Yale University
Department of Computer Science

Optimum Off-line Algorithms
for
The List Update Problem

Nick Reingold? Jeffery Westbrook?

YALEU/DCS/TR-805
August 1990

!Department of Computer Science, Yale University, New Haven, CT 06520-2158. Research
partially supported by NSF grants CCR-8808949 and CCR-8958528.

2Department of Computer Science, Yale University, New Haven, CT 06520-2158. Research
partially supported by NSF grant CCR-9009753

Optimum Off-line Algorithms

for
The List Update Problem

Nick Reingold* Jeffery Westbrook!

Abstract

We investigate optimum off-line algorithms for the list update problem, a
well-known problem of implementing a dictionary of items as a linear list. We
give several characterizations of optimum algorithms; our results lead to an
implementation of an optimum algorithm which runs in time O(2"n!m), where
n is the length of the list and m is the number or requests. The previous best
algorithm runs in time O((n!)?m) [6]. Off-line algorithms for list update are
useful in the study of competitive on-line algorithms.

1 Introduction

Storing a dictionary of items is a common problem in many programming situations.
Since many operations, such as accesses, insertions, and deletions are very simple to
perform on linear lists, it is natural to consider dictionaries stored using this data
structure. An access can easily be done by examining each item in turn, starting at
the front of the list, until either finding the item desired or reaching the end of the
list and reporting the item not present. During the course of performing a sequence
of operations on a list, it may be advantageous to rearrange the items so that later
operations will be cheaper to perform. For example, by moving a commonly requested
item closer to the front the overall running time can be reduced. On the other hand,
performing a rearrangement may itself be costly. Finding an algorithm to rearrange
the items most effectively is an interesting and difficult problem. This problem, called
the list update problem, has been investigated by many researchers [1, 3, 5, 7, 9, 10].

A list update algorithm takes a request sequence and determines rearrangements
to be done between processing accesses, deletions, or insertions. We distinguish among

*Department of Computer Science, Yale University, New Haven, CT 06520-2158. Research par-
tially supported by NSF grants CCR-8808949 and CCR-8958528.

'Department of Computer Science, Yale University, New Haven, CT 06520-2158. Research par-
tially supported by NSF grant CCR-9009753

list update algorithms based on how much knowledge of the future they are given. An
on-line algorithm knows only the sequence of requests it has processed up to the cur-
rent time, and has no knowledge of the future requests. An off-line algorithm knows
the entire sequence of requests. One simple off-line algorithm is to initially order the
items by decreasing frequency of access, and after that make no rearrangements. This
is the optimum static rule. That is, among rules which do no rearrangements during
the processing of the sequence, this rule has the lowest total cost for any sequence of
accesses. This rule can be used to build an on-line algorithm if the expected access
frequency is known for each item. Of course, it may not be easy or even possible to
determine the frequency counts.

Most real-world applications are on-line, and many on-line rules have been studied.
Typically, their performance is analyzed not in absolute terms, but in comparison to
that of the optimum static rule ([1, 3, 5, 7, 9]). One of the earliest rules studied is
the Move-To-Front rule (MTF): after an item is accessed, move it to the front of the
list. Sleator and Tarjan [10] compared MTF to any algorithm. They showed that for
any sequence of insertions, deletions, and accesses, the cost to MTF is no more than
twice the cost of any list update algorithm for servicing that request sequence. This
result initiated competitive analysis, in which an on-line algorithm’s performance is
compared to that of the optimum off-line algorithm on each sequence of requests. In
another paper [8] we investigate the problem of randomized on-line algorithms for the
list update problem.

