, the operator cannot preserve any moment. As Dy is positive definite, it follows that
zero cannot be an eigenvalue of (66); thus the only member of the null space is the null
vector. =

are satisfied, or

3.2.3 An indefinite, unsymmetric, fourth-order dissipation operator.

We also consider the non-symmetric fourth-order dissipation operator

o
N
Il
—~
D
]
-

Polynomials of degree less or equal to two constitute the null space of (67). Only zeroth
order moments are preserved ([4] or use equation (64)). Since the first diagonal entry is
zero, (67) is indefinite.
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3.2.4 Conservative and non-conservative dissipation operators.

The conservation property of the analytic Euler equations should be inherited by the
numerical scheme, especially for shock computations. Clearly, the operators (65) and (67)
are conservative (each row can be thought of as a first difference of something else). The
operator (66) is not conservative at the boundary point and at the first interior point. All
the operators are preceded by adaptive scaling factors (see (48)). Since the scaling factors
depend upon the mesh size as well as the solution itself, the conservation property of the
operators (65), (66) and (67) may be lost at every point. Furthermore, the definiteness
property may also be lost. But, as will be shown in the next section, the adaptive scaling
can be incorporated such that the dissipation operator is both conservative and positive
semidefinite.

3.2.5 Factoring the symmetric, positive semidefinite dissipation operator.

The dissipation operator D4 can be factored as

D4:D{D§,
where
/ 1
-1 1
—1 1
D] = . (68)
-1 1
—1 1
-1 1
1 =2 1
—1 3 -3 1
—1 3 -3 1
Df = el (69)
-1 3 -3 1
—1 2 -1
\ 0 0

The total artificial viscosity operator (in one space dimension) is
D; ¥Df¥, (70)

where
2 = di&g(EOUOIJOI_I) ‘e )ENO.N‘JNI_I)’

Here o}, €; and |J;|! are the one-dimensional equivalents of (52), (58) and (4), respec-
tively. Obviously, the operator is conservative.
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The above factorization corresponds to splitting the fourth-order operator [A_AL]?
into A_ and AyA_A,. Since A; and A_ commute, an alternative splitting is A} and
A_A;A_. To facilitate the formal manipulation of the matrix representation we use the
equivalent splitting —A; and —A_A;A4. In matrix notation

D, =D{D3,
where
1 -1
1 -1
1 -1
D} = (71)
1 -1
1 -1
1
0 0
—1 2 -1
1 -3 3 —1
D; = e, el T, (72)
1 -3 3 -1
1 -3 3 -1
1 -2 1

Note that D1+T = Dy. Using the factorization D, = D D3, the dissipation operator is
defined as

D ¥D; (73)
which also is conservative. Moreover,
where
0 0
-1 2 -1
D2: ‘.. '.. Te . (75)
-1 2 -1
0 0
This factorization yields the following fourth-order dissipation operator
D;D+¥D, (76)
which satisfies [4]
N-1
$7D; D} EDyg = (D;DF ) ZDs = 3 rjesl, 1 A4 AT
=1

18



Hence, this operator is positive semidefinite. It preserves the zeroth and first order mo-
ments, and its null space is all polynomials of degree less or equal to one. The analysis of
D; ¥DJ and DT ¥Dj is more involved and will not be carried out here. The operators
have different stability properties. Consider

¢'D;EXDi¢p = (D7XDi¢) D,é
¢'DfX¥D;¢ = (DfXD;¢)"D.4,
where
D; ¥Df¢ # D{¥Di¢

The first choice yields a stable scheme, whereas the second choice is unstable. The factor-
ization in (76) is the preferred choice. Table 1 summarizes the properties of the dissipation
operators.

