Dynamic Typing in Haskell

John Peterson
Research Report YALEU/DCS/RR-1022
Yale University
Department of Computer Science

New Haven, CT 06520




1 INTRODUCTION 1

Abstract

Static type systems, as used in such languages as C, ML, and Haskell, perform
all type inference at compile time; during execution the type of an object is implicit.
Dynamic typing, as used in Lisp or Smalltalk, requires the type of an object to be
explicitly encoded as part of its value. Each of these approaches has advantages: static
typing detects type errors at compile time and has no runtime overhead. Dynamic
typing is more expressive. In this paper we study the incorporation of dynamic types
within the framework of the Haskell type system, a derivative of the Hindley - Milner
system used in ML. Unlike ML, the Haskell type system allows overloading (ad-hoc
polymorphism) using type classes. ,

The system of dynamic typing described here builds on work done in the ML com-
munity. In addition to coercion to and from the domain of dynamic types, we allow for
the direct manipulation of objects within the dynamic domain in a type safe manner. Of
particular practical importance is the ability to generalize an operation over arbitrary
types based on the structure of the data type. This dynamic typing system has been
implemented as a part of the Yale Haskell system and dynamic types have been used to
build the ‘derived instance’ component of the Haskell language in a much more general
manner than presently used.

1 Introduction

Static typing, as represented by the ML type system, has many well known advantages: a
very expressive type language, complete type error detection at compile time, and run time
efficiency. In Haskell, the expressiveness of this type system is increased to support ad-hoc
polymorphism (overloading). Dynamic typing, as found in the Lisp family of languages,
also has significant advantages. Using dynamic typing, a function or program can interact
with types not within the compile time type environment. Another very important aspect
of dynamic typing in the Lisp world is the ability to access the description of a type. This
type description (or meta-type) of an object allows for operation on completely arbitrary
types. For example, a printer can use the type of an unknown object to find out how to
access the components of the object for printing.

We define a function as structurally polymorphic when its behavior is governed by the
structure of the type of object it is applied to. Unlike parametric polymorphism, this
behavior is not identical for all types. Structural polymorphism differs from the ad-hoc
polymorphism supplied by the Haskell type system in that a single definition of the function
serves for all types, while ad-hoc polymorphism simply allows a different definitions to be
associated with different types. Many common operations are structurally polymorphic,
including structural equality, generalized mapping and folding, and printing.

Previous work on dynamic typing [2, 3] has focused on the basic problem of moving values
into and out of the dynamic domain in a type safe manner. While the system presented
here has these same capabilities, we will focus on this issue of structural polymorphism.
While structural polymorphism is commonly used in dynamic languages, it is not present
in previous work in dynamic typing in polymorphic languages. The goal of this work is to
create a simple system of dynamic types which is both well integrated into the Haskell type
system and sufficiently expressive to accomodate structural polymorphism.




2 THE HASKELL CLASS SYSTEM 2

The dynamic typing system decribed here has been implemented as a part of the Yale
Haskell system.

2 The Haskell Class System

Haskell[1] features an extension to the ML type system known as typeclasses. Type classes
implement overloading (ad-hoc polymorphism). An overloaded function has multiple def-
initions, one for each type for which the overloading is defined. In Haskell, a class is an
operation or set of operations whose behavior is selected by the type of object it is applied
to. An instance provides a definition of the operations in a class for a fixed type. A class
may have many different associated instances. Type classes may be associated with type
variables using a context. A context associates type variables with classes and appears
in type signatures as a set of class and type variable pairs preceeding =>. The signature
Num a => a -> a -> a would describe a function with two arguments and returned value
of the same type, which must be in class Num.

The class system is essentially a dispatching mechanism. A call to an operation in a class is
forwarded to the handler attached to the argument type by an instance declaration. Type
inference ensures that such a handler will always exist.

Type classes are implemented using dictionaries. Each instance declaration defines a dic-
tionary. The context of a type signature will be manifested at execution time by the passing
of dictionary parameters. A function such as

f :: Numa=>a->a-=->a

will be passed a dictionary which contains the implementation for operations in Num for
whatever type of value is passed to £. Dictionary conversion is a process in which hidden
dictionary parameters are added to functions during type checking. The implementation of
type classes is described in [4].

A fixed set of structurally polymorphic operations in Haskell is supplied using a mechanism
called derived instances. Derived instances are code templates defined by the language
standard which must be wired into the compiler. Each use of a derived instance in a type
declaration is expanded into type-specific source code.