In this report we investigate the problem of finding the optimum off-line algo-
rithm for any sequence of requests. That is, we are trying to find an algorithm that,
given a request sequence, computes a set of rearrangements prior to each access that
minimizes the overall total cost of processing that request sequence. The cost of
processing a sequence is the sum of the costs of accesses, insertions, deletions, and
rearrangements. The running time of the algorithm that computes the optimum set
of rearrangements is a separate issue. Finding a good optimum off-line algorithm is
an interesting problem in its own right, but a perhaps more important goal of this
research is to help in the design of on-line algorithms. The better the optimum off-
line algorithm is understood the better we can make on-line algorithms simulate its
behavior. In particular, we improve the theoretical understanding of why the move-
to-front heuristic for on-line algorithms leads to good competitive ratios while other
heuristics do not. Furthermore, the results of this research have been used in [8] to
find lower bounds on the competitiveness of randomized on-line algorithms for list
update. This research is also motivated by practical uses, since to perform empirical
studies of the competitiveness of on-line algorithms for list-update it is necessary to
have an optimum or even near-optimum off-line algorithm to compare against.

For the related k-server problem, Chrobak, et al [4] have given an O(km?) al-
gorithm to compute the best strategy for servicing m requests. Before our results,
the best algorithm to compute the optimum cost for the list update problem was a
version of an algorithm of Manasse, McGeoch, and Sleator [6] which runs in time

©(m(n!)?), and space O(n!), where m is the number of requests and n is the number
of items in the list. In this paper we give an improved algorithm for list update
running in worst-case time O(m2"(n — 1)!) and space ©(n!). Thus we still leave open
the problem of finding an algorithm that is polynomial in n and m.

This paper is organized as follows. Section 2 contains a formal description of the
list update model as defined by Sleator and Tarjan [10]. We show one simplification
that can be made to the model. We also give a counter-example to a theorem of Sleator
and Tarjan from [10]. Section 3 contains various theorems about the characteristics
of optimum algorithms. The most important is the Subset Transfer Theorem, which
implies that in searching for an optimum way to service a request sequence, we may
assume that the rearrangements made are of a particular sort: a subset of the items
ahead of the requested item are moved to just behind the requested item. This allows
a significant speedup in searching for the optimum algorithm. We discuss this and
other implementation issues in Section 4. Section 5 contains some remarks and open
questions.

2 The List Update Model

The list update problem is that of storing a dictionary as a linear list. A request is
either an access to an item, an insertion of an item, or a deletion of an item. A list
update algorithm must search for an accessed item by starting at the front of the list
and inspecting each item in turn until the requested item is found. An insertion is
done by searching the entire list to ensure that the item is not already present, and
then inserting the new item at the back of the list. A deletion is done by searching
for the item and then removing it. At any time, the algorithm may exchange the
position of any two adjacent items in the list. Each request or exchange has a cost.
In the standard model defined by Sleator and Tarjan [10] the costs are as follows:

1. An access or deletion of the 7*® item in the list costs 7. An insertion costs n+1,
where n is the length of the list prior to the insertion.

2. Immediately following an access or insertion, the accessed or inserted item can
be moved any distance forward in the list. These exchanges cost nothing and
are called free exchanges.

3. Any other exchange costs 1. These exchanges are called paid exchanges.

We can think of an algorithm as servicing each request by performing some num-
ber of paid exchanges, receiving and satisfying the request, and then doing any free
exchanges. For a list update algorithm, A, we define the cost of servicing a sequence
of requests o to be the sum of all costs due to paid exchanges, accesses, insertions, and
deletions in the sequence. Let A(c) denote this cost. Since insertions and deletions
can be regarded as special cases of accesses, we will be mainly interested in sequences

that consist only of accesses to a fixed-size list. If there are n items in the list, we
assume they are named by the numbers from 1 to n. For any request sequence, o,
there is a minimum cost which can be incurred in servicing o, which we denote by
OPT(o). If a list update algorithm, A, is such that A(c) = OPT(0) for all o, we say
that A is an optimum list update algorithm. Notice that in general there are several
ways to service a request sequence and achieve the optimum cost.

We also consider a generalization of the standard model called the paid ezchange
model, in which the access cost is the same as the standard model but in which there
are no free exchanges and the cost of rearrangement is scaled up by some arbitrarily
large value d. This is a very natural extension, because there is no a priori reason to
assume that the execution time of the program that swaps a pair of adjacent elements
is the same as that of the program that does one iteration of the search loop. (This
might model a linear list on a tape drive). We denote by P? the paid exchange model
in which each paid exchange has cost d. Accesses, insertions, and deletions have the
same cost as in the standard model. This version of the list update problem is similar
to the replication/migration problems studied by Black and Sleator [2].

