Yale University
Department of Computer Science

Approximation and Collusion in Multicast Cost

Sharing
Joan Feigenbaum* Arvind Krishnamurthy?
Rahul Sami® Scott Shenker?

YALEU/DCS/TR-1212
April 22, 2001

"Yale Univ., Computer Science, New Haven, CT 06520-8285, {jf, arvind, sami}@cs.yale.edu
2ACIRI/ICSI, 1947 Center Street, Berkeley, CA 94704-1198, shenker@icsi.berkeley.edu

Approximation and Collusion in Multicast Cost Sharing

Joan Feigenbaum* Arvind Krishnamurthy* Rahul Sami* Scott Shenker?

/

Abstract

We investigate multicast cost sharing from both computational and economic points of view. Re-
cent work in economics [MS97] leads naturally to the consideration of two mechanisms: Marginal Cost
(MC), which is efficient and strategyproof, and Shapley value (SH), which is budget-balanced and group-
strategyproof and, among all mechanisms with these two properties, minimizes the worst-case efficiency
loss. Subsequent work in computer science [FPS00] shows that the MC mechanism can be computed
by a simple, distributed algorithm that uses only two messages per link of the multicast tree but that
computing the SH mechanism seems, in the worst case, to require a number of messages that is quadratic
in the size of the multicast tree.

Here, we extend these results in two directions:

e We give a group-strategyproof mechanism that exhibits a tradeoff between the other properties
of the Shapley value: It can be computed by a distributed algorithm that uses significantly fewer
messages than the natural SH algorithm (exponentially fewer in the worst case), but it might fail
to achieve exact budget balance or exact minimum efficiency loss (albeit by a bounded amount).

e We completely characterize the groups that can strategize successfully against the MC mechanism.

Keywords: Approximation, Cost Sharing, Incentive-Compatibility, Internet Algorithms, Mechanism
Design, Multicast

*Yale Univ., Computer Science, New Haven, CT 06520-8285, {jf, arvind, sami}@cs.yale.edu
tACIRI/ICSI, 1947 Center Street, Berkeley, CA 94704-1198, shenker@icsi.berkeley.edu

1 Introduction

Despite their prominent role in some of the more applied areas of computer science, incentives have rarely
been an important consideration in traditional algorithm design where, typically, users are assumed either
to be cooperative (i.e., to follow the prescribed algorithm) or to be adversaries who “play against” each
other. In contrast, the selfish users in game theory are neither cooperative nor adversarial. Although one
cannot assume that selfish users will follow the prescribed algorithm, one can assume that they will respond
to incentives. Thus, one need not design algorithms that achieve correct results in the face of byzantine
behavior on the part of some users, but one does need algorithms that work correctly in the presence of
predictably selfish behavior. This type of “correctness” is a primary goal of economic mechanism design,
but standard notions of algorithmic efficiency are not.

In short, the economics literature traditionally stressed incentives and downplayed computational com-
plexity, and the theoretical computer science literature traditionally did the opposite. The emergence of the
Internet as a standard platform for distributed computation has changed this state of affairs. In particular,
the work of Nisan and Ronen [NR99] inspired the design of algorithms for a range of problems, including
scheduling, load balancing, shortest paths, and combinatorial auctions, that satisfy both the traditional
economic definitions of incentive compatibility and the traditional computer science definitions of efficiency.

One of the problems that has been studied is multicast cost sharing, and we continue the study here.
Specifically, we address the computational properties of the Shapley Value mechanism for multicast cost
sharing and the game-theoretic properties of the Marginal Cost mechanism. We state our results at the
end of this section, after a brief review of previous work and development of the necessary terminology and
notation.

Algorithmic mechanism design:. ¢

Nisan and Ronen [NR99] focused the attention of the theoretical computer science community on the
study of algorithmic mechanism design by adding computational efficiency to the set of concerns that must
be addressed in the design of incentive-compatible mechanisms. This emerging field of study lies at the
intersection of game theory, algorithmics, and distributed computing and is of great interest because of the
growth of Internet-enabled commerce, in which users are assumed to be selfish and responsive to well-defined
incentives. There are growing bodies of relevant literature on incentive-compatibility questions in distributed
computations in both theoretical computer science (see, e.g., [NR99, FPS00, NR00, Nis00, LN00, GHWO01,
GHO0, JVO01]) and the “distributed agents” part of AI [MT99, Par99, PU00, San99, ST, Wel93, WWWM].

[NR99] proposes the following (centralized computational) model for the design and analysis of algorithms
in which the participants act according to their own self-interest: There are n agents. Each agent 3, for
i € {1,...,n}, has some private information ¢!, called its type. For each mechanism-design problem, there is
an output specification that maps each type vector t = ¢1...¢" to a set of allowed outputs o € @. Agent i’s
preferences are given by a valuation function v that assigns a real number v(t?, 0) to each possible output
o.

A mechanism defines for each agent i a set of strategies A’. For each input vector (al,... ,a™), i.e., the
vector in which ¢ “plays” a* € A*, the mechanism computes an output o = o(al,...,a™) and a payment
vector p = (p',...,p"), where p* = p‘(al,... ,a™). Each agent therefore seeks to maximize v¢(‘,0) + pi.

A strategyproof mechanism is one in which each agent maximizes this quantity by simply giving his type t!
as input regardless of what other agents do.! Thus, the mechanism wants all agents to report their private
types truthfully in order to achieve optimal resource allocation, and it is allowed to provide incentives for
them to do so by paying them.

Succinctly stated, Nisan and Ronen’s contribution to the mechanism-design framework is the notion
of a (centralized) polynomial-time mechanism, i.e., one in which o(-) and the pi(-)’s are polynomial-time
computable. They also provide strategyproof, polynomial-time mechanisms for some concrete problems,
including shortest paths and task allocation.

IThe “solution concept” used in [NR99] and other papers on algorithmic mechanism design is dominant strategies. This
is not the only possible solution concept, but it is the most appropriate one for Internet computation. The reason for this is
beyond the scope of this paper; for a detailed discussion, see [FS97].

Network complexity of mechanisms:.

To achieve feasible algorithmic mechanisms within an Internet infrastructure, a centralized computational
model does not suffice. After all, if one assumes that massive numbers of far-flung, independent agents are
involved in an optimization problem, one cannot reasonably assume that a single, centralized mechanism can
receive all of the inputs and disseminate the output and payment values for each user in an efficient manner.
The first work to address this issue is the multicast cost-sharing paper of Feigenbaum, Papadimitriou, and
Shenker [FPS00]. This work puts forth a general concept of “network complexity” that requires a distributed
algorithm executed over an interconnection network 7' to be modest in four respects: the total number of
messages that agents send over 7' (ideally, this should be linear in |T'|), the maximum number of messages
sent over any one link in T" (ideally, this should be constant, to avoid “hot spots” altogether), the maximum
size of a message, and the local computational burden on agents.? This notion of network complexity allows
the mechanism designer to evaluate the feasibility of executing the algorithmic mechanism in a decentralized
setting. [FPS00] exercises the notion of network complexity by studying the communication requirements
of cost-sharing mechanisms for multicast transmissions. It suggests that a distributed algorithm should
have maximum message size poly(m,logn,log|T|), where m is the maximum size of a numerical input. All
algorithms considered here and in [FPS00] satisfy this constraint.

