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Abstract

This article describes a methodology for using stereo visual feedback to perform
manipulation tasks. The two major innovations in the approach are: 1) the use of
feature-based tracking methods that perform in real-time on standard workstations
without specialized hardware; and 2) the use of closed-loop feedback control based on
projective invariants to make servoing accuracy independent of calibration.

This article focuses on the construction and application of our feature tracking
system. The system supports a variety of low-level detection methods (basic features),
and features defined in terms of other features (composite features). We first describe
how basic feature tracking has been implemented to be fast and robust on common
workstations. We then develop a model of composite features as networks of state-
based systems.

We present experimental results from two feature networks. One computes corre-
sponding epipolar lines using eight corresponding features in two images. The second
computes a visual trajectory for a visual servoing system.
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1 Introduction

This article describes a methodology for using stereo visual feedback to perform mani;)ulation
tasks. Although a great deal of research has been devoted to vision-based robotics, most
‘vision-based systems are slow, unreliable, difficult to calibrate, expensive, and time consum-
ing to build. One reason is that the data from vision must be processed efficiently so that it
can be incorporated into a servo-loop that must execute in a timely fashion. The solution to
this data reduction problem is usually problem specific and relies on sﬁecialized hardware.
A second reason is that coordinating vision with a manipulator depends on knowing the
transformation from visual to robot coordinates—the hand-eye transform. Most systems are
extremely sensitive to errors in the hand-eye transform, making them inherently unreliable.

The main innovations in our approach are: the use of reconfigurable window-based feature
tracking to simplify and increase the reliability of vision processing, the use of feedback
controllers based on projective invariants to make system servoing accuracy independent
of the hand-eye calibration, and the use of geometry-based servoing strategies to enhance
reconfigurability. To be more concrete, consider tasks such as: constructing a tower of
blocks, placing a grocery item into a box, picking up a coffee cup, inserting a floppy disk
into a disk drive, or placing a wrench on a nut. All of these tasks can be broken down into a
set of primitive operations which are defined in the visual domain. Each of these operations,
which we henceforth refer to as hand-eye skills, has a geometric interpretation in the external

world. Some example skills are:

Positioning: Move to a visual reference point.
Alignment: Orient along a visual reference line or align to a visual reference plane.
Motion: Move a point along a linear trajectory defined by a reference line.

Guarded Move: Move a set of reference features between or past other reference features.

For example, given stereo cameras, building a tower of blocks could be described in terms
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of coordinated motions of features in both cameras as follows: move a corner of a block until
it is on the line defined by an edge of the tower, align the two lines defining the face of the
block with corresponding lines along the side of the tower, and move the block along these
lines until touchdown. Given visually defined grasp points on the sides of a cup, grasping
with a parallel jaw gripper could bé executed as: align relative to grasp points, execute a
guarded move toward the grasp points until the grasp points lie on the line defined byvthe
two finger tips; maintain this position as fingertips close.

In this article, we give particular emphasis to the feature tracking component of the sys-
tem. Historically, real-time vision has resorted to specializéd, often custom-made, hardware
in order to process the huge amount of information available in video images. However,
the speed of standard workstations continues to increase, prices continue to decrease, and
multi-processor architectures are becoming more widely available and accessible. These ad-
vances anticipate the day when many vision applications that do not require massive data
trénsfers (e.g. full frame image processing) can be run on standard workstations outfitted
with a simple framegrabbér. Our tracking system is designed be a substrate from which such
applications can be built. We have found that having a general-purpose “tracking tool” has
enabled us to quickly assemble a wide variety of vision-based robotic applications in both
the manipulation and mobile robot navigation domains.

The remainder of this document is organized as follows. The next section briefly com-
pares our work with previous research in visual tracking and hand-eye coordination. Sec-
tion 3 develops methods for accurate, calibration independent positioning and describes a
methodology for expressing geometric tasks in terms of visual cues using ideas from projec-
tive geometry. Section 4 describes the tracking system in some detail. Section 5 describes
two experiments with the system, and Section 6 indicates areas where we are improving the

system.