Most standard model on-line algorithms use only free exchanges, and it is tempting
to conclude that with free exchanges available, paid exchanges should never be needed.
Sleator and Tarjan claim (Theorem 3 of [10]) that in the standard model, there is
a minimum cost off-line algorithm that uses only free exchanges. Unfortunately,
their theorem is wrong. In fact, paid exchanges are sometimes necessary, as the
following counterexample shows: If the list is initially 1,2, 3 and the request sequence
is (3,2,2,3), it is easy to verify that any algorithm which makes only free exchanges
must incur a cost of at least 9. On the other hand, two paid exchanges can make the
list look like 2,3,1, and then the accesses can be performed at an additional cost of
only 6, for a total cost of 8.

On the other hand, we can show that free exchanges are not necessary in the
standard model.

Proposition 2.1 Let R be a request sequence, and A be any algorithm for servicing
R in the standard model. Then there is an algorithm, A, for serving R which makes
no free exchanges and which costs exactly the same as A on R.

Proof We modify A to eliminate free exchanges as follows. Suppose that on some
request A makes free exchanges to move item x forward ¢ places. A will make paid
exchanges to move item z forward { places just before the request, and then make
no free exchanges after the request. A spends ¢ in extra paid exchanges to move z
forward, but saves £ on the access.

This proposition implies that the standard model and P! are equivalent for off-line
algorithms in the sense that given a request sequence o, the minimum off-line cost to
service o is the same in both models. In general, if a list update algorithm is charged
f(%) to access the i*" item, then the proposition is true if the cost of exchanging the

¢® and the (¢ + 1)* items is f(i + 1) — f(¢). Notice that Proposition 2.1 is false in
any P? model with d > 1.

3 Characteristics of Off-line Algorithms

In this section we present several theorems that characterize the behavior of off-line
algorithms for list update. These theorems will be used in designing an optimum
off-line algorithm. If we are exhaustively searching for what moves to make, applica-
tions of these theorem can significantly reduce the size of the search space. We will
restrict our attention to off-line algorithms that do not use free exchanges, since by
Proposition 2.1, in the standard model, any algorithm that uses free exchanges can
be converted at no cost into one that uses only paid exchanges. Furthermore, we will
for the moment assume that request sequences contain only accesses. In Section 4
we argue that an optimum strategy for a request sequence containing insertions and
deletions can be determined by examining a similar request sequence consisting only
of accesses.

Theorems 3.1, 3.3, and 3.5 hold in the standard model and the P! model. The-
orem 3.7 holds in the standard model and any P¢ model (paid exchanges only, with
cost d per exchange).

3.1 Long Blocks

Intuitively, if some item is requested many times consecutively, it should be moved
to the front of this list. In this section we prove this intuition, and give a useful
generalization.

Theorem 3.1 (Long Block Theorem) Let request sequence R = oyz*0,, where
z¥ denotes a block of k consecutive accesses to some item z, k > 2, and 0, and o are
any request sequences. Let A be an off-line algorithm that services R at total cost c.
Then there is an algorithm A, that services R with total cost at most ¢ and in which
z is at the front of the list for each of the k consecutive accesses to x .

Proof We may assume that A makes no free exchanges. Algorithm A mimics A4 at
all times, except that z is moved to the front just before the first of the k accesses, and
immediately after the last of the k accesses z is moved back to the place it occupies
in A’s list. Algorithms A and A will have identical lists just after processing o; and
before starting to process o;. Roughly speaking, the first access to z will pay for
moving z forward, and the last access will pay for moveing = back.

Let p; denote the location of z in A’s list at the time of the i*" access in the k-block;
po is the position of immediately after the last request in o, is serviced and py is
z’s position immediately after the k*" access. Consider the sequence of moves made
by A during the accesses to z; it consists of k subsequences of exchanges (which may

1nvolve z) occurring before and between the k accesses to z. Suppose that during the
% such subsequence there are §; exchanges that involve z, and that z moves from
posmon pi-1 to position p;. Notice that |p;_; — p;| < ;.
We construct A’s moves by modifying A’s sequence of exchanges as follows:

e Ignore any exchanges made by A that involve item z, but duplicate every other
exchange A makes, at exactly the same time.