3 Dynamic Typing

Dynamic typing uses a single type, here called Dynamic, to hold objects of arbitrary type.
To ensure type correctness, these values are coupled with a type tag which captures the
same sort of type information used during compile time type checking.

The toDynamic construct creates a value of type Dynamic. This pairs a value with the
principal type of that value as inferred at compile time. Since it captures a value of any
type and returns a dynamic, it resembles a function with the typing

toDynamic :: a -> Dynamic




3 DYNAMIC TYPING 3

Polymorphic typing introduces some complications. The type computed for an object at
compile time may contain either universally or existentially quantified type variables. Uni-
versal quantification (usually) describes polymorphic functional objects. Consider the fol-
lowing example:

id :: a => a
idx=x
f :: Dynamic

f = toDynamic id

Here the type tag in the dynamic value associated with £ contains a universally quantified
type variable.

When part of an object’s type is bound in an outer type environment, existential quantifi-
cation may be required to describe the type of the object.

f :: a -> Dynamic
f x = toDynamic x

In this example, the dynamic value captures a parameter of arbitrary type passed to f. In
the previous example the type of the id function is completely known at place toDynamic
is called. Here, x is bound to an object of a type unknown at compile time. The type tag
within the created dynamic thus cannot make use of a universally quantified type variable
as the dynamic value holds a specific concrete type.

The issue of existential type quantification has been dealt with in a number of ways. In [3],
capture of existentially quantified types is forbidden. This is extended by Leroy and Mauny
[2] to allow existential types to be represented in the tags of dynamic values. However, the
added expressiveness they achieve seems to be of little practical value. We will avoid this
issue at present; for now we will assume that type reconstruction of polymorphic objects is
possible. This eliminates the need for existential quantification in type tags. Ways to either
perform or avoid type reconstruction are presented in section 6. In the above example a
type for the parameter x would somehow be computed at run time and inserted into the
dynamic. This problem does not arise in dynamicly typed languages since the value of x
would include type information.

The inverse of toDynamic is fromDynamic. This unwraps a dynamic value and ensures that
the type tag of the dynamic is compatible with (no less general than) the type inferred
during static type analysis. Like toDynamic, fromDynamic is not actually a function but
rather a special construct. It has the following type behavior:

fromDynamic :: Dynamic -> a

The context in which the fromDynamic appears determines the permissible type tags in the
dynamic value. The type of the dynamic must be at least as general as the type inferred at
compile time. When this is not the case, a runtime type error occurs. For example, in

x :: Int
x = fromDynamic y




3 DYNAMIC TYPING 4

the type in the dynamic y must indicate that it contains an Int.

A more conventional way of unwrapping dynamic values uses pattern matching. We aug-
ment standard Haskell patterns with pat :: type to match dynamic values with the given
type. One important restriction on dynamic pattern matching is required: type variables
within the signatures cannot propagate outside of the corresponding clause. The follow-
ing generates a compile time type error since a type variable unwrapped by the dynamic
escapes:

f :: Text a => Dynamic -> a
f (x :: Text a => a) = x

The following would be allowed:

f :: Dynamic -> String
f (x :: Text a => a) = show x =-- show :: Text a => a -> String

Here, the type variable created by pattern matching against the Dynamic does not escape
f and the restriction is not violated.

This restriction is due to the fact that this sort of pattern matching creates existentially
quantified types. Such types are only valid locally and cannot escape.

The fromDynamic construct does not have this restriction. Calls to fromDynamic may
appear in a context containing existentially quantified type variables, but a runtime error
will result unless the runtime instantiation of the existentially quantified type variables
exactly matches the type of the Dynamic value. In the function

addOneDynamic :: Num a => a -> Dynamic -> a
addOneDynamic x d = x + fromDynamic d

the dynamic d must be contain the same type as the parameter x. Since in Haskell addition
is defined in conjunction with the class system, it has the typing Num a => a -> a -> a.
This function adds numerics of any sort as long as the dynamic is the same numeric type
as the parameter x.

The fromDynamic construct cannot be used in situations where the compile time type is
more general than the runtime type expected. In the following

bad :: Dynamic -> Dynamic -> Dynamic
bad x y = toDynamic (fromDynamic x + fromDynamic y)

the calls to fromDynamic appear in a context with the typing Num a => a. The types in
the dynamics must be at least as general, so no practical type is allowable for x and y. This
problem can be avoided using pattern matching:

good :: Dynamic -> Dynamic -> Dynamic
good (x :: Num a => a) y = toDynamic (x + fromDynamic y)

Here the value in x is opened up using a pattern match which creates an existential type in
the context where fromDynamic is used. The type within y is then compared to the type
taken from x as expected. The returned dynamic will have this same type.