Multicast Transmissions:.

We use the following multicast transmission model, following [FPS00]: There is a user population P
residing at a set of network nodes N, which are connected by bidirectional network links L. The multicast
flow originates from a source node o € N; given any set of receivers R C P, the transmission flows through
a multicast tree T(R) C L rooted at o, and spans the nodes at which users in R reside. It is assumed that
there is a universal tree T'(P) and that, for each subset R C P, the multicast tree T'(R) is merely the minimal
subtree of T'(P) required to reach the elements in R.®

Cost-Sharing Mechanisms:.

Each link [€ L has an associated cost ¢(l) > 0 that is known by the nodes on each end, and each user
i assigns a utility value u; to receiving the transmission. A cost-sharing mechanism determines which users
receive the multicast transmission and how much each receiver is charged. We let z; > 0 denote how much
user 7 is charged and o; denote whether user i receives the transmission; o; = 1 if the user receives the
multicast transmission, and o; = 0 otherwise. We use u to denote the input vector (u1,ug,---) U pl). The
mechanism M is then a pair of functions M(u) = (z(u),o(u)). The receiver set for a given input vector is
R(u) = {i | 0; = 1}. A user’s individual welfare is therefore given by w; = o4u;—x;. The cost of the tree T'(R)
reaching a set of receivers R is ¢(T(R)), and the overall welfare, or net worth, is NW(R) = ug — ¢(T(R)),
where up = ;. pu; and ¢(T(R)) = ¥, er(r) (). The overall welfare measures the total benefit of providing
the multicast transmission (the sum of the valuations minus the cost).

A cost-sharing mechanism fits into Nisan and Ronen’s algorithmic mechanism design framework in the
following manner. The private type information is just the user’s individual utility for receiving the trans-
mission, t* = u;. The mechanism computes the output specification 0 = o and the payment vector p = —z
for the following valuation function: v(t,0) = # if o; = 1 and 0 otherwise. Each user seeks to maximize
v*(t,0) 4+ p* = oyu; — x4, which is the user’s individual welfare, w;.

A strategyproof cost-sharing mechanism is one that satisfies the property that w;(w) > w;(u|iy;), for all
u, i, and p;. (Here, (ul'w;); = uj, for j # 4, and (ul'y;); = p;.) Strategyproofness does not preclude the
possibility of a group of users colluding to improve their individual welfares. Any reported utility profile v
can be considered a group strategy for the group S = {i | v; # u;}. A mechanism M is group strategyproof
(GSP) if there is no group strategy such that at least one member of the strategizing group improves his

2The term “network complexity” does not appear in the preliminary version of this paper that is in the
STOC 2001 proceedings. It is defined in Section 2 of the forthcoming journal version, which is available at
http://cs-www.cs.yale.edu/homes/jf/FPS.pdf.

3This approach is consistent with the design philosophy embedded in essentially all current multicast routing proposals (see,
for example, [BFC93, DC90, DEF+96, HC99, PLB+99]). [FPS00] actually shows that the alternative, seemingly attractive
approach of finding net-worth-maximizing multicast trees in a general directed graph is computationally infeasible.

welfare while the rest of the members do not reduce their welfare. In other words, if M is GSP, the following
property holds for all S:

either w;(v) = w;(u) Vi € S

or 3i € S such that w;(v) < w;(u)

Following [MS97, FPS00], we also require the mechanism to satisfy the following three basic requirements:
No Positive Transfers (NPT): z;(u) > 0, or, in other words, the mechanism cannot pay receivers to receive
the transmission. Voluntary Participation (VP): w;(u) > 0; this implies that x; = 0 whenever o; = 0 and
that users are always free to not receive the transmission and not be charged. Consumer Sovereignty (CS):
o; = 1 if u; is big enough; this implies that the network cannot exclude any user who is willing to pay a
sufficiently large amount regardless of other users’ utilities.

In addition to these basic requirements, there are certain other desirable properties that one could expect
a cost-sharing mechanism to possess. A cost-sharing mechanism is termed efficient if it maximizes the overall
welfare, and it is said to be budget balanced if the revenue raised from the receivers covers the cost of the
transmission exactly.

It is a classical result in game theory [GKL76, Rob79] that a strategyproof cost-sharing mechanism
cannot be both budget-balanced and efficient. Moulin and Shenker [MS97] have shown that there is only one
strategyproof mechanism, Marginal Cost (MC), that satisfies the basic requirements and is efficient. They
have also shown that, while there are many group-strategyproof mechanisms that are budget-balanced but
not efficient, the most natural budget-balanced mechanism to consider is the Shapley value (SH), because
it minimizes the worst-case efficiency loss. The SH mechanism has the users share the transmission costs in
an equitable fashion; the cost of a link is shared equally by all users that receive the transmission through
the link.

Our Results:.

The foregoing discussion makes it clear that the computational and game theoretic properties of SH and
MC mechanisms are worthy of study. It is easy to see (and is noted in [FPS00]) that both are polynomial-
time computable by centralized algorithms. [FPS00] further shows that there is a distributed algorithm that
computes MC using only two messages per link. By contrast, [FPS00] notes that the obvious algorithm that
computes SH requires Q(|P|-|N|) messages in the worst case and shows that, for a natural class of algorithms
(called “linear distributed algorithms”), there is an infinite set of instances with |P| = O(|N|) that require
Q(|N|?) messages.

The game-theoretic properties of these mechanisms have also been studied. The MC mechanism is
known to be strategyproof but is vulnerable to groups of players colluding to improve their welfare. Previous
studies did not investigate the nature of collusion needed to succeed in manipulating the mechanism. The
SH mechanism, on the other hand, has been shown to be group strategyproof [MS97, M99].

In this paper, we extend previous results on the SH and MC mechanisms in two directions:

o We present a group-strategyproof mechanism that exhibits a tradeoff between the properties of SH: It
can be computed by a distributed algorithm that uses significantly fewer messages than the natural
SH algorithm (exponentially fewer in the worst case), but it might fail to achieve exact budget balance
or exact minimum efficiency loss (albeit by a bounded amount).

o We completely characterize the groups that can strategize successfully against the MC mechanism.

The rest of this paper is organized as follows. In Section 2, we present our group-strategyproof, communication-
efficient mechanism and explain why it can be viewed as a step toward the goal of “approximately computing
the SH mechanism” in a communication-efficient manner. In Section 3, we present our result on successful
collusion against the MC mechanism.

2 Towards approximating the SH mechanism

In view of the evidence given in [FPS00] that exact computation of the SH mechanism requires an unaccept-
ably large number of messages, it is natural to ask the following question: Can one compute an approzimation
to the SH mechanism using an algorithm that sends significantly fewer messages? To approach this question,
we must first say what it means to “approximate the SH mechanism” and specify exactly what we mean by
a “message.”