¢ Immediately after servicing oy, perform exchanges which move z from position,
Po, to the front.

e Immediately after the k" access to z, perform exchanges which move z from
the front to position py.

It is important to show that A can duplicate the exchanges made by A, i.e., that
moving z to the front does not interfere with other exchanges A makes. A simple
induction shows, however, that at all times any pair of items, excluding z, that are
adjacent A’s list are also adjacent in A’s list. Note that after all these exchanges are
made A and A will have identical lists.

On the ** sequence of paid exchanges, for 1 <: < k, A pays f; more than A. On
the 1*® access of z, for 1 < i < k, A pays p; — 1 more than A. Finally, A pays po — 1
to move z to the front at the start, and py — 1 to move = to position p; at the end.
Thus,

A(zF) — A(z)

(Zk: @) + (f:(pi - 1)) = (Po—1) = (px — 1)

= éﬂ) (kl '—1))+(ﬂ1+px—po)+(pk—pk)
K

2 1=2
=2

(
(28) + (S - D)+ +0)
0

v

=2

v

Notice that if any 8; > 0for 2< i< k,orifany p; >1for2<i< k-1, then A
does strictly better than A. This implies the following:

Corollary 3.2 If an item x is requested three or more times consecutively then an
optimum algorithm must move it to the front before the second access.

The following theorem generalizes the Long Block Theorem.

Theorem 3.3 Let request sequence R = 0,704, where T is an access sequence such
that every item accessed in T is accessed at least twice, and oy and o3 are any request

6

sequences. Let A be an off-line algorithm that services R at total cost c. Then there
is an algorithm A, that services R with total cost at most c such that after processing
o1 and before processing T, A moves all items accessed in T in an order-preserving
manner to the front of the lzst.

Proof Let X = {z1,z,,...,2,} be the set of items which occur in 7. Let the number
of accesses to z; in 7 be k;. We will assume that A makes no free exchanges. The
idea is similar to the idea of Theorem 3.1: move all the items mentioned in 7 to the
front, mimic A’s moves, then restore the list to match A’s. Once again, each item
pays for its trips with savings on the first and last accesses to it.

For each z; we split 7 into phases. For 1 < j < k; + 1, the j*® phase for z; starts
just after the (j — 1)® access to z; (or at the start of 7 if j = 1) and ends just before
the j** access to x; (or at the end of 7 if j = k; +1). Let p(i,0) be the initial position
of z; in A’s list, p(7, j) be the position of z; (in A’s list) at the time of the j** access
to z;, and p(i,k; + 1) be the position of z; (in A’s list) at the end of 7. We may
assume that p(1,0) < p(2,0) < --- < p(r,0). Let 3(7,7) be the number of exchanges
made during the j*® pha,sAe for z; which involve z; but no other member of X.

As in Theorem 3.1, A’s exchanges are constructed by modifying A’s exchanges.
We do the following:

e Ignore any exchanges made by A that involve exactly one member of X, but
duplicate every other exchange A makes, at exactly the same time.

e Immediately after servicing oy perform paid exchanges which move the members
of X, in an order preserving manner, to be the first r items in the list.

e Immediately after the last access in 7 perform paid exchanges which move the
members of X, in an order preserving manner, from the first r places in A’s
list to their final positions in A’s list (namely, positions p(1,k; + 1),p(2, k; +
1)3' .. ap(ra ki + 1))

A simple induction shows that every exchange in the list constructed above can
be performed by A. Tt can also be shown that the relative order of all members of
X is always the same in A’s list and in A’s list. Let q(2,0) be the position of z; in
A’s list after the prepended moves are made, ¢(z,j) be the position of z; (in A’s list)
at the time of the j'* access to z;, and ¢(i, k; + 1) be the position of z; (in A’s list)
at the end of 7, before the appended moves are made. Our assumption on the p(z, 0)
values gives q(z 0) =:. We Wlll write A(e,7) for p(¢,7) — ¢(¢,7). This is how much
more A pays than A for the j™ access to z;. Notice that for all ¢ and j, Az, j) > 0.