2 Relationship to Previous Work

There has been a great deal of interest in non-feature-based, “attentional” or “reactive”
vision systems for tracking. [13, 5, 6, 7, 37, 31]. However, most fine manipulation will
require accurate template or feature-based tracking so that the visual servoing system can
react to precise information about the configuration of the external world. Most reported
feature-based tracking algorithms rely on global image processing followed by a feature-based
correspondence solution. In some cases, the underlying representation is the pose of a known
object in three dimensions, eg. [15, 28, 40]; in some cases the underlying representation
is simply the 3-D location of features themselves, eg. [4, 26, 41]; and in some cases, the
representation consists of geometric characteristics of the feature in the image [8, 9]. Most
authors employ a linear smoother/predictor (eg. a Kalman filter) to update a feature or
model information and to predict the location and/or appearance of features in images.
Our research philosophy instead relies on using window-based image processing. The main
advantages are speed, simplicity, and robustness. The latter comes from the fact that we
can independently “tune” the image processing in each window to the particular feature
or pattern that it is tracking. Similar real-time window-based processing appears in [10,'
35]. Both systems rely on a specially constructed Transputer network to achieve real-time
performance. _

There is an abundance of literature related to visual servoing [25, 16, 1, 35, 3, 38, 34, 21,
24, 25, 33]. Systems take two forms: eye-in-hand or eye-on-arm systems where the camera
is mounted on the manipulator, and hand-eye systems where the cameras are external to
the controlled system. Nearly all hand-eye systems (cameras not on the manipulator) use
vision to generate a Cartesian “reference trajectory” for the robot to track. This means that
robot positioning is effectively open-loop with respect to vision. Closed-loop systems have
been built by mounting camera(s) directly on the robot itself (e.g [30, 32, 38]). However,

applying these systems to manipulation tasks still relies on an implicit or explicit hand-eye




calibration. Moreover, placing the camera on the robot restricts its viewing space, increases
the likelihood that the robot will occlude the camera, view, and decreases the payload of the
robot.

Wijesoma et.al. [39] describe a closed-loop monocular hand-eye system for planar posi-
tioning using image feedback. In earlier work [17] we described a similar monocular visual
‘servoing system and examined the use of adaptive control to compensate for calibration
error. To our knowledge, the only stereo visual-servoing system similar in conception to
ours is described in a recent paper by Hollinghurst and Cipolla [22]. There are three major
dividing points between their work and ours. F irst, they use a locally valid affine approxima-
tion to the inverse perspective transformation requiring recalibration if the robot moves to
a different point in the workspace. We use a perspective model that is globally valid. They
compute the approximate Cartesian positions for both the end-effector and the goal position
and compute control signals based on the difference between these positions. We eschew any
~ sort of reconstruction and work purely in the visual domain. Finally, they describe a special
purpose application of these concepts whereas we believe there are more general principles
and a wider variety of hand-eye skills that can be elucidated.

Hutchinson [24] has developed a planning methodology for vision-based systems. How-
ever, his work has been restricted to monocular hand-on-arm systems using a single visual

alignment primitive.

3 A Methodology for Visual Servoing

Recently, there has been increasing interest in applying ideas from projective geometry to
vision [29, 12, 11]. Of particular interest are projective invariants. Our experience indicates
that controllers based on invariant properties perform with an abcuracy that depends only
on the physical configuration of the system. In short: the accuracy of servo control is

independent of system calibration.
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Figure 1. The figure on the left shows a visual servoing system consisting of two cameras on pan-
tilt heads connected via a vision-based controller to a robot arm. The middle and right figure

demonstrate positioning by reducing visual disparity to zero.