Dissipation | Definiteness | Preservation | Dimension of
Operator of Moments Null Space
positive < first 2
Dy semidefinite order
positive none 0
D, definite
indefinite zeroth 3
Dy order
2
DI YD}
2
D} ¥D;
positive < first 2
D; DT XD, | semidefinite order

Table 1: Properties of the Dissipation Operators

3.3 Spatial Discretization

We have chosen a transformation between the physical and computational grids such that
Af = Anp = A( = 1, the origin of the physical coordinates coincides with the center
of the channel cross-section at the inflow boundary, and the range of the computational
coordinates is 0 < & < Ngy, 0 < < N, and 0 < (§ < N¢. Denote the cross-sectional
physical side lengths by L, and L,, and the physical channel length by L,. The complete
transformation between the computational and the physical grids (¢,9,¢) — (z,y,2) is

z = ¢ cos(w(()/Ne) — n'sin(w(()/Ne)
y = &sin(w(()/Ne) + n'cos(w(C)/Ne) (77)
z = (L./N
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where

£ = (28/Ne —1)L/2
{ V= Cr/N,—1) L2 8)
and
0 C € [OaCO)
w(¢) = { (3¢ — Co = 20)(¢ = ¢0)*(G1 = o)™ ¢ € [{o 1) - (79)
o ¢ € ¢, Ne]

w(¢) is a C'-spline on the interval [0, N¢]. Introducing this spline function enables a
Cl-grid transformation, which is such that the homogeneous inflow condition u =0, v =
0, w = wg, where u, v and w denote the Cartesian velocity components, yields continuous
velocity gradients even at the inflow boundary. The function w({) describes how the
twisting factor (angular frequency) increases from 0 to @ along the (-axis, which coincides
with the physical z-axis. We use

w= 27T/Nc.

All the metric coefficients are derived from (77), (78), (79) and

-1

Y & & & Teg Ty T

J'=1m n n | =% ¥n ve| - (80)
(z Gy s Ze 2Zp 2

3.4 Fourier Analysis

The explicit method limits the maximum size of the time step. To determine the upper
limit of the time step we analyze the linearized, one-dimensional, Euler equations. The
same analysis can be performed in three dimensions. Consider a uniform 1D-grid {¢;},7 =
0,..., N, where each ¢; belongs to the interval [0, L). Every function defined on the above
grid can be interpolated by a trigonometric polynomial [2]

s+ é- )
£6) = 3 cnexpln’2m)
where
6 =0,s=N/2 if N is even
§=1,s=(N—-1)/2 ifNisodd
and
N é-
6u = (V + 1715 (&) exp(—niom),
Jj=0

where ¢; = Lj/(N + 1), and N is even for simplicity. For a linear problem, it suffices to
consider one Fourier mode at a time. Moreover, in our computational domain A{ = 1,

which is formally obtained by setting L = N + 1. It is sufficient to consider solutions of
the form

q(é,7) = q(r)e™,
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where the wave number « is given by

2rn N N
= T = —— ey ™.
"TNYD 27

Consequently, x € (—m,7) (k € (—m, 7] if N is odd).

In three space dimensions the Fourier mode decomposition can also be obtained by

considering plane waves

q(éa 7, Ca T) = EI(T) expi(’ilé + Kom + "'33C)-
Using this expression in the semidiscrete, linearized Euler equations yields

8618_(:) = i(sin(k1)F + sin(k2)G + sin(x3)H)§(7).

which can be diagonalized as

20 i =0,
T
where
v; = sin(k))U + sin(kg)V  + sin(ks)W, j=1,2,3
vy = sin(k1)U 4+ sin(k2)V  + sin(ks)W
+ a[(sin(k1)éx + sin(k2)ne + sin(ks3)()? +
(sin(r2)fy + sin(ra)n, + sin(ro)Cy)? +
(sin(k1)é; + sin(k2)n. + Sin(’§3)Cz)2]1/2
vs = sin(k1)U 4+ sin(k2)V  + sin(ks)W
—~ al(sin(k1)é; + sin(k2)ne + sin(k3)(z)? +
(sin(m)éy + sin(ma), + sin(rs)y)? +
(sin(k1)é, + sin(ka)n, + sin(k3)(,)?]H?

(81)

(82)

(83)

The eigenvalues v;,j = 1,2,3,4,5 are constant, since F, G and H are constant operators

in space and time.