4 THE STATIC TYPE SYSTEM AT RUNTIME 5

The semantics chosen for fromDynamic are in contrast with other approaches to dynamic
typing. While previous work with dynamic typing provides toDynamic and dynamic pattern
matching, the use of fromDynamic to allow dynamic values to re-integrate in existentially
typed situations is novel. Although the difference between the semantics of pattern matching
and fromDynamic in unwrapping dynamic values may not seem obvious, each is necessary
in different situations.

4 The Static Type System at Runtime

The tag created by the toDynamic function encodes compile time type information. For
this information to be useful at run time, the compile time type environment must be
present during execution. While the compile time type environment is usually discarded
before runtime in languages with static type systems, it is commonly part of the runtime
environment in dynamic languages such as Lisp.

The type environment is represented at runtime by a set of constants which correspond to
the various type declarations. In Haskell, the following abstract types are used to represent
the type environment: DataType, Constructor, Class, and Instance. The type of a
Dynamic can be extracted by the dType function. It returns a value of type Signature,
defined as follows:

type Context = [Class]
data Signature = Signature [Context] Type
data Type = Tycon DataType [Typel |

Tyvar Int

The Signature constructor introduces numbered, universally quantified type variables with
class constraints, one for each element in the list of contexts. The definitions of the
DataType, Constructor, Class, and Instance are not shown here: these are complex
types whose internal structure is accessed through a set of helper functions. There are too
many such functions to list here; we will introduce them only as needed. A naming conven-
tion is used in which all such function begin with d. The user is not allowed to create new
data types, classes, or instances at runtime.

These functions retrieve the type of a dynamic value:

dType :: Dynamic -> Signature -- Get the type of a dynamic
dConstructor :: Dynamic -> Constructor -- Get the constructor associated
-- with the data value in a dynamic

The dType function merely returns the tag in a dynamic value. It does not force evaluation
of the object captured by the dynamic. In contrast, dConstructor evaluates the captured
value and returns the data constructor associated with the value.

While the availability of type information during execution is traditional in dynamic lan-
guages, the the usefulness of this type information has not been generally recognized.




5 MANIPULATING DYNAMIC VALUES 6

5 Manipulating Dynamic Values

While toDynamic and fromDynamic allow conversion into and out of Dynamic, the ability of
a program to perform operations within the dynamic domain is of great importance. These
operations allow dynamic objects to be safely manipulated from outside the context of their
local type system.

For an algebraic sum of products data type, two dynamic operations are available: con-
struction and selection. The selection operation destructures a dynamic value into a set
of dynamic components, each carrying the appropriate type. Selection is accomplished by
dSlots:

dSlots :: Dynamic -> [Dynamic]

Construction creates a new dynamic value. Each value of type Constructor has an associ-
ated construction function. This function is retrieved by the dMake function:

dMake :: Constructor -> [Dynamic] -> Dynamic

The dMake function must perform limited type inference to construct a correctly typed
result. Type errors may occur: these are manifested as a special data type encoded as a
Dynamic:

data DynamicError = DynamicError String

The string contains an error message from the type checker.

The dConstructor, dSlots, and dMake functions allow values of arbitrary type to be ex-
amined or created in a dynamic context.

Another basic operation on dynamic values is the dynamic function call. This applies a
function (encoded as a Dynamic) to a list of dynamic arguments. Function calling also
performs type inference: the function and argument types must agree and a result type
must be determined. The function :

dynamicApply :: Dynamic -> [Dynamic] -> Dynamic

performs function application in the dynamic domain. It also runs the type checker to
compute the result type of the application. The result of dynamic application is a value of
type DynamicError whenever any type mismatch occurs.

As Haskell is a purely functional language, function calling to impure functions must be
handled a bit differently. The function

dynamicApplyIO :: Dynamic -> [Dynamic] -> IO Dynamic

calls functions in the I0 monad. The I0 monad is used by Haskell to sequence operations
on the global state; the function called by dynamicApplyI0 must also be in the I0 monad.