A multicast cost-sharing mechanism is a pair of functions (o, z). Thus, one may be tempted to define an
approximation of the mechanism as a pair of functions (¢’, z) such that o’ approximates o well (for each u,
these are characteristic vectors of subsets of P; so, we may call ¢’ a good approximation to ¢ if, for each u,
the Hamming distance between the vectors is small), and z’ approximates z well (in the sense, say, that the
LP-difference of z(u) and z’(u) is small, for each u, for some p). The mechanism (¢’,z’), however, would not
be interesting if its game-theoretic properties were completely different from those of (0,). In particular,
if (o', 2") were not strategyproof, then agents might misreport their utilities; thus, even if (o,z) and (¢/, ')
were, for each u, approximately equal as pairs of functions, the resulting equilibria might be very different,
i.e., (0'(v),2(v)) might be very far from (o(v), z(v)), where v is the reported utility vector when using the
approximate mechanism (o’,z'). Thus, we require that our approximate mechanisms retain the strategic
properties — strategyproof or group strategyproof — of the mechanism that they are approximating.4 In
addition, if the original mechanism has some property, such as budget balance or efficiency, that does not
relate to the underlying strategic behavior of agents but is an important design goal of the mechanism, then
we would want the approximate mechanism to approximate that property closely.

Thus, we must define “approximation of a multicast cost-sharing mechanism” not in terms of the closeness
of (¢/,2') to (o,z) but in terms of the desired game-theoretic properties properties.

The SH mechanism is group-strategyproof, budget-balanced, and, among all mechanisms with these two
properties, the unique one that minimizes the worst-case efficiency loss. We should therefore strive for a
group-strategyproof mechanism that has low network complexity and is approximately budget-balanced and
approximately efficiency-loss minimizing in the worst case. “Approximately budget-balanced” can be taken
to mean that there is a constant 3 > 1 such that, for all ¢(-), T(P), and u:

(1/8) - C(T(R(w)) £ Eierqw) #i(w) < B C(T(R(w)))

Similarly, “approximately efficiency-loss minimizing” can be taken to mean that there is a constant y>1
such that, for all ¢(-) and T(P), the worst-case efficiency loss is at most v times the worst-case efficiency
loss suffered by SH. We do not obtain such a mechanism here, but we do make some progress toward the
goal; our mechanism is group-strategyproof and fails to achieve exact budget balance and exact minimum
efficiency loss by bounded amounts, but the bounds are not constant factors. Furthermore, there is a natural
distributed algorithm that computes this mechanism using far fewer messages than appear to be needed for
SH computation.

Precise definition of “message”:

Throughout this section, we use the term message to mean O(1) numerical values, each of size at most
poly(m,log|P|,log |N|), where m is the maximum size of a numerical input, i.e., a utility value u; or a link
cost ¢(l). (The size of a value is simply the number of bits needed to write it down.) Recall that this is an
acceptable maximum message size, according to the criteria put forth in [FPS00]. Our algorithms will require
network nodes to send functions to other network nodes, and these functions will be specified either by their
values at O(|P|) points or by their values at O(log|P|) points. When a node sends such a specification, it
adds O(|P|) messages (resp., O(log |P|) messages) to the network complexity of the algorithm. This use of
the term “message” is consistent with its use in [FPS00]. Note that the network complexity is the same for

4One could relax this requirement to consider mechanisms in which the strategic behavior required to manipulate the
mechanism is “hard to compute” [NROO] or for which the effects of strategic manipulation are completely characterizable and
deemed to be tolerable. We have not pursued either of these lines of inquiry in this section. We turn to the question of
characterization of strategic manipulations in Section 3 below.

N

an algorithm that sends a set of numerical values simultaneously as it is for one that sends each value in the
set separately; this is necessary if the notion of “network complexity” is to require that both the number of
messages and the size of messages be modest.

Previous work on approximation in algorithmic mechanism design:

Nisan and Ronen [NROO] were the first to address the question of approximate computation in algorithmic
mechanism design. They considered Vickrey-Clark-Groves (VCG) mechanisms in which optimal outcomes
are NP-hard to compute (e.g., combinatorial auctions). They pointed out that, if an optimal outcome
is replaced by a computationally tractable approximate outcome, the resulting mechanism may no longer
be strategyproof. The above discussion of how we should define “approximating the SH mechanism” and
why approximating the pair of functions (o, z) is not sufficient is based on the analogous observation in
our context. [NROO] approaches this problem by developing a notion of “feasible” strategyproofness and
describing a broad class of situations in which NP-hard VCG mechanisms have feasibly strategyproof ap-
proximations. This approach is not applicable to SH-mechanism approximation for several reasons: SH
is not a VCG mechanism; we are not seeking an approximation to an NP-hard optimization problem but
rather a communication-efficient approximation to an apparently communication-inefficient, but polynomial-
time computable, function; we are interested in network complexity in a distributed computational model,
and [NROO] is interested in time complexity in a centralized computational model. Approximate multicast
cost-sharing was first addressed by Jain and Vazirani [JV01]. They exhibited a group-strategyproof, ap-
proximately budget-balanced,® polynomial-time mechanism based on a 2-approximation algorithm for the
minimum Steiner-tree problem. Their approach is also not applicable to SH-mechanism approximation,
because they are concerned with time complexity in a centralized computational model, their network is a
general directed graph (rather than a multicast tree, as it is in our case), and they are not attempting to
approximate minimum worst-case efficiency loss. Finally, “competitive-ratio” analysis (a form of approxi-
mation) has been studied for a variety of strategyproof auctions [GH00, GHWO1, LNO00]. In Section 2.1,
we review the natural SH algorithm given in [FPS00]. In Section 2.2, we give an alternative SH algorithm
that also has unacceptable network complexity but that leads naturally to our approach to approximation.
In Sections 2.3, 2.4, and 2.5, we define a new mechanism that has low network complexity, prove that it is
group-strategyproof, and obtain bounds on the budget deficit and the efficiency loss.

2.1 The natural multi-pass SH algorithm

The Shapley value mechanism divides the cost of a link I equally between all receivers downstream of I. The
mechanism can be characterized by its cost-sharing function f : 2P — RE; ([MS97, M99]). For a receiver
set R C P, player i’s cost share is f;(R). -

[FPS00] presents a natural, iterative algorithm to compute o;(u) and z;(u) for the SH mechanism, using
this cost sharing function f. We restate it here:

First, set Ul(l)(u) = 1for alli € P. In the kth iteration, start with a set of receivers R(®) (u) = {i[agk) =1}
Then, perform one pass up and down the tree. In the upward pass, compute for each link ! the number of
players in R(*) (1) downstream of [. In the downward pass, compute the cost shares ¥ (u) = f;(R®) (u)) by
adding up the cost shares for each link in the path from each receiver to the root. Then, drop any player in
R™¥) (4) who cannot afford his cost share, i.e., set O',EIH_I)(’U,) =1iff O'z(k) (v) =1 and :vgk) < u;. This process
converges in a finite number of iterations, and the resulting values of z(u) and o (u) define the mechanism.