Figure 1(a) illustrates this idea for positioning. The left figure is a schematic depiction of
our visual servoing architecture which includes two video cameras on pan-tilt heads, a robot
arm, and computers that perform image-processing, low-level control operations, and other
interface-related functions. Any attempt to accurately calibrate this system is limited by
system modeling errors, mechanical backlash, control inaccuracy, and so forth. Consequently,
a system that reconstructs absolute point coordinates using vision and positions the robot
based on that information will be extremely imprecise. However, as illustrated in Figures
1(b) and 1(c) the robot manipulator can be positioned extremely accurately relative to the
observed target. In (b), the cameras observe the visual disparity 6; and 6, between a point
on the gripper and the corner of the box. We know the following property: zero disparity
between the manipulator and the goal in both images means that they are at the same point
in space. This property is true independent of where the cameras are located relative to the

robot!. Thus, if we have a stable controller to achieve zero visual disparity, we can position

'More precisely this statement is true modulo configurations where the goal or robot and the cameras

are collinear.




accurately, even if the system is badly calibrated.

Such a controller can be derived as follows. Consider two cameras located at positions
1 and c; relative to an arbitrary fixed coordinate system W. The cameras carry lenses with
focal lengths f; and f,, respectively. For each camera define a coordinate system by three
orthogonal unit vectors, #;, ¥; and 2; where z; points along the optical axis of camera 1, y,
points downward relative to the image of camera 1, and x; = y, X 2;. The vector r designates
the position (relative to W) of a control point on a robot controlled by a velocity vector u.
We assume the dynamics of the robot are negligible.

Using a pinhole camera model, the observation of r is given by:

T
6= (nirzam fooa)u A= o) )

(r—a) -2’ 2(r—c2)-z2 2(7‘-—62)'22

Define 7 = u and let ¢* € R* denote the desired or “setpoint” value of ¢. Also, introduce
the error e, = ¢ — ¢* as well as the error integrating subsystem z = e4. We will assume ¢*
has been chosen so that it is attainable—that is, there is a value r* such that ¢* = g(r*).

The control synthesis task is to choose u as a function of z, z, es to stabilize the system
z = €4 (2)

és = J(r)u (3)

where J(r) is the Jacobian of the composition g(r). Assuming J () has rank 3, stabilization

can be carried out by setting
u=—(J(r)TIE) I (r)(kres + kyz) (4)

where k1 and k; are positive gain constants chosen based on desired system behavior. We
note that the problem can also be formulated so that the generalized inverse used above is

not necessary [19].




Since the reference point r may be any point rigidly attached to the robot, its value is
unknown and we must estimate it. The estimate, 7, is computed by rewriting the original
~system g in the form A(¢)r = b(¢) and then defining

r=u— AT($)(A(9)F - b(9)) (5)
The estimate of r is used in (4). The stability analysis of the system appears in [19]. J and
A have rank 3 as long as the cameras are spatially separated and the trajectory of r does
not cross the line joining the optical centers of the camera. Thus, desired tracking will be
achieved even if the camera calibration parameters are only approximately correct, provided
the approximation errors are sufficiently small.

Given two reference vectors (a point and a line through the point) on the robot, it
is also possible to control orientation by alignment with reference vectors in the world.
We are currently developing a control algorithm based on this principle. The algorithm is
more complex due to a larger number of unknown parameters and the nonlinearity of the
problem. Initial simulation results seem to indicate that the same controller structure will

work, however we have no stability analysis at this time.

3.1 Projective Geometry and Visual Servoing

Applying these control algorithms to perform a given task requires a visual specification
of the task. That is, a geometric operation can only be accomplished by choosing visual
features of the robot arm or payload, and visual features in the world to which some variant
of the above control strategies can be applied. We now describe some of the geometric
constructions that can be used to compute setpoints for positioning or alignment . Many of
these ideas are based on recent progress in the area of “uncalibrated” vision using projective

invariants [29, 11]. We recall the following facts:

e As already noted, except for certain singular configurations, two points are coincident

if and only if their perspective projections in two or more images are coincident.
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e Collinearity of points is preserved under projection. Modulo a set of singular configu-
rations, two lines are collinear if and only if the projections in two camera images are

are collinear.
o The projections of parallel lines meet at a single point in an image.

e Given (homogeneous) projections, p; and p,, of a point P in two images, there is a 3
by 3 matrix E such that p} Ep, = 0. The matrix E can be computed from the projec-
tions of eight points in two images provided the points are arranged in a nonsingular
configuration [27, 23, 29]. Hence, given a ninth point in one image, it is possible to
determine the epipolar line along which the corresponding projection lies in the second

image.