6 TYPE RECONSTRUCTION 7

6 Type Reconstruction

Reconstructing the type of a polymorphic object at runtime is a problem that has been
studied in the context of memory management and debuggers. The simplest approach
is to use runtime tags even in a staticly typed language. Another is to infer types on
demand by searching through the runtime stack for the point at which a polymorphic type
is instantiated[5]. In Haskell, the class system supplies a simple means of recovering runtime
type information. The class

class Typable a where
typeof :: a -> Signature

can be attached to existentially quantified type variables enabling the recovery of the asso-
ciated type at runtime. All types are placed into this class implicitly and the appropriate
typeof function derived by the compiler. The class mechanism will then propagate the
correct type signature where it is needed without further action by the user. While this
looks suspiciously like a retreat to fully tagged data objects, there is a significant difference.
Tags are not physically attached to the values; the class system will maintain the tag as a
separate structure. One tag value may apply to many data values. For example, in

f :: Typable a => [a] -> [a] -> [a]

a single tag value passed to £ would identify the polymorphic components of all list struc-
tures used by f. In contrast, full dynamic typing would require a tag attached to every
element of each list.

The use of typable has a few drawbacks, however. The Typable context may appear
unexpectedly when dynamic typing is used. While correct context propagation will occur
without user intervention, user supplied type signatures would need to mention Typable in
some cases. It is possible to hide Typable from the user by implicitly propagating this class
in for all polymorphic values. This complicates function calling somewhat and may slow
down execution. A more serious drawback is that abstraction boundaries are broken: the
inner structure of all types are passed around at runtime is available to the user through
conversion to the Dynamic type.

A less intrusive approach is to create invent new types on the fly to denote the type of
unknown objects. This is known as Skolemization in logic and the newly generated types
are Skolem constants. These Skolem types may be associated with type classes in the same
manner as ordinary types. In the function

f :: Text a => a -> Dynamic
f x = toDynamic x

the Skolem type generated to denote the type of x will be a member of the class Text.
The dictionary passed to f is captured in the new Datatype object created by the call to
toDynamic. A dynamic created by f can be used in any situation requiring a value in the
class Text. While a Skolem type does not match the actual type of the value it is assigned
to, it serves both as a container to hold class assertions which accompany the data value




7 IMPLEMENTATION ISSUES 8

and as a marker that allows objects created with the same skolem type to be recognized
later as sharing a common type. The following function captures two numerics:

capture x y :: Num a => a -> a -> (Dynamic,Dynamic)
capture x y = (toDynamic x,toDynamic y)

Since x and y are declared to have a common type by the type signature of capture, only
one skolem type is generated and this type is saved in the tag of both dynamics. This allows
these dynamics to be used in a context where two dynamics of the same type are necessary,
such as the good function presented earlier:

good :: Dynamic -> Dynamic -> Dynamic
good (x :: Num a => a) y = toDynamic (x + fromDynamic y)

When Skolem types are used, type signatures play an especially important role. Without
the attached type signature, the capture function would not know that the two dynamics
share a common type or that the type is in class Num.

An advantage to Skolemization is that it acts as an abstraction barrier, giving a local name
to an unknown type.

Skolem types must be propagated through pattern matching against dynamics. The ex-
istential types introduced by pattern matching are found at runtime in the type tag in
the dynamic object. In the good function, the type a is instantiated by pattern matching
against the first argument. The type of x thus corresponds to the tag of the dynamic which
binds x. When toDynamic is called, the value of this tag can then be used in the new
- dynamic value, preserving the type.

While Skolemization is used during type inference in [2], these types are not used in the tags
of dynamics as we do. The utility of Skolem types derives from the class system - without
type classes, they are much less useful. .

Unfortunately, Skolemization results in a loss of referential transparency. If the capture
function is called repeatedly with the same arguments it will create a new Skolem type in
each pair of dynamics. To avoid this problem, dynamic objects containing Skolem types
should not have their types matched against skolem types created in different contexts.

7 Implementation Issues

At compile time, the primary implementation issues are type capture and the insertion of
runtime unification. The expression toDynamic exp is compiled as

let temp = exp in MkDynamic (captureType temp) temp

where MkDynamic is the internal data constructor for dynamics. The captureType instructs
the compiler to create a runtime type value from the type of temp.