Unfortunately, this algorithm could make as many as Q(|N|) passes up and down the tree and send a
total of Q(|N]-|P|) messages in the worst case. Moreover, [FPS00] contains a corresponding lower bound for
a broad family of algorithms: There is an infinite class of inputs, with |P| = O(|N|), for which any “linear
distributed algorithm” that computes SH sends Q(|N|?) messages in the worst case.

5The [JVO01] definition of approximate budget balance is more stringent than the one we suggest in this section; it does not
allow a budget deficit (and also requires, as ours does, a constant-factor bound on the budget surplus).

T m%ew

Number of players

0

Price p
Figure 1: The function n.(p,v) computed for each edge e

2.2 A one-pass SH algorithm

Our first step toward a more communication-efficient mechanism that has some of the desirable properties
of SH is to present a distributed algorithm for SH that makes just one pass up and down the tree. This
algorithm still sends Q(| P|) messages (simultaneously) across each link in the worst case; so the total number
of messages is still Q(|N|- |P]), and thus the mechanism is not directly usable. However, we show in Section
2.3 how approximating the functions communicated in this one-pass SH algorithm leads to a new mechanism
that can be computed by sending O(|N| - log | P|) messages total and has other desirable properties.

Let v be the (reported) utility profile. Then, for every edge e in the tree, we compute the following
function:

n.(p,v) def the number of players in the subtree beneath e who are each willing to pay p for the links above e
(i.e., the number of players in this subtree who will not drop out of the receiving set when their cost share
for the link edges from the root down to but excluding e is p) .

(We put the utility profile v in explicitly as an argument to allow us to prove group-strategyproofness
later; however, in any one run of the algorithm, v is fixed.)

Note that this definition requires that the cost from the leaves through e has already been adjusted for.
A single definition is sufficient for this purpose, because the SH mechanism does not distinguish between
receivers downstream of e when sharing the cost of e or its ancestors; all such receivers pay the same
amount for these links. For each edge, we compute this function at all prices p. The function ne(p,v) is
monotonically decreasing with p, and, for any given utility profile v, can be represented with at most |P|
points with coordinates (p;,n;) corresponding to the “corners” in the graph of n.(p,v) in Figure 1. We use
this list-of-points representation of n(p,v) in our algorithm.

The statement of the multicast mechanism problem allows for players at intermediate (non-leaf) nodes;
however, to simplify the discussion, we can treat each of these players as if it were a child node with one
player and parent edge-cost zero. Thus, we assume, without loss of generality, that all players are at leaf
nodes only.

The function n.(p,v) is computed at the node a. below e in the tree. The computation is easy if a. is
a leaf node, because one can sort the utilities of the players at ., divide the cost C. between the highest
1,2,---k players at this node, and compute the unspent utility in each case.

If a, is not a leaf node, we have to include the functions reported by child nodes in this calculation.
Suppose we are at node a and have received the functions ne, (p, v) from all the child edges E = {e}, ez, - €,}
of e. We can compute n.(p,v) in two steps:

e Step 1: First, we compute a function
T
me(pa U) = Z Tle,; (p7 'U)
i=1

Intuitively, me(p, v) is the number of players beneath e who are willing to pay p each towards the cost
from the root down to (and éincluding) e. This is apparent from the definition of ., (p, v). If each
ne,(.) is specified as a sorted list of points, we can compute me(.) by merging the lists and adding up
the numbers of players.

e Step 2: Now, we have to account for the cost C of the link e to compute the function n(p, v). For
any p such that pme(p,v) > Ce, we have

Ce

m’v) 2 me(l’:”): (1)

ne(p —

because the me(p, v) players who were willing to pay p for the path including e can share the cost of
e. Equation 1 need not be a strict equality because it is possible that, for a price ¢ < p, the larger set
of size me(q, v) has

e Ce

- >p—
me(@,v) =7 me(p,v)

q

and so could also support the price p’ = p — (Ce/me(p,v)) each for the links above e. However, the
value of n.(p,v) must correspond to m.(p',v) for some p’ > p, because every player beneath e who
receives the transmission pays an equal amount for the edge e. It follows that

Ne (pa ’U) = max Me (p/’ 1)) (2)
{p/_ me(c;’) 2p}

When the RHS of Equation 2 is undefined, n(p,v) = 0. Given a list of points (p(, m®) corresponding
to me(.), we can compute ne(.) through the following procedure: For each point (D, m®), we get the
transformed point (p* — (C,/m(®), m®). We then sort the list of these transformed points and throw
away any point that is dominated by a higher m; at the same or higher price.

In this manner, we can inductively compute n.(.) for all edges, until we reach the root. At the root,
we can combine the functions received from the root’s children to get Mroot(-) Because there are no further
costs to be shared, it follows that there are m = m;0t(0,v) players who are willing to share the costs up to
the root. Also, there is no set of more than m players that can support the cost up to the root, and so m is
the size of the unique greatest fixed-point set computed by the Shapley value mechanism.

Now, we have to compute the prices charged to each player. Assuming that the nodes have stored the
functions n.(.) on the way up the tree, we compute the prices on the way down as follows: For each edge
e, we let z. be the cost share of any receiver below e for the path down to (but not including) e. Then,
Troot = 0 and, if e has child edges e, eq, - - - e,

Ce
Te, = Te + ;L;(.”Ile—,w (3)

We descend the tree in this manner until we get a price z; for every player i. Then, we include i in R(v) iff
z; < v, and if included 7 pays z;.
The following two lemmas show that this one-pass algorithm computes the SH mechanism.

Lemma 1 The outcome computed by this algorithm is budget-balanced.

Proof: By definition, there are exactly ne(z.,v) ﬁlayers beneath e who can pay z. for the path down to
but excluding e. It follows that

Znei (%4,v) = me(24,v) = Ne(Te, v)

Using this inductively until we reach the leaves, we can show that there are n.(ze,v) players downstream of
e in the receiving set chosen by the algorithm, i.e., with z; < v;. Equation 3 then shows that the cost of
each edge is exactly balanced, and hence the overall mechanism is budget balanced. O

Lemma 2 The receiving set computed by this algorithm is the same as the receiving set computed by the
iterative Shapley value mechanism.

Proof: By Lemma 1 we know that the set R(v) constructed can bear the cost of the transmitting to R(v).
Let R(v) be the receiving set chosen by the iterative Shapley value mechanism. Because R(v) is the greatest
fixed point, R(v) 2 R(v).

We show that R(v) = R(v) as follows: let Z.(v) be the cost shares of individual receivers for the path
down to but excluding e corresponding to the receiver set R(v). Let 7. (v) be the number of receivers below
e in this outcome. By induction, we can show that Steps 1 and 2 of the algorithm described in this section
maintain the property

Ne(Te(v),v) 2 e (v)

Because this is true at the root, it follows that |R(v)| > |R(v)|. Hence R(v) = R(v). mi
The two algorithms (one-pass and iterative) are both budget-balanced, with the same receiver set and
the same cost-sharing function; thus they both compute the SH mechanism.