By applying geometric constructions based on the properties listed above, it is possible
to use positioning and alignment to define many other “hand-eye skills.” For example, it
is often convenient to station the manipulator at some point in space relative to an object.
Given the projection of a reference line in one image, we can choose an arbitrary point along
that line as a stationing point. Using the E matrix, we can compute the corresponding
epipolar line in the second image. The intersection of the projection of the reference line
in the second image with the epipolar line is the location of the correct stationing point in
the second image. This defines ¢* for relative positioning along a line. Given two reference
points ¢; and ¢;, we can define a time-varying reference point ¢*(t) = ¢1+t(d2 — ¢1). With
minor modifications the controller can track these setpoints thereby achieving calibration
independent straight-line motion. Given two parallel lines, we can compute the intersection
point of their projections in two images.? Given a feature point in one image, we can

compute the line through the intersection point and this feature point. Performing the same

?If they do not intersect, the camera is parallel or perpendicular to the lines. In the former case, and we

take the projection to be at infinity, in the latter case we can do nothing.
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Figure 2. The geometric constructions for inserting a floppy disk into a drive unit.

construction for corresponding feature point in the second image yields a setpoint for parallel
alignment.

Figure 2 describes the use of these geometric constructions to place a floppy disk in a
disk drive. Geometrically, the strategy is to move the disk into the plane of the disk drive
unit, align the edge perpendicular to the slot, and then move toward the slot until the disk
slides in. In the visual domain, we can perform this task if we know that the sides of the
disk drive are parallel to the floppy disk drive, the front of the unit is perpendicular to it,
and the floppy itself forms a right angle. We first construct vanishing points V1 and V2 by
tracking the indicated corners of the drive unit. The edge of the floppy slot and the vanishing
point is used to construct the line L2. A reference point R along L2 is chosen, and the line
L1 is constructed from the vanishing point V1. R, L1 and L2 define reference vectors (the
setpoint) for alignment. Three corners of the floppy are used to construct the corresponding
reference vectors on the disk itself. We note that the corresponding point for R in the second
image would be computed as the intersection of L2 in the second image with the epipolar
line corresponding to R. Finally, R can be moved along L2 to insert the floppy.

From this example, it is clear that hand-eye coordination depends heavily on an ability

to locate and track specific features in an image.
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Figure 3. On the left, a sample image showing a reference line on the waist of the robot, and on

the right the image associated with the window as it appears in window local coordinates.
4 Tracking System Design

Complex hand-eye tasks require a feature tracking system that can handle multiple features,
can enforce various constraints among features, and can be simply reconfigured for different
tasks and operating conditions. Qur tracking system is based on two central ideas: window-
based image processing, and state-based programming of networks of tracked features.

A window is an image defined by its height, width, position, and orientation in device
(framebuffer) coordinates. All image processing operations within the window are defined
relative to the local window coordinate system. Referring to Figure 3, suppose that we have
an image with a window located about the white line in F igure 3(left). Then the image
associated with that window (in window coordinates) is shown in Figure 3(right). Note that

the line appears roughly horizontal in window coordinates.