Claim 3.4 For0<j<k;and1<i<r,

Proof The only kind of move which can change the value of p(z, 7) —q(z, 7) is a move

involving exactly one member of X (namely, z;) since for any other move made by A,

A makes a move which will preserve p(i,7) — q(,J). The claim follows immediately.
On the ;' access to z;, A pays A(i,7) more than A. During the 7% phase for z;,

A makes B(i, j) paid exchanges which A doesn’t make. Also, A must pay Y= A(7,0)

for the prepended exchanges, and 37_; A(¢, k; + 1) for the appended exchanges.
Now we proceed much as in Theorem 3.1. We have that

r ki+l r r
A(m)=A(r) = Y3 B8G,5) +ZZA13)—ZAZO — ST AG ki +1)
=1]=1 =1]_1 =1
r k-
= ZZB %] +ZZA a])
i=1j= =1 j=2

+Z (,3(2, 1) + A(Z’ 1) - A(za 0))

i—l

+Z(ﬂ(z ki +1) + A(i, ki) — A ki + 1))

i=1

The last two sums are non-negative by Claim 3.4, and the first two sums are clearly
non-negative, so A(1) > A(r).

3.2 The Eager Move Theorem

The next theorem shows that sometimes it is possible to move an item to the front in
an eager fashion. If between accesses to item z no other item preceding x in the list
is accessed twice, and if we know that we are going to move z on its second access,
then we may as well move z on its first access.

Theorem 3.5 Let R be a request sequence of the form zy,ys - - - ypxo where = is any
item, the y; are distinct items, all different from z, and o any request sequence. For
every algorithm A for servicing R, if A moves x to the front before servicing o, there
is an algorithm A which moves z to the front on the first access to it, such that the
cost to A on R is no more than the cost to A on R.

Proof Once again, the strategy will be to have A move z to the front and then
mimic A’s moves; the move is paid for by the first access. Since A moves z forward,
there is no return trip to pay for. The only other costs to worry about are the accesses
to the y;’s. They will be paid for by A’s moving = to the front. As usual, we assume
that A makes no free exchanges.

Consider the sequence of exchanges made by A between the first access to = and
the first access in 0. We modify this sequence to obtain A’s sequence of exchanges
by deleting any exchanges which involve z, and prepending exchanges which move z
to the front. As before, it is easy to verify that the sequence can be performed.

8

Suppose that there are 3 exchanges made by A which involve z. Also, for 1 <
@ < k, let b; be 1 if at the time of the access to y;, z is behind y; in A’s list, and let b;
be 0 otherwise. For the access to y;, A pays b; more than A. So, A(zy1y2-- - yxz) —
A(mylyg coeykz) > B—F b If b; = 1, A must make at least one paid exchange
involving z to move z in front of y;. Since each exchange can only move z in front of
one y;, and the y;’s are distinct, we must have that 8 > Y5, b;, so A(zyy, - Yrx) >
A(zyrys - - yre).

Notice that the theorem can be applied iteratively. For example, consider request
sequence o = (3,2,1,3,2,1,3,2,1,3,3). By the Long Block Theorem, an algorithm
for servicing o may as well move 3 to the front on its fourth access (the second to
last request). By repeatedly applying the above theorem, the algorithm may as well
move 3 to the front on its third second and first accesses.

3.3 Subset Transfers

Between each pair of accesses there are, a priori, n! ways for a list update algorithm to
rearrange its list. The Subset Transfer Theorem shows that in designing an optimum
algorithm it is possible to restrict our attention to at most 2" of these. The Subset
Transfer Theorem holds in the standard model and in any P?¢ model (only paid
exchanges, at cost d), so it is our most general theorem.

Recall that an inversion between two lists is a pair of items (z,y), such that z is
in front of y in one list but behind y in the other. Given two lists L, and L,, we write
inv(Ly, L,) for the set of inversions between the two lists. The next lemma is useful
in computing the cost of rearranging a list.