The expansion of fromDynamic is similar. The runtime unification function takes two types:
a ‘more general’ and a ‘less general’ and returns either an error indication or alist of bindings
of type variables in the ‘more general’ pattern. The expression fromDynamic exp is replaced
by




7 IMPLEMENTATION ISSUES 9

temp where
MkDynamic tag value = exp
temp = case unify tag (captureType temp) of
UnifyError -> error "Dynamic type error"
=> value

Pattern matching is expanded in a manner similar to fromDynamic except that the bindings
created during unification may be required to instantiate dictionaries. Unification errors
yield failure to match instead of a runtime error. Support to locate dictionaries at runtime
is required. Including dictionary conversion, the code generated by the type checker for

f (x :: Text a => a) = show x
would be

f x’ = case unify <constant for Text a => a> tag of
UnifyError -> failure
Match [a_type]l ->
case dictLookup a_type "Text" of
NotFound -> failure
Found dText -> show dText x
where
MkDynamic tag x = x’
failure = error "Runtime pattern match failure"

The implementation of type capture can be accomplished in a manner similar to dictionary
conversion[4]. Type constants cannot be completely constructed until all components of
the type have been generalized. Placeholders are used to postpone type capture on type
variables still bound in the type environment. As outer expressions are generalized, these
type placeholders may be resolved in one of three ways:

¢ The type may be instantiated to a concrete type. This replaces the placeholder with
a type constant.

o The type may be associated with a data object. The type of the data object must
either by computed using the Typable type class or a skolem type can be generated.

o The type may be instantiated through dynamic pattern matching. In this case, a type
object is available at runtime and is placed into the type object.

This example captures the type of a parameter:

£ :: Num a => a -> a -> (Dynamic,Dynamic)
f x y = (toDynamic x,toDynamic y)

The type a is captured in both dynamics. This would be transformed into something like:

f x y numDictionary = (MkDynamic atype x, MkDynamic atype y) where
atype = makeSkolemType [("Num",numDictionary)]




8 AN EXAMPLE: DERIVED INSTANCES 10

This uses the skolemization; the typeOf style would be similar. In either case, the two
dynamic types created will have identical type tags and can thus be used in a common Num
context.

Other changes to the compiler are relatively straightforward. Type declarations must gen-
erate type constants. Separate compilation requires that the linkage between types and
classes be postponed until load time. These constants contain functionals which implement
the dConstructor, dSlots, and dMake functions. The type checker must check for escaping
type variables in dynamic pattern matching.

The runtime support needed by dynamic typing consists mainly of the type unification
algorithm made available at runtime. This is not significantly different from the unification
done at type checking time in the compiler.

8 An Example: Derived Instances

To demonstrate the use of dynamics to achieve structural polymorphism, we will present an
implementation of some of the functions currently defined as derived instances in Haskell.
We combine the textual (macro expansion) approach with dynamics to allow the majority
of the derived instance to be placed in a dynamic handler. A small, type specific bit of code
in the actual instance is used to convert values to dynamic form and call the handler.

Derived instances are created by deriving clause in a data declaration. Instead of building
source code for the entire instance, we propose a very simple macro-like mechanism invoked
by deriving clause which will call a dynamic version of the instance function. The declaration

derive Text(T) as
instance Text(Components T) => T Type where
print x = printDynamic (toDynamic x)

The only non-standard Haskell we use here is Components Type. This is expanded into a
list of all structure components of the type. The declaration

data Type a = C1 a | C2 Int deriving Text
would generate the following instance:

instance Text(a,Int) => Text (Type a) where
print x = printDynamic (toDynamic x)

Context reduction is required to correctly propagate context information down to the com-
ponents of the type. As this is not always possible, the instance may not be derivable. This
context reduction is already a part of the derived instance expansion - the only difference
is that it becomes more visible here. This derive ... as construct is not directly related
to the dynamic typing; alternative ways of generating this instance declaration could be
proposed. What is crucial here is that the body of the Text instance defined above calls
a generic printer capable of printing values of any type. Although we have used a very




8 AN EXAMPLE: DERIVED INSTANCES 11

simple syntactic means to start the dynamic printing process, the real work is being done
by dynamic types.

The dynamic printer is responsible for printing values of arbitrary type encoded as dynamics.
The type captured by toDynamic will be guaranteed to have a Text instance for each
component of the type.

A very simple printer for dynamic values would be:

printDynamic :: Dynamic -> String
printDynamic d = typeName ++ concat slotValues d where
typeName = constrName (dConstructor d)
slotValues = map (\(s :: Text a => a) -> "(" ++ print s ++ ")") dSlots d

Although this is much simpler than the standard Haskell print instance it illustrates how
dynamics can be used to create a structurally polymorphic print routine. The context
supplied in the instance declaration assures that the (s :: Text a => a) will always match
the value in the slot of the dynamic.