2.3 A communication-efficient approximation of ne(-)

The algorithm for the Shapley value mechanism described in the previous section makes only one pass up
and down the tree. However, in the worst case, the function n.(.) passed up edge e requires | P| points (p;, n;)
to represent it, which is undesirable.

We can achieve an exponential saving in the worst-case number of messages by passing a small approx-
imate representation of n.(.) instead. What should this approximation look like? Firstly, we would like
to underestimate n.(.) at every point so that we can still compute a feasible receiving set in one pass.

For each edge e, instead of ne(p,v), the mechanism uses an under-approximation i (p,v). The approx-
imation we choose is simple and is illustrated in Figure 2. For some parameter o > 1, we round down
all values of n(p,v) to the closest power of c. The resulting function 7i.(p,v) has at most (log|P|/loga)
“corners,” and so it can be represented by a list of O(log |P|) points.

We compute 7i.(p, v) by using the following modified versions of Steps 1 and 2 of the one-pass algorithm:

e Step 1’: Compute

me(p, U) = Z Tle, (P, ’l))

(This step is unchanged - we do an exact summation - but the input functions are approximate.)
e Step 2’: First, adjust for cost C, as before

fe(p,v) = { max 1he(p',v)
P =y 2P

me(p’,v)

Then, approximate the function i (.) by 7. (.):

e (p,v) = ol108a fie(psv)]

.. 6
«
e | L— n(pv)
g, S ...a5
a ne(p,v)
G
S b
O e
E
S5 |
Zoo | k=
o
0 Price p

Figure 2: Approximation to ne(p,v).

With the list-of-points representation, this is easily done by dropping elements of the list that do not
change 7ie(p, v).
On the way down, we compute
Ce
xe,- = we + - 7N
e (Ze, V)

We now have a situation in which the number of receivers i downstream of edge e is potentially greater
than fi(z.,v), because 7(.) is an under-approximation. Define a mechanism (called Mechanism SF, for
“step function”) by including all the potential receivers and making receiver i pay z; as before. Note that
mechanism SF does not achieve exact budget balance - there may be a budget surplus.

2.4 Group strategyproofness of mechanism SF

Notation
Throughout this section, we use u = (uy,us, -+ ,un) to indicate the true utility profile of the players. Recall
that v[*r; denotes the utility profile (vy,va -+ ,vi_1,74,Vit1,- - ,p), i.e., the utility vector v perturbed by

replacing v; by ;.

Now, let v be the reported utility profile. Then S = {i | u; # v;} is the strategizing group. This strategy
is successful if no member of S has a lower welfare as a result of the strategy, and at least one member has
a higher welfare as a result of the strategy:

VieS wi(v) > w;(v)

3j € § such that w;(v) > w;(v)

We prove that mechanism SF is group strategyproof in three steps: First, we prove that, if there is a
successful (individual or group) strategy, there is a successful strategy v in which all colluding players raise
their utility 4.e. v; > u;. This is intuitive, because if a player receives the transmission, she is not hurt
by raising her utility further. Next, we show that a receiver has no strategic value in raising her utility: if
z; < u; <5, then the outcome of the mechanism is unchanged in moving from strategy v to v|fu;. Finally,
we combine these two results to show that a successful strategy against mechanism SF cannot exist.®

For the first part, we formalize our argument that it is sufficient to consider strategies in which all
members raise their utilities. The key to this is showing that the following monotonicity property holds:

5We also have an alternate proof of this result that first shows that mechanism SF can be described in terms of an underlying
cross-monotonic cost-sharing function and then relies on the result in [M99] that all such cost-sharing mechanisms are group-
strategyproof. For space reasons, we give only the more direct proof here.

10

Lemma 3 Monotonicity: Let u be a utility profile and v be the perturbed ;broﬁle obtained by increasing
one element of u (v = ul'v;, where v; > u;). Then, the following properties hold:

(1). Ve,x Tie(x,v) > fie(z,u)
(ii). Vj € P zj(v) < zj(u)
(ii). R(v) 2 R(u)
(Here xj(v) is the ask price computed for player j in the downward pass.)

Proof: Note that our approximation technique has the property that, if A, (z,v) > fie(z,u), then fi.(z,v) >
fie(z,u). Statement (7) is then immediately true at the leaves and follows by induction at non-leaf nodes.
Because the cost of any link e is divided among 7ie(z, v) players, statement (i3) follows from statement (3).
Finally, because the utilities are the same (or higher in the case of player j), statement (4i) implies statement
(iii). u]

Lemma 3 suggests that, for any successful strategy v, we can get a successful strategy v’ by raising v;
to u; whenever v; < u;. However, we first have the technical detail of eliminating non-receivers from the
strategizing group:

Lemma 4 Let v be a strategy for group S. Suppose i € S and i ¢ R(v). Let v’ be the strategy v|'u;. Then,
z;(v') > z;(v) for all j € P.

Proof: Since i ¢ R(v), z;(v) > v; > u;. (When v; < u;, the statement follows directly from Lemma 3.) We
can show inductively that fie(z.(v),v’) = fie(ze(v),v) and the statement follows.]
Combining the last two results, we get our result:

Lemma 5 Suppose a group S has a successful strategy v. Further, assume that all members of S receive the
transmission with strategy v. Then, S has a successful strategy v’ where v} > u;.

Proof: By lemma 4, we can assume that all members of S receive the transmission with strategy v. Define
a sequence of strategies

v =@ M) (=1 4m)

where v(*) = vE=D Ry if wy, > vy, v®) = v(*=1) otherwise. The monotonicity property implies that if
v*=1) is a successful strategy, so is v(®.]

Now, we prove that, if a receiver 7 raises his utility, the solution is not altered:

Lemma 6 Let u be a utility profile and let v be the perturbed profile obtained by increasing one element of
u (v =ul|'v;, where v; > u;). If u; > x;(u), then

Ve,V < ze(u) fie(z,v) = fie(T,u)

Proof: It is obviously true at the leaves, because the utility v; only affects the value of Tieas(.) at prices
above u; > x;. (This is a result of our pointwise approximation scheme; not all approximations would have
this property.) Also, because of the monotonically decreasing nature of 7i(.), this property is maintained by
Steps 1’ and 2’ as we move up the tree. . O

A corollary of lemma 6 is that, when the conditions of the lemma hold, the output of the mechanism is
identical for inputs u and v. This follows from the fact that fi.(.) is not evaluated at prices above z,(u) on
the way down, and so inductively z.(v) = z.(u) for all edges e. Hence, each player gets the same ask price
fEi('l)) = LCZ(U,)

We can now prove the main result:

11

Theorem 1 Mechanism SF is group strategyproof.