Lemma 3.6 The number of inversions between two lists equals the minimum number
of paid exchanges needed to convert one list to the other.

Proof Since any exchange either creates one inversion or destroys one inversion, it
suffices to show that if two lists have k inversions, then it is possible to get from one
to the other using k exchanges.

We use induction on the length of the lists. When both lists are empty the result
is obvious. Suppose the lists, L; and L, are non-empty, that the first item in Ly is
z, and that z is at position p in L;. If we do p — 1 paid exchanges to move z to the
front of L;, getting list L, then there are p — 1 fewer inversions between L} and L,
than between L, and L,. Now delete item z from L} and L,, and use induction on

the resulting lists. ’ I

Suppose item z is accessed. The sequence of paid exchanges made just prior to the
access are called a subset transfer if they move some subset of the items preceding
z to just behind z in such a way that the ordering of items in the subset among
themselves remains unchanged.

Theorem 3.7 (Subset Transfer Theorem) There is an optimum off-line algo-
rithm that does only subset transfers.

Proof Let A be any algorithm which makes no free exchanges. Suppose that the
first request is an access to item z. Consider how A’s list changes due to exchanges
made before the access. Let R be the items that start in front of z and end up in
front of z at the time the access is performed; let S be the items that start in front
of z but end up behind z; and let T" be the items that start behind = and end up in
front of z. Finally, let r, s, and t be the sizes of R, S, and T, respectively. Suppose
that up to the access to x, A makes pg paid exchanges. Then, since A pays r+1¢+1
for the access, A incurs a total cost of po +r + ¢ + 1.

Consider an algorithm A, that, given the same request sequence and initial list as
A, does the following:

Phase 1: A makes the minimal number of paid exchanges, say p;, to perform a
subset transfer on the items in S, and then pays for the access,

Phase 2: A makes the minimal number of paid exchanges, say p,, to make the
list look like A’s list does at the time when A pays for the access.

The total cost to A for both phases is p; + p; +r + 1. We will show that po > p1 + pa,
which implies that the cost to A is no more than the cost to A.

Let Lo be A’s list before phase 1, L; be A’s list after phase one, and L, be A’s
list (also A’s list) after phase 2. Any inversion between Lo and L; must involve an
element of S and either z or an element of R. No inversion between L; and L, can
be of this form, so inv(Lo, L) Ninv(Ly, L3) = 0. It follows from this that inv(Lg, L;)
and inv(Ly, Ly) partition inv(Lg, L;). Therefore, by Lemma 3.6,

Po 2 linV(Lo, L2)|
= |inv(Lo, L1)| + |inv(L1, L2)|
= p1+p2.

We have constructed an algorithm which makes a subset transfer on the first
access followed by some sequence of paid exchanges. By induction we can construct
an algorithm which makes subset transfers on each access, and after the last access
makes some sequence of paid exchanges. These paid exchanges can be eliminated
since they occur after the last access. This gives an algorithm which makes only
subset transfers whose cost is no more than the cost of the original algorithm.

The above proof clearly holds for any algorithm in the P¢ models.

4 Implementation of an Optimum Algorithm

An instance of the list update problem consists of a list L and a request sequence o.
We assume o contains only access requests. Let n be the length of the list and m be

10

the number of accesses in o. In general, we do not know how to compute an optimum
way to service o in time polynomial in n and m. However, when n = 2 there is a
particularly simple algorithm.

Proposition 4.1 The following algorithm for maintaining a 2 item list achieves the
optimum cost on every request sequence: Make no change to the list unless the next
two requests are to the last item in the list. In this case, move the requested item to
the front via free exchanges after the first request to it.

Proof Let A(c) be the cost of servicing request sequence o according to the rule
above. We use induction on the length of the request sequence to show that A(c) =
OPT(o). Suppose the list is 1,2. By the Long Block and Subset Transfer Theorems,
it suffices to consider the induction step for request sequences of the form 21c (it
is possible to avoid using these theorems, by also considering the cases 11o, 120,
and 220). Let OPT(o|1,2) and OPT(¢|2,1) be the optimum cost of servicing o
given that the list is 1,2 or 2,1, respectively. It is easy to verify that OPT(210) =
min {3 + OPT(s]1,2),4 + OPT(c|2,1)}. Since OPT(c|1,2) < 1 4+ OPT(0|2,1), we
have that OPT(210) = 3 + OPT(c|1,2). Since, by induction, A(21c) = 3 + A(0)
3 + OPT(o|1,2), we are done.