Tracking a feature means that a window maintains a fixed, pre-defined relationship to
the feature. Hence, any operation such as line detection or feature matching can be im-
plemented assuming the requisite feature only deviates slightly from a standard orientation
and position in local coordinates. This makes image processing simple to implement, fast

to execute, and easy to specialize. At the same time, acquiring windows at any position
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Figure 4. One dimensional convolution followed by superposition.

and orientation can be implemented quickly using ideas for fast rendering of lines and boxes
borrowed from graphics [14]. Thus, the combination of movable oriented windows and image
processing assuming a canonical configuration leads to fast feature tracking. The low-level
features currently available in our system include solid or broken contrast edges detected us-
ing convolutions, and general grey-scale patterns tracked using SSD methods [2, 36]. These
basic features can be easily composed into a wide variety of more complex configurations.

The implementation of these methods is briefly described below.

4.1 Low-Level Operations

In most image processing systems, the majority of the time needed to perform edge detection
is devoted to convolution. The key idea in fast contour localization is to use prior information
to simplify detection. In window coordinates, detecting a contrast step edge in canonical
position can be thought of as a series of one-dimensional problems as shown in Figure 4(left).
Assuming the edge is vertical in the window, convolving each row of the window with a
derivative-based kernel will produce an aliéned series of responses. These responses can be
superimposed by summing down the columns of the window. Finding the maximum value of
this response function localizes the edge. If the edge is not correctly oriented, the response
curve broadens. However, if the edge is symmetric, the maximum still correctly indicates the

location of the edge in the window. Thus, for the price of a single pass with a one-dimension
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convolution and a series of summations we can localize the position of a contrast edge.

In order to compute orientation, we sum the response to the scalar convolution along
slanted lines as indicated in Figure 4 (right). The result is three response curves with
different maximum values. The curve with the highest response is that closest in orientation
to the underlying edge. By performing parabolic interpolation of the three curves, it is
possible to predict the actual orientation of the underlying edge. In the ideal case, if the
convolution template is symmetric and the response function after superposition is unimodal,
the horizontal displacement of the edge should agree between all three filters. In practice,
the estimate of edge location will be biased. For this reason, edge location is computed
as the weighted average of the edge location of all three peaks. Assuming the convolution
template can be expressed with integers, this entire operation can be performed with only
integer addition and multiplies except for the interpolation step.

A particularly simple detector is a convolution template consisting of n —1’s followed by
m (0’s followed by n 1’s [18]. This kernel is attractive because no multiplications are needed
to compute the convolution. Furthermore, the time to compute the convolution can be made
independent of the size of the kernel. This is accomplished by noting that the difference in
response between one pixel and the next can be computed by four additions and subtractions
of pixels at the trénsition points of the convolution template. This detector on a Sun Sparc
2 with an Imaging Technologies 100 series framegrabber requires 1.5ms for a 20 pixel line
searching + 10 pixels using a mask 15 pixels wide.

There are several minor variations on this scheme. For example, the description above
assumes that the convolution output has a constant sign. If the contour changes from a
dark-to-light transition to a light-to-dark transition as we move along it, the superposition
will yield a low response. Performing an absolute value operation after the convolution solves
this problem.

Detectors based on these ideas have extremely good noise-rejection characteristics. Edges
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outside the window do not affect their operation. Edges within the window, but oriented
incorrectly do not cause much filter response and are generally rejected. In addition, the
value and/or sign of the response can be used to enhance the “tuning” of the filter for a

particular contour.

4.2 Patterns

We track arbitrary gray-scale patterns using SSD methods (2, 36]. To review this method,
we denote the brightness of a pixel at location (z,y) at time ¢ by I(z,y,t). For the case of
translation only, we formulate the SSD objective function in a window W as
D (I(z + ubt,y + vét, t + 6t) — I(z, y,t))?
w
Expanding this expression in a Taylor series yields
> (Lu+ Iy + L)
w

Minimizing by taking derivatives and rearranging yields a linear system:

u
H(I, I,) = b(I,, I,, I).

v

The matrix H will be full rank only if the local gradient directions over the window span
the plane. In order to deal with so-called aperture problems, we compute the vector (u,v)T

using the psuedo-inverse, denoted #:
= H#b
v

Variations on this method include parameters for scale and orientation. This tracking
method requires 70 ms to localize a 20 by 20 window on a Sun Sparc 2. This operator is

usually applied at multiple resolutions to increase the range of motions that it can track.
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4.3 Networks of Features

Every feature or image property in our system can be characterized in terms of a state vector.
For basic features—those that operate directly on images—the state of the feature tracker
is usually the position and orientation of the feature (= that of its window) relative to the
framebuffer coordinate system. We define composite features to be features that compute
their state from other basic and composite features.