3.5 Time Discretization

A three stage Runge-Kutta method is used to integrate the semidiscrete Euler equations

in time. It belongs to a class of integration methods that can be written

G = G .
QG = QPGu+ o ATR(GS)
ah = Out amATR(élﬂl—l)
~ n+1 — ~.m

\ e = Y

(84)

The vector R is the right member of equation (46). For a three stage Runge-Kutta method
m = 3. The steady solution is independent of the coefficients «; and Ar. This property

21



also holds if A7 is replaced by a local time step A7J};. The coefficients a; can be looked
upon as acceleration parameters [3]. We have used oy = ay = az = 1. Applying this
Runge-Kutta scheme to (82) yields

¢t = G(v;AT)9",
where
G(v;AT) = 1 — (y;AT)? —i(v;AT — (;A71)°).
It suffices to consider only the diagonalized equation (82), since the Runge-Kutta scheme
results in a matrix polynomial of the right hand side of (81). It is irrelevant if we diago-

nalize (81) before applying the Runge-Kutta scheme, or after applying it. The stability
criteria |G(v;AT)| < 1,57 = 1,2,3,4,5 is equivalent to

lv;|AT < %(1 ++/5) = CFL, (85)

where CFL is the Courant-Friedrichs-Lewy number. From the Cauchy-Schwartz inequality
il <UL+ VI+ W]+ a(IVEl2+ [Vl + [V(2), 5 =1,2,3,4,5,
and (85) will hold if
CFL CFL
T< )
T+ VI + W]+ a(|VE + Vol + V() — o
where the definition of o in (86) is the same as in (52). For the real problem o varies in
space, but (86) provides a condition for the local time step at each point. Most stability
theorems assume uniform time steps, but interpreting the theorems locally often works

well in practice. Note however that local time steps are not acceptable for time-dependent
problems.

A

(86)

The linear analysis above is not sufficient. Stability cannot be obtained without ar-
tificial viscosity. The effect of the fourth-order artificial viscosity is to slightly shift the
spectrum of the discrete space operator into the left half of the complex plane. Lowering
the CFL-number slightly guarantees that |G(vAr7)] is strictly less than one. From Figure
3 it is evident that the shifted spectrum will remain in the stability region of the three
stage Runge-Kutta method, if the viscosity coeflicient is sufficiently small.

3.6 Numerical Methods, Summary

In summary, the Euler flow equations are based on the twisted grid as defined by equations
(77), (78) and (79), and the semidiscrete equations
O;u
or

= |3ul[D§Fju + DyGim + DSH ]
- ijl{@ﬁkl[Ai—Ag—]z + E?kl[AZ-AZP + Eﬁkl[AS-AC—P}éljkl (87)
+ o{ €A AL + G ATAT 4 & ALAS Y
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Figure 3: Stability Region of the Three Stage Runge Kutta Method

in non-conservative form and

04w _
or
_|_
+
_|_
or
0w _
or
_|_
+
_|_

[ jul{D§F s + D{Gw + D§Hm
AL ju| T ojmies AL AL AL 8]
AL Tul " omefn ATAT AL Gju]
AL | oS AL AL AL 8]
AL [Tl e AL &n]

ALl " ojm€ly AL ]

AT | ojraes AS ]

(88)

|31/ { DF j1 + D Gjxs + D5Hj
ALAL[|T | o ey AL AL &n]

ATAL il osne i AL AL iu)

ASAiHJJ’kz [—lffjlcl‘?;;sz(i Aiqikl]

AL [T il o€l AS dn]

AL 50 " osmef AL Gm]

AL jul ™ ojuesu AL dul)

(89)

in conservative form. Equation (89) has not yet been implemented. The reciprocal cell
volume at point jkl is computed from equation (3), F;u, Gju and H;y are given by
equations (6), (7) and (8). The vector §;u is given by equation (51), oju by equation (52),
g;u by equation (58), €jr by equation (56), and the difference operators for interior and
boundary points are given by equation (47). For boundary points higher order difference
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Figure 4: Entropy Distribution at Outflow Boundary, Operator Dy

operators are modified as defined by one of equations (65), (66) or (67) and by (75). For
the conservative form the fourth-order operator is modified according to equations (68)
and (69). The in- and outflow boundary conditions are defined by equation (21) and
by the discussion in section 2.2. At the solid boundaries the normal component of the
velocity field is zero.

4 Simulation results

The effects on the entropy distribution, the flow, and the convergence rate of the dif-
ferent dissipation operators for the Euler equations were studied for a twisted channel
of rectangular cross-section. The channel dimensions were 0.035 x 0.0175 x 0.140 m3.
The grid sizes ranged from 32 x 32 x 32 to 32 x 32 x 64, with the total number of grid
points ranging from 32,768 to 65,536 points. The demonstrated performance for a fully
configured Connection Machine system model CM~2 is 1.1 Gflops/s in single-precision.