Notice that the above algorithm does not need to know all the future requests,
only the current request and the next request. That is, it uses only 2 look ahead.
When the list has more than two items, however, no fixed amount of look ahead
suffices for an optimum algorithm.

Theorem 4.2 No algorithm for a 3 item list with only k look ahead is an optimum
list update algorithm.

Proof Suppose A is a k look ahead algorithm for maintaining a 3 item list. In the
proof of Theorem 3.7, the transformation of an algorithm to one which makes only
subset transfers preserves the amount of look ahead needed by the algorithm. We
can therefore assume that A’s only moves are subset transfers. We may also assume
that £ > 3.

Suppose A’s list is 1,2,3, and consider the request sequences o; = 31¥~12 and
o2 = 315713, Since A has only k look ahead, the first subset transfer it makes must
be the same whether it services o; or o,. Consider what order A’s list could be in
after servicing the first k£ requests of oy or ¢,. Table 1 shows for each possible first
move the positions reachable and the minimum cost for reaching it. (The entries are
easily verified by induction on k.) Notice that for A to achieve the optimum cost on
either o; or oy, A’s first move must either be to do nothing or to switch the last two
items (the first two moves of Table 1). If A does nothing, then it cannot be optimum

on o3, while if it makes the second move it cannot be optimum on ;.

It is possible to construct more interesting request sequences which require a lot
of look ahead. A tedious but straight forward calculation shows that no algorithm

11

First Move Position | Cost
,2,3—-1,2,3| 1,2,3 k+2
1,2,3—-1,3,2| 1,3,2 k+2
1,2,3 — 2,3,1 1,2,3 k+5

1,3,2 k+7
2,1,3 | 2k+3
3,1,2 | 2k+4
2,3,1 |3k+1
1,2,3—-3,1,2 | 1,3,2 k+3
3,1,2 [2k+1

Table 1: Positions reachable after servicing 31! for k > 3.

with only 3k + 2 look ahead can achieve the optimum cost on a request sequence of
the form 32(312)*o.

In [6], Manasse, McGeoch, and Sleator discuss task systems, of which list update is
a special case. They give a dynamic programming algorithm for finding the minimal
cost to service a request sequence in any task system. When applied to list update
this works as follows: Suppose the request sequence o is of length m. Let DYN({, 1)
be the optimum cost to service the first 7 requests of ¢ and end with the list in
order I. Here : € {1,2,...,m}, and [is one of the n! permutations of n items.
Computing DYN(/,0), for all [, is quite easy. Given DYN(l,4) for all I, we can
compute DYN(/, 7+ 1) by considering all possible ways to service the (i + 1)* request
and change the list from some order [/ to another order I. OPT(o) is the minimum
over all [of DYN(l,m). Computing DYN(/,7) for all ! and i takes time ©((n!)?m).
The space requirement is ©(n!) if we desire only the cost and ©(mn!) if we desire the
actual moves as well.

We can improve the running time substantially by using the Subset Transfer The-
orem (Theorem 3.7) to reduce the number of transitions that must be examined.
Consider the i*® access in the request sequence. There are (n — 1)! permutations of
the list in which the accessed item is at position k. If the item is at position k there
are 25~1 subsets to check. Summing over all k, we find that the time to process the 7th
request is O(m2™(n — 1)!). This is currently the best running time of any algorithm
which computes an optimum algorithm.

Theorem 4.3 There is an algorithm which computes the optimum cost for servicing
m accesses to an n item list which runs in time O(m2™(n — 1)!).