To illustrate the relationship between basic and composite features, consider computing
the location of the intersection of two contours. The state of a single contour tracker in an
image is the vector L = (z,y, )T describing the location of a window centered on the contour
and oriented along it. The low-level feature detection methods described above compute an
offset normal to the edge, ét, and an orientation offset §6. Given these values, the state of
the contour tracker is updated according to the following equation:

—6tsin(6 + 69)
LY=L+ | &tcos(f + 66) (6)
6+ 66
Note that we have an aperture probleni: the state vector, L, is not fully determined by
information returned from feature detection. There is nothing to keep the window from
creeping “along” the contour it is tracking.

This problem can be solved by defining a composite feature that is the intersection of
two non-colinear contours. This feature has a state vector C = (z,y,0,a)T describing
the position of the intersection point, the orientation of one contour, and the orientation
difference between the two contours. From image contours with state L; = (z1,91,6,)T and
L, = (z3,y2,0;)7, the distance from the center of each tracking window to the point of

intersection the two contours can be computed as
Al = (((132 - 1‘1) sin(02) ot (y2 - yl) cos(02))/sin(02 - 01)
A2 = ((z2—z1)sin(01) — (y2 — 1) cos(6,))/ sin(8, — 6;)
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The state of a corner C = (z., y., 0., a.) is calculated as:

T, = Z1+ Ajcos(6) (7)
Ye = H1t+ A1 sin(6y)
0c = 01

., = 02"-01

Given a fixed intersection point, we can now choose “setpoints” AT and A; describing
where to position the contour windows relative to the intersection point. With this informa-

tion, the states of the individual contours can be adjusted as follows:

z; =z, — A} cos(6;)

Yi = Ye — A sin(6) (8)

for ¢ = 1,2. Choosing A} = A5 = 0 defines a cross pattern. If the window extends & pixels
along the contour, choosing A} = A; = /2 defines a corner. Choosing A} = 0 and \; = h/2
defines a tee, and so forth.

A complete tracking cycle for this system would consist of first computing (8) to make
the initial state of the contours consistent, then performing low-level feature detection, and
finally computing (6) followed by (7).

More generally, we define a feature network to be a set of nodes connected by two types
of directed arcs referred to as up-links and down-links. Nodes represent basic and composite
features. Up-links represent the information dependency between a composite feature and
the features used to compute its state. Thus, if a node is a source node with respect to
up-links, it must be a basic feature. If a node has incoming up-links it must be a composite
feature. If a node n has incoming up-links from nodes m,, m,, ..., ms the latter are called

subsidiary nodes of n. Down-links represent the imposition of constraints or other high-level
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infdrmation on features. A node that is a source for down-links is a top-level node. If a node
n has incoming down-links from nodes m;, my, ... my, the latter are called supersidiary nodes
of n. All directed paths along up-links or down-links in a feature graph must be acyclic. We
also require that every top-level feature that is path-connected to some basic feature with
respect to up-links must be path-connected to the same basic feature via down-links. For
example, a corner is a graph with three nodes. The corner feature is a top-level feature.
The two contours which compose it are subsidiary features. There are both up-links and
down-links between the corner node and the feature nodes.

Given this terminology, we can now define a complete tracking cycle to consist of: 1)
traversing the down-links from each top-level node applying state éonstraints until basic
features are reached; 2) applying low-level detection in every basic feature; and 3) traversing
the up-links of the computing the state of composite features. We note that state prediction

can be added to this cycle by including it in the downward propagation.