Proof: Assume the opposite, i.e., that there is a successful group strategy against mechanism SF. Then,
by lemma 5, there is a group strategy v for some set S, where every member of S receives the transmission
after the strategy. Define the sequence of strategies:

v =0© 41 =D)y,

where v(*) = y(6=D by, Tt follows from lemma 6 that if v(*=1) is a successful strategy for S, so is v(¥). This
implies that u is a successful strategy, which is a contradiction. O

2.5 Bounds on budget deficit and efficiency loss

In this section, we present a simple modification of mechanism SF, called SSF (for “scaled SF”), and prove
bounds on its budget deficit and loss of net worth with respect to the SH mechanism. This mechanism works
as follows:

Mechanism SSF:

Let h. be the height of link e in the tree. Then, define the scaled cost C*(e) of the link e to be C(e)/(al).
Run mechanism SF assuming link costs C%(e) instead of C(e), to compute a receiver set R*(u) and cost
shares z¢(u).

Lemma 7 Mechanism SSF is group strategyproof.

Proof: The player’s utility does not affect the scaled costs, and mechanism SF is group-strategyproof for
any tree costs.) O
Let R(u) be the receiver set in the (exact) Shapley value mechanism. We now show that R*(u) D R(u).

Lemma 8 Let fig(x,u) be the surplus utility distribution computed by mechanism SSF. Let ne(z,u) and z.
be defined as in the exact Shapley value algorithm. Then,

Ne(Te,u)

Ve ng(Te,u) > o

Proof: We prove the statement by induction on h.. For h, = 1 (a leaf edge), it is true because of our
approximation method. Suppose the statement is true for all edges of height no more than r, and h, = r+1.
Let {e1,e2,..ex} be the child edges of e. By the inductive assumption, A (z,u) > (ne, (e, u)/a. It follows
that

3
ﬁlg(mei,u) = Zﬁ?i (xewu) (4)
i=1
Ne(Te, w)
> o ~ (5)

From the computation of the ask prices z. and z.,, we know

Ce
LTe = Te, + ————
Ne(Te, u)
Let
COL
o O
me (mei) u)

Then, 2’ > z, follows from 5. Also, following Step 2’ of mechanism SF, we have
gz u) = Mmg(ze,,u)

and because &' > z., 1% (z,,u) > A¢(z',u). Finally, in passing from A%(.) to #%(.), we get

~ N (Te, u
8 (xe,u) > UACR0)
o
_ Ne(Tes u)
fig (Te,u) = oﬂ—+,1
And thus the statement is proved by induction. a

Lemma 9 R*(u) 2 R(u).
Proof: Using Lemma 8,

Coe) __C(e)

A% (Te,u) ~ Me(Te,u)

and we can show inductively that & < z, for all links e. Because this is true at the leaves, it follows that
R*(u) 2 R(u)]

Bounding the budget deficit:. Unlike mechanism SF, which is balanced or runs a surplus, mechanism
SSF may generate a budget deficit (but never a surplus). However, the deficit (as a fraction of the cost) can
be bounded in terms of « and the height h of the tree:

Theorem 2
OTR W) - $~ 4oy < or(re@)

ah
1€R*(u)

Proof: Let X = 3, pa(,) 7{(u). Because mechanism SF never runs a deficit, X > C%(T(R%(u))) >
C(T(R%(u)))

Tahe right-hand side inequality can be proved by induction on the tree height. O
Bounding the worst-case efficiency loss:. Let 7% and T be the multicast trees corresponding to the
receiver sets R%(u) and R(u) respectively. Then, T* can be written as a disjoint union of trees, T® =
TUTUTpU---UT,. The corresponding relation for the receiver set is R*(u) = R(u) UR,URyU---UR,,
where R; is the subset of players in R*(u) who are attached to some node in T;. Some of these subtrees may
have negative efficiency, and so the overall efficiency of the SSF mechanism may be less than the efficiency of
the Shapley value. However, we can bound the worst-case efficiency loss (with respect to the exact Shapley
value) in terms of the total utility U =), p u;:

Theorem 3
NW(R*(w)) > NW(R(u)) - (" — 1)U

Proof: The efficiency of the receiver set R*(u) is

NW(R*(w) = Y u;—C(T(R*(u)))
1€R>(u)
- NW(R(u))—f—iNW(Rj)
j=1

13

Now, for any subtree T} of T%,

C(1})

L = NW(T) 2 —(ah -)U(T))

U(Ty) =Y uwi > C*Ty) >
€Ty

and hence

NW(R*(w) = NW(R(u)-(a"-1)) U(T))
j=1
NW(R*(u)) NW (R(u)) = (o =)U(R*(u))

>
> NW(R(u) - (" - 1)U

O

To summarize, Mechanism SSF uses O(log, n) messages per link, incurs a cost of at most o times the
revenue collected, and has an efficiency loss of at most (a® — 1)U with respect to the SH mechanism.

For example, when |P| = 100,000 and h = 5, the best algorithm known for the SH mechanism would
require about 100,000 messages per link in the worst case. Setting oo = 1.03, mechanism SSF requires fewer
than 400 messages per link, has a budget deficit of at most 14% of the tree cost, and has a worst-case
efficiency loss of at most 16% of the total utility. As another example, when |P| = 10® and h = 10, we can
use a = 1.02 to achieve a worst-case deficit of 19%, and worst-case efficiency loss of 22% of the total utility,
with 700 messages per link or use o = 1.04 to obtain corresponding bounds of 33% and 48% with about 350
messages per link. ‘

3 Group strategies that succeed against the M C mechanism

[FPS00] gives a low-network-complexity algorithm for the Marginal-Cost mechanism for multicast cost shar-
ing. The algorithm itself highlights interesting features of the mechanism, which we describe here:

Given an input utility profile u, the receiving set is the unique mazimal efficient set of nodes. To compute
this set, for each node n € N, we recursively compute its welfare W(n) as

Wmy=| > W |-c.

ceC(n)
W(c)>=0

where C'(n) is the set of children of n in the tree and C, is the cost of the edge linking n to its parent node.
Then, the maximal efficient set R(u) is the set of all players i such that every node on the path from i to
the root has nonnegative welfare.

Another way to view this is as follows: The algorithm partitions the node set N into a forest F(U) =
{Th(uw), To(u), -+ ,Tx(uw)}. An edge from the original tree is included in the forest iff the child node has
nonnegative welfare. This is illustrated in Figure 3. R(u) is then the set of players at nodes in the subtree
T1(u) containing the root.

Once F(u) has been computed, for each player i, define X (i,u) to be the node with minimum welfare
value in the path from 4 to its root in its partition T;(u). Then, the payment z;(u) of each player 7 is defined
as

zi(uw) = max(0,u; — W(X(i,u))) Vi€ R(u)
zi(u) = 0 Vi ¢ R(u)

14

N = { A,B,C,D,E,F,G,H} — Edge in F(u)
P={12,34567)
R(u) = {4,5,7}

- - -> Edge not in F(u)

Figure 3: Forest induced by MC mechanism

If there are multiple nodes on the path with the same welfare value, we choose X (i,u) to be the one among
them nearest to ; this does not alter the payment, but it simplifies our later results on when a coalition
can be successful. We will use this characterization of the receiving set and payments in terms of F(u) and
X (i,u) in our analysis of group strategies against the MC mechanism.