Since no shocks are present, the flow must be isentropic throughout the channel,
provided that inflow data is isentropic. We compute the entropy as

—clog |l—>P
o= vlg[(v—l)fﬂJ’ (0)

which is valid for a polytropic gas [1]. Prescribing constant pressure and density at the
inflow boundary ensures that the inflow data is isentropic.

Figure 4 and Table 2 show how the entropy piles up at the solid walls for the operator
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Figure 5: Entropy Distribution at Outflow Boundary, Operator D; ¥D¢

D,. The entropy distribution for the operator DI"EI_)Z;" is shown in Figure 5. The scale
is the same in both figures. Table 2 also shows that D, and D, are entropy preserving.

An indication of the sensitivity of the dissipation operators to perturbations in the
inflow data can be obtained from observations of w at the outflow. We studied two cases:
completely irrotational inflow, and an inflow with a slight rotation. For the irrotational
flow the normalized inflow data is w = 0, v = 0 and w = 1. In the second test case
u # 0 and v # 0, but small, at the solid walls of the inlet. All interior points at the
inflow boundary are the same as for the irrotational case. From the contour plots it is
apparent that the choice of dissipation operator does affect the flow, even if the operator is
entropy preserving. Comparing the perturbed and the non-perturbed flows, we note that
the conservative operator D7 XD appears to be more stable than the non-conservative
operators Dy and Dy. In fact, Figures 8 and 11 indicate that Dy not is very robust.
Notice also that in Figures 10 and 13 the contour lines are unsymmetric at the corners.
The operator DT Df XD, does not have this behavior.

The convergence rate of the operator DT X D7 is the highest, Figures 6 and 7. Note
the significant change of the convergence rate for the operator D, for the irrotational
flow, and for the operators D4 and D, for the perturbed flow. The change in convergence
rate occurs after about 3,000 iterations in the first case, and about 1,500 iterations in the
second case. There is also a decrease in the rate of convergence of the operator D7 X DI
for irrotational flows at about 1,500 iterations. The convergence rate decreases by almost
a factor of two. The convergence properties are summarized in Table 3. The residual at
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step n is computed as
¥

0" = p" M2
[[07]]2

b

Dissipation Vorticity at Entropy | Entropy

operator inflow boundary Smin Stax
No 43.64 57.57

Dy Yes 43.56 57.68

No 46.67 46.86

Dy Yes 46.62 46.74

No 46.68 46.78

Dy Yes 46.58 46.73

No 46.76 46.94

D; XD Yes 46.73 46.84

Table 2: Entropy at Outflow Boundary

Dissipation Vorticity at Number of | Residual

operator inflow boundary | iterations

No 3900 5.8E-6

D, Yes 3900 6.8E-6

No 5800 6.6E-6

D, Yes 5400 6.6E-6

No 3900 5.8E-6

Dy Yes 5400 6.9E-6

No 3400 6.5E-6

D; ¥D¥ Yes 2800 6.7E-6

Table 3: Number of Iterations for the Dissipation Operators
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Figure 6: Rate of Convergence for the Different Dissipation Operators, Irrotational Inflow
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Figure 7: Rate of Convergence for the Different Dissipation Operators, Weakly Rotational Inflow
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5 Summary and Conclusions

We have shown that the non-conservative dissipation operator defined by (66) (see also
[8]) gives rise to a significant growth in entropy close to the solid walls of the channel,
and that the conservative operators do not have this behavior. We have also shown that
factorization of the dissipation operator proposed by Eriksson [4] as Dy X D3 results in
a higher rate of convergence than the unfactored operator, both for irrotational and per-
turbed inflows. The number of iterations for this operator is approximately 90% of those
for the dissipation operator defined by (66) in the irrotational case, and approximately
70% in the perturbed case. The stability of the different operators is not the same. The
operator DT XD3 appears to be most stable, whereas the operator D4 does not seem to
be robust.

The finite difference, explicit time stepping algorithm, parallelizes easily and perfectly.
A performance of 135 Mflops/s was obtained on a 8,192 processor Connection Machine
system model CM-2. The demonstrated performance for a fully configured system of
65,536 processors is 1.1 Gflops/s.
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