5 Example Applications

In this section, we briefly describe a programming environment for developing feature net-
works, and then describe the results of applying this environment to two problems: corre-

spondence calculation and hand-eye servoing.

5.1 Programming Environment

We have constructed a programming environment in C++ to facilitate the construction of
feature-tracking networks. The system implements a subset of feature networks in which
each node may have only one supersidiary node. This means that feature graphs will be
trees in which each up-link from node n to node m has a corresponding down-link from m

to n.
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Basic features are derived from a base class called Feature, and composite features
are derived from a base class called CFeature. Any variable of type Feature provides a
function for updating state from image information, and a display function. A variable of
type CFeature is a Feature that maintains an internal list of subsidiary CFeatures as well
as its own internal state. Information is propagated up and down the feature network using
two functions: compute_state which computes a composite feature’s state from the state
of its subsidiary nodes, and state_propagate that adjusts the state of a subsidiary nodes
based on the state of their supersidiary node. The default update cycle for a CFeature is
to call its own state_propagate function, to call the update function of the children, and
then to call compute_state. This is combined into a single function refresh() callable only
from a top-level feature. Calling it sweeps information down the network to the set of basic
features, updates of the state of all basic features, and sweeps updated state information
back up the network.

We have found that this programming environment greatly facilitates the development
of tracking applications, and leads to clear compact program semantics. For example, a

contrast edge tracker and a corner tracker can be defined as:

Video v(1); Edge e; // Open a video device 1 and declare an edge detector
Line 1(&e,&v); // Declare a contour tracker in video device 1
Corner c(&e, &v); // Declare a corner tracker in video device 1

A corner is actually a CFeature that internally allocates two edge trackers, adds them to
a queue of objects, and manages them using the constraint functions described above. Both

features can be added to a container Cfeature variable:

CFeature p; // Declare a composite feature with no constraint functions
p+=1; p +=c; // add features to internal queue.

Once all features are properly initialized, the main loop of any tracking application is of

the form:
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while (...) {
p.refresh();
. other user code ...

Naturally, any other user code impacts the speed of tracking and so must be limited to
operations that can be performed in a small fraction of a second. Adding a new compos-
ite feature to the system involves deriving a class from CFeature, writing the constraint

functions, and defining the subsidiary features that the class depends on [20].

5.2 Tracking Corresponding Epipolar Lines

We have already described how construction of the epipolar line corresponding to a feature
in an image is an essential tool for computing visual setpoints. Given movable cameras,
tracking epipolar lines also makes it possible to establish additional point correpondences.
The procedure is as follows: 1) hold the first camera still; 2) locate a new feature in the
second camera image; 3) compute the corresponding epipolar line in the first image; 4) move
the second camera; 5) compute another epipolar line in the ‘ﬁrst image. The corresponding
feature point in the first camera is at thé intersecton of two epipolar lines. We note this is
effectively the same technique as is used in trinocular stereo to disambiguate correspondences.

Briefly, the £ matrix can be computed by locating n > 8 corresponding points in two
images, compiling an n by nine matrix A, and selecting the eigenvector corresponding to
the smallest eigenvalue of AT A [23]. The nine values of the eigenvector are the nine entries
in E. Figure 5 describes the feature network used to implement corresponding epipolar line
tracking. We rely on corners as defined in Section 4.3. We define the class CorFeature
which manages two features in separate video images. Its state is the z and y locations of
both features in their respective images. It imposes no constraints on the state of subsidiary
features. Next, we define the class EMatrix to be a CFeature that manages eight or more

corresponding features. It contains a compute_state function that computes the E matrix
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Figure 5. The feature network used to compute corresponding epipolar lines

Figure 6. Left, the first image with a chosen feature (the cross at the far left) and right, the second

image showing the corresponding epipolar line.
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Relative Setpoint

Figure 7. An image of the servoing system as seen from the camera, and a diagram of how the

trajectory was defined.

as described above. Finally, we define a class Cline that manages a corner and an instance
of an Ematrix. It has a compute_state function that computes the equation of the epipolar
line in the second image. The display function is defined to show the line in the second video
image. |