Recall that a strategy v for a group S is a successful group strategy at a given utility profile u if
Vi € S w;(v) > wi(u), and w;(v) > wj(u) for some j € S. In other words, a successful group strategy is one
that benefits at least one member of the coalition and harms none of the members of the coalition. If the
group S has only two members, we call it a successful pair strategy.

It is well known that the MC mechanism is not group strategyproof for the multicast cost-sharing problem.
However, it isn’t clear in general which forms of collusion would result in successful manipulation. Here we
examine this in detail by asking two questions. First, for which utility profiles is MC group strategyproof?
Second, for a utility profile u where MC is not GSP, what do the successful strategies look like?

These questions suggest a general line of inquiry within algorithmic mechanism design that is worthy
of further study. Recall that, in our discussion in Section 2 of what it means to “approximate the SH
mechanism,” we insisted that an approximate mechanism be group-strategyproof. We noted, however, that
some form of “approximate group-strategyproofness” might be acceptable. That is, one may be quite willing
to deploy a mechanism that is known not to be group-strategyproof if the groups that could strategize
successfully and their effects on the other parties and resources involved were precisely characterizable and
deemed to be acceptable. For example, in multicast cost sharing, a multicast-service provider may be willing
to use such a mechanism if successful groups did not cut deeply into his profits. Our results on the MC
mechanism cannot be put to practical use in this way, but they exemplify a type of characterization that,
for other mechanisms, may be usable in practice.

Preliminaries. To start with, we restate two lemmas from [MS97] that we use repeatedly.
Let u be the true utility profile, and let v’ = ul*u] i.e. the ith player reports a different utility, everyone
else is truthful. If u} > u;, then

Lemma 10 (no other player is hurt)

wi (W) 2 wyw) Vi A

15

Further, if player i would have received the service with his truthful utility (¢ € R(u)), then

Lemma 11 (player i is not hurt by raising his utility)

i€ R(u) = z;(u) = zi(u)

From these results, we can prove that we only need to consider strategies in which players increase their
reported utility:

Lemma 12 Let u be the true utility profile, and let v be a reported utility profile. Define a strategy v’ by
v; = max(v;, u;)
Then, for alli € P, w;(v') > w;(v).

Proof: We can increase the elements of v one at a time, and at each stage use Lemma 10 and the strate-
gyproofness of the mechanism to show that no player’s utility is reduced.]

The definition of a successful strategy under GSP allows some members of the coalition not to receive
the broadcast. To avoid complicating the later proofs, we prove that setting the utility of any zero-welfare
player to 0 does not reduce the welfare of any other player.

Lemma 13 Let u be the true utility profile. Let v be the reported utility profile, and require that Vi v; > u;.
Also assume that no player has negative welfare with this stmtegy:.wi(v) > 0. Let j € P be such that
J & R(v) or zj(v) =v;. Then, if we construct a utility profile v' = v|?0 by setting utility of j to 0,

w;(v') = wi(v) VieP

Proof: Note that W(P,v') = W(P — j,v). If j ¢ R(v), then j ¢ R(v'). The definition of MC payment for
player i is

z;(v) = v; = W(P,v) + W(P —i,v) (6)
By submodularity of cost, which implies supermodularity of welfare surplus [MS97, page 13],
W(P,v) — W(P — j,v) > W(P—i,v) —W(P -3 —1i,v)
If j ¢ R(v), then the LHS is 0. If j € R(v), then
zj(v) =v; = W(Pv)-=W(P—-jv)=0

Therefore, in either case, the LHS of Equation 6 is 0 implying its RHS is also 0, so equality holds. Rearranging
terms gives us

W(P,v) — W(P —i,v) = W(P - j,v) = W(P—j —1i,v) (7
Consider three cases:

e Case 1: i € R(v) and z;(v) < v;
In this case, Equation 7 implies that i € R(v') and z;(v) = z;(v')

16

e Case 2: i € R(v) and z;(v) = v;
If i € R(v'), then as in Case 1 z;(v) = z;(v'). If i ¢ R(v'), then w;(v') = 0. By assumption, v; > u;
and so w;(v) < 0. But we also assumed that w;(v) > 0, w;(v) = 0.

e Case 3: i ¢ R(v)
Then, i ¢ R(v') and w;(v) = w;(v") = 0

In all three cases, w;(v) = w;(v'). a

Suppose a group S has a successful strategy v. Through repeated application of Lemma 12 and Lemma, 13,
we can construct a successful strategy v’ for a subset S’ of S, such that every member of S’ receives positive
welfare:

Lemma 14 For a true utility profile u, suppose coalition S has a successful strategy v. Then, there exists
S' C S, such that S’ has a successful strategy v' and Vi € S" w;(v') > 0.

Proof: By Lemma 12, we can assume v; > u;, and hence the conditions of Lemma 13 hold. First, suppose
that S had only one member j such that w;(v) = 0. Then, setting S’ = S — {j}, v' = v[7u;, we can use
Lemma 13 and Lemma 10 to show that v’ is a successful strategy for S’, and no member of S’ has zero
welfare with this strategy.

In the general case, when there are multiple members of S with zero welfare, we can repeatedly apply
this construction and show that the number of zero-welfare members of the coalition decreases with each
iteration. O

This result allows us to restrict our attention to coalitions in which every member of the coalition has

positive welfare (and hence receives the transmission) after the successful strategy.

Theorem 4 Let u be the true utility profile, and let P'(u) C P be the set of players who do not mazimize
their welfare at u: P'(u) = {i € P | w;y(u) < u;}. Then, the MC mechanism is GSP at utility profile u iff for
every player i € P’ the following condition is satisfied:
There is no player j in the same component of F(u) as i such that j is in the subtree
rooted at X (4,u).

Proof: If part: Assume the conditions of Theorem 4 hold. Suppose S was a set of players with a successful
strategy v. By Lemma 14, we can choose S and v such that every member of S has positive welfare with
input v. We consider two cases:

e Case 1: SC R(u)
Because v is a successful strategy, there exists a j € S for which w;(v) > w;(u). This implies that
j € P'(u) and so, by assumption, no other descendant of X (j, u) participates in the group strategy. It
follows that ‘

zj(u) = u; — W(X(j,u)) = z;(v)
which contradicts the claim that w;(v) > w;(u). '

e Case 2: S ¢ R(u)
In this case, consider the members of S — R(u). They may be in different trees of F(u); however, we
can always find a member i €S — R(u) such that there is no other member of S in the subtree beneath
X (i,u). Now, i € R(v) requires z;(v) > u;, which contradicts the assumption that v is a successful
strategy.

Only if part: Let S be a successful coalition with strategy v. Then, there exist 7 € S that strictly benefits
from the strategy, i.e., w;j(v) > w;(u). Now,

zi(w) < w;(v)
u—W(XG) > v-W(X(G)

17

For this to happen, there must be another member of S in the subtree rooted at X(j,u). We can again
consider two cases S C R(u) and S € R(u) and show that in either case the conditions stated in the theorem
must be violated. a

Next, in the cases that the mechanism is not GSP, we can characterize the possible successful group
strategies with the following results:

Theorem 5 Consider a true utility profile u. Suppose coalition S has a successful strategy v. Then there
exists a pair of players i,j € S such that i and j have a successful pair strategy v'.
Furthermore, i and j are in the same set Tj(u) in the forest, and j is in the subtree rooted at X (i, u).