We can use the Long Block Theorem and its generalization (Theorems 3.1 and 3.3)
to reduce the number of transitions to examine even further. We preprocess the
request sequence and require that the algorithm moves the requested item to the front
on long blocks, i.e., when it is requested twice or more consecutively. Theorems 3.1
and 3.3 ensure that an optimum algorithm with this behavior exists. Since repeated

12

references are common both in random data and in typical sample data, this will
often give a significant improvement in running time. Similarly, one could also use
the Eager Move Theorem to reduce the running time.

We have implemented the dynamic programming algorithm with the subset trans-
fer and long block improvements described above for use in our research on on-line
algorithms for list update. It runs reasonably well for very small values of n, say
at most 6, but begins to slow appreciably for n larger than 6. At n = 7, for ex-
ample, there are approximately ninety-two thousand probes of the DYN(!,:) table
per request. For comparison, at n = 7 the naive implementation of the dynamic
programming algorithm does approximately twenty-five million probes per request.

It is easy to see that any optimum off-line algorithm that uses the subset transfer
theorem for sequences of accesses can be extended to one for sequences of accesses and
insertions. Suppose the insertion operations are all moved in order to the beginning
of the request sequence. The optimum cost of processing this sequence is the same
as that of the original sequence. Handling deletions is somewhat more complicated.
Our dynamic programming algorithm can be extended to deletions in two ways. One
possiblity is to simply leave deleted elements in the list, but modify the cost function
so that they add nothing to the cost of either accesses or subset transfers. A second
possibility is to modify the algorithm to simulate a deletion by moving the deleted
element to the back of the list, at zero cost. This saves some space, since deleted
elements may be reused for subsequently inserted items. In either case, the optimum
cost computed is the same.

5 Remarks and Open Problems

Our work in this paper characterizes the nature of optimum algorithms for the list
update problem. In the Long Block Theorem, we show that the optimum algorithm
must move an item to the front of the list if it is accessed three or more times in a
row. Furthermore, it pays to move sub-collections of items to the front quickly when
those items are accessed much more often than other items. Furthermore, failure to
follow the Long Block Theorem can be very expensive. The move-to-front heuristic
always abides by the Long Block Theorem, and generally simulates the generalization
of the Long Block Theorem and Eager Move Theorems.

We are also able to use the Subset Transfer Theorem to reduce significantly the
computation time of the dynamic programming algorithm. We leave open, however,
the problem of finding an algorithm that is polynomial in both n and m, or conversely
showing that such an algorithm is unlikely or impossible. It is possible that our
characterizations give information about the optimum algorithm which can be used
to derive a lower bound for computing an optimal solution. Another interesting
question is whether there is a polynomial time algorithm that computes a near-optimal
solution.

13

Acknowledgements

We thank Bill Gasarch for his proofreading and helpful suggestions.

References

[1] J. L. Bentley and C. C. McGeoch. Amortized analyses of self-organizing sequen-
tial search heuristics. Commun. ACM, 28(4):404-411, Apr. 1985.

[2] D. L. Black and D. D. Sleator. Competitive algorithms for replication and mi-
gration problems. Technical Report CMU-CS-89-201, Department of Computer
Science, Carnegie-Mellon University, 1989.

[3] P. J. Burville and J. F. C. Kingman. On a model for storage and search. Journal
of Applied Probability, 10:697-701, 1973.

[4] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server
problems. In Proc. 1st ACM-SIAM Symp. on Discrete Algorithms, pages 291
300, 1990.

[5] W. J. Hendricks. An account of self-organizing systems. SIAM J. Comput.,
5(4):715-723, Dec. 1976.

[6] M. Manasse, L. A. McGeoch, and D. Sleator. Competitive algorithms for on-
line problems. In Proc. 20th ACM Symposium on Theory of Computing, pages
322-333, 1988.

[7] J. McCabe. On serial files with relocatable records. Operations Research, 13:609—
618, 1965.

(8] N. Reingold and J. Westbrook. Randomized algorithms for the list update prob-
lem. Technical Report YALEU/DCS/TR-804, Yale University, 1990.

[9] R. Rivest. On self-organizing sequential search heuristics. Commun. ACM,
19(2):63-67, February 1976.

[10] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Commun. ACM, 28(2):202-208, 1985.

14