The Eq (equality) class illustrates some more aspects of dynamic typing. Here the deriving
template is

derive Eq(T) as
instance Eq(Components T) => Eq T where
x == y = dymanicEq (toDynamic x) (toDynamic y)

The dynamic equality function first ensures that the values and created with the same
constructor and then compares slots pairwise.

dynamicEq :: Dynamic -> Dynamic -> Bool
dynamicEq x y = dConstrName x == dConstrName y &&
sameSlots (dSlots x) (dSlots y)
where sameSlots [] [] = True
sameSlots ((x :: Eq a => a):xs) (y:ys) =
x == fromDynamic y && sameSlots xs ys

The function dConstrName returns the name of the constructor.

The dynamic reader differs from the previous examples in that it is type driven rather than
data driven. The read process takes a type object and returns an object of that type. The
template for the read function is

derive Read(T) as
instance Read(Subtypes T) => Read T where
read s = a where
ty = toDynamic a
a = (fromDynamic v,s) where
(v,s) = (readDynamic s ty)

This read function returns a tuple containing the value and the remaining input. The class
system supplies the type being read: the typing of read is




9 SUMMARY AND CONCLUSIONS 12

read :: Read a => String -> (a,String)

The value ty in the above example is a dynamic constructed strictly for the purpose of
extracting the type tag. The value a has the type returned by the read function so ty will
contain the desired type. Since a is the result of the readDynamic function, an attempt in
the function to evaluate ty would lead to an infinite loop. Since Haskell is lazy, however, the
dynamic can be constructed without evaluating the value it contains. (For a strict language
such as ML a version of toDynamic which captures only the type and not the value could
be used.)

The readDynamic function is too involved to present here. At the heart of this function is
dMake, used to create the value, and a form of dSlots, which returns the slot types of the
object being read. These types are used to recursively read the structure components.

9 Summary and Conclusions

Much of what is presented here is derived from either ML style dynamic typing [2, 3] or
general programming practice in dynamic languages. The principal contributions are the
use of the more complex Haskell type system, the skolemization process to avoid type
reconstruction, and the semantics of the fromDynamic operator. This work has practical
value: it provides a elegant solution to a serious shortcoming in the design of Haskell.
By providing a user an accessible means to achieve structural polymorphism, a previously
inflexible aspect of the language has been made accessible to the user.

Other typing systems with capabilities similar to dynamic typing have been proposed, in-
cluding soft typing[7] and quasi-static typing[6] address slightly different issues. Both in-
crease the expressiveness of the type system in an implicit manner, while the dynamic typing
here must be fully explicit. Neither addresses the issue of structural polymorphism. How-
ever, both view dynamic types as having all other types as a subset. This allows for implicit
conversion to the dynamic domain, something not found in this approach. Such implicit
conversion is actually quite valuable since it would eliminate the need for toDynamic and
fromDynamic. However, such implicit conversion involves serious alterations to the basic
type system. Qur approach leaves the Haskell type system itself untouched.

10 Acknowledgments

This work was supported by grants from DARPA, contract number N00014-91-J-4043, and
from NSF, contract number CCR-9104987.

References

[1] P. Hudak, S.L. Peyton Jones and P. Wadler (eds.). Report on the programming lan-
guage Haskell, version 1.2. ACM SIGPLAN notices, 27, 5, May 1992.




REFERENCES 13

[2] X. Leroy and M. Mauny. Dynamics in ML. In Functional Programming Languages and
Computer Architecture, Cambridge, MA, pages 406-426, Springer, Aug. 1991. Lecture
Notes in Computer Science, Vol 523.

[3] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a Statically Typed
Language. In Transactions on Programming Languages and Systems, 13, 2, April 1991.

[4] J. Peterson and M. Jones. Implementing Type Classes. In Proceedings of the SIGPLAN
’93 Conference on Programming Language Design and Implementation, pages 227-236,
June 1993.

[5] B. Goldberg Tag-Free Garbage Collection for Strongly Typed Programming Languages.
In Proceedings of the SIGPLAN ’91 Conference on Programming Language Design and
Implementation, pages 165-176, June 1991.

[6] S. Thatte. Quasi-static Typing. In Conference Record of the Seventeenth Annual Sym-
posium on Principles of Programming Languages, pages 367-381, January 1990.

[7] R. Cartwright and M. Fagan. Soft Typing. In Proceedings of the SIGPLAN 91 Con-
ference on Programming Language Design and Implementation, pages 278-292, June
1991.