Proof: By lemma 14,we can assume that all members of S receive the transmission under v. Again, we
consider two cases:

e Case 1: S C R(u)
In this case, there is an ¢ € SN R(u) such that w;(v) > w;(u). Let A be the nearest ancestor node of 4
that is also an ancestor of at least one other member j of S. Now, the welfare of every node between i
and A is at least w;(v) under profile v, and hence under u. Therefore, if j claims a utility v;- =wv; + L,
for large L, then w;(v') > w;(v), for v' = u|fv;. Further, because j is also in R(u), by Lemma 11
w;j(v") = wj(u), and so v’ is a successful strategy for {i,j}.

e Case 2: SZ R(u)
In this case, as in Theorem 4, we can find a player ¢ € S — R(u) such that all members of S that are
descendants of X (i, u) are also in the same tree of F'(u) as 7. Choose a closest pair j, k in this subtree,
and let A be their nearest common ancestor. Both 7 and k& have positive welfare with strategy v. It
follows that and all nodes in the paths from 7 to A and from j to A have positive welfare in u. Now,
setting v} = L and v}, = L for large L gives us a successful strategy for j and k.

O

Theorem 6 Any superset of a coalition that can violate GSP at a profile u can also violate GSP at a profile
u

Proof: Suppose S C P has a strategy v that gives equal or higher welfare to all members of S. By
lemma 14, we can assume that every member of S receives the transmission with this strategy. Now, let
v; =max(v;, u;)Vi € P. By repeated application of lemma 10,

wi(v’) > wi(u)Vi ¢ S
Also, by using the fact that all elements of S have positive welfare and applying lemma 11 and lemma 10,
w;(v') > wi(v)Vi € S

Since v is a successful strategy for S, w;(v) > w;(u)Vi € S. Now, v’ is a strategy for any S’ D S; we have
just shown that no player does worse under v’ than under u. Because v is successful, there is some j € S
such that

w;(v) > wj(u) = w;(v') > w;(u)

It follows that v’ is a successful strategy for S’. |
Together, Theorems 5 and 6 tell us that the successful pair strategies at utility profile u completely
describe all the successful coalitions at w.

18

References

[BFC93]
[DC90]
[DEF+96]
[GKL76]
[HC99]
[FS97]

[FPS00]

[GHWO1]
[GHOO]
[3V01]
[LNOO]
[M99]

[MS97]

[MT99]
[Nis00]

[NR9Y]

[NROO]

A. Ballardie, and P. Francis, and J. Crowcroft. Core Based Trees (CBT). In Proc. ACM Sigcomm
98, ACM Press, 1993.

S. Deering and D. Cheriton. Multicast routing in datagram internetworks and extended LANs.
ACM Transactions on Computer Systems 8, 1990.

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. The PIM architecture for
wide-area multicast routing. ACM/IEEE Transactions on Networking 54, 1996.

J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free rider problem.
Journal of Public Economics 6, 1976.

H. Holbrook and D. Cheriton. IP multicast channels: EXPRESS support for large-scale single-
source applications, In Proc of Sigcomm 99, ACM Press, 1999.

E. Friedman, and S. Shenker. Learning and Implementation in the Internet. Available in preprint
form at http://www.aciri.org/shenker/decent.ps

J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions.
To appear in Journal of Computer and System Sciences, special issue on Internet Algorithms.
Extended abstract in Proc. 82-nd ACM Symposium on the Theory of Computing, ACM Press,
2000.

A. Goldberg, J. Hartline, and A. Wright. Competitive auctions and digital goods. In Proc. 12th
ACM/SIAM Symp. on Discrete Algorithms, ACM Press/SIAM, 2001.

A. Goldberg and J. Hartline. Competitive Auctions for Multicast Content. Manuscribt, October
2000.

K. Jain and V. Vazirani. Applications of approximation to cooperative games. To appear in
Proc. 38rd ACM Symposium on the Theory of Computing, ACM Press, 2001.

R. Lavi and N. Nisan. Competitive analysis of incentive compatible on-line auctions. In Proc.
2nd ACM Conference on Electronic Commerce (EC-00), ACM Press, 2000.

H. Moulin. Incremental cost sharing: characterization by strategyproofness. Social Choice and
Welfare 16, 1999.

H. Moulin and S. Shenker. Strategyproof Sharing of Submodular Costs: Budget Bal-
ance Versus EBfficiency. To appear in FEconomic Theory. Available in preprint form at
http://www.aciri.org/shenker/cost.ps

D. Monderer and M. Tennenholtz. Distributed Games: From Mechanisms to Protocols. In Proc.
16-th National Conf. on Artificial Intelligence (AAAI 1999), 1999.

N. Nisan. Bidding and allocation in combinatorial auctions. In Proc. 2nd ACM Conference on
Electronic Commerce (EC-00), ACM Press, 2000.

N. Nisan and A. Ronen. Algorithmic mechanism design. To appear in Games and Economic Be-
havior. Extended abstract in Proc. 81-st Annual ACM Symposium on the Theory of Computing,
ACM Press, 1999.

N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. In Proc. 2nd ACM
Conference on Electronic Commerce (EC-00), ACM Press, 2000.

19

[Par99]
[PUOO0]

[PLB+99)]

[Rob79)]
[San99]
[ST]

[Wel93]

[WWWM]

D. Parkes. ibundle: An efficient ascending price bundle auction. In Proc. 1st ACM Conference
on Electronic Commerce (EC-99), ACM Press, 1999.

D. Parkes and L. Ungar. Iterative combinatorial auctions: Theory and practice. In Proc. 17-th
National Conf. on Artificial Intelligence (AAAI 2000), 2000.

R. Perlman, C.-Y. Lee, A. Ballardie, J. Crowcroft., Z. Wang, T. Maufer, C. Diot, and M. Green.
Simple multicast: A design for simple low-overhead multicast. IETF Internet Draft (Work in
Progress), 1999.

K. Roberts. The Characterization of Implementable Choice Rules. In Aggregation and Revelation
of Preferences, North-Holland, Amsterdam, 1979.

T. Sandholm. Distributed rational decision making. In G. Weiss, editor, Multiagent systems: A
Modern Introduction to Distributed Artificial Intelligence. MIT Press, Cambridge, MA, 1999.

Y. Shoham and M. Tennenholtz. On Rational Computability and Communication Complexity.
To appear in Games and Economic Behavior.

M. Wellman. A market-oriented programming environment and its applications to distributed
multicommodity flow problems. Journal of AI Research 1, 1993.

M. Wellman, W. Walsh, P. Wurman, and J. Mackie-Mason. Auction protocols for decentralized
scheduling. To appear in Games and Economic Behavior.

20