Figure 6 shows two images from an experimental run of the system. Using nine cor-
ners composed of features 12 pixels long, we were able to reliably compute and track the
corresponding epipolar line for a tenth feature point (the hash pattern on the lower right
of the box) at a rate of approximately 10 Hz. The error in correspondence location was
typically less than five pixels. It was interesting to note that the epipolar line equations are
actually quite noisy. However, the computed line “swivels” about the corresponding feature
point. Thus, while the line itself may swing as much as 20 or 30 pixels in some regions, it is

extremely stable at the corresponding feature point.

5.3 Visual Servoing Experiments
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We have implemented a system for position control using the controller described in Section
3. The system consists of a Sparc II computer that performs image processing and control
calculations, and a PC that controls our Zebra Zero robot. Two cameras mounted on pan-tilt
heads located approximately 1 meter from the robot, 30 cm. apart observe the workspace
of the robot. One test consists of tracking the corners of two 3 1/4 inch floppy disks and
executing a rectangular path that starts by touching two corners of the disks, moves to touch
alternate corners, and then returns to the original configuration.

This trajectory is described as follows. We define a class Rect that manages two corners
connected by a straight contour. The state of the Rect composite feature depends on two
constants, d; and d, as well as the positions of the two corners which we will denote ¢; and
c2. Let p denote a vector of length ||c; — ¢;|| perpendicular to the line joining ¢; and c;—that

is, p+ (c2 — ¢1) = 0. Then position of the setpoint, s is given by
s =c1 +dy(cy — 1) + dip.

(see Figure 7). We then define a class SRect that maintains a stereo pair of Rects having
the same values of d; and d,. The state vector of SRect is the concatenation of the state
variables of its children. Changing the setpoint values of an SRect effectively describes a
stereo trajectory for the robot to track®. Two instances of this class are used to track the
bottom of the floppy disk held by the robot of the target floppy in the stand. The state
variables of this system are the robot visual position (¢ above) and the robot setpoint value
(¢* abbve). Executing the test trajectory requires changing the setpoint values of both the
robot disk tracker and the target disk tracker though eight different motion segments.
When tracking contours 16 pixels long in a region of £10 pixels the tracking system alone
runs at 25 Hz. With robot control in the loop, the system runs at 20 Hz. With the physical

configuration as described above, this implies that the robot can be run with endpoint speeds

3This approach assumes the camera imaging planes are roughly parallel to the face of the disk. In general,

we would have to use an epipolar construction to compute corresponding setpoints in two images.
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of up to approximately 12 cm/sec. Assuming contour localization is accurate to 0.5 pixels,
the expected error in localization is about +1.25mm. The width of the disk is exactly 2.5mm,
so we expect the robot to be able to actually touch the corners of the disks together. In
every trial, the system achieved position accuracies well within expected tolerances: less than
0.2mm in the direction parallel to the camera imaging planes and approximately +1.0mm in
depth. The system is also extremely stable and insensitive to calibration. During operation,
we can move the cameras several centimeters and rotate them several degrees with little
apparent effect on the speed and accuracy with which setpoints are attained. More detailed

comments on this system can be found in [19].

6 Future Work

In this article, we have described a novel approach to hand-eye coordination using closed-
loop visual servoing. We have shown how a geometric task can be decomposed a set of visual
reference points and visual trajectories. Implementing vision-based tasks requires a system
that can quickly and accurately track a variety of features. We have constructed such a
system and demonstrated its use for epipolar line calculation and for hand-eye servoing.

There are several areas where we are working to improve and extend the theory and
practice of building tracking-based servoing systems. The major limitations of the current
tracking system is its lack of error-handling capability. We are investigating methods for
improving the low-level rejection of spurious features, and we are looking into methods from
robust statistics to improve the system’s tolerance to momentary mistracking. We would
also like to develop a means of stability analysis for feature tracking networks.

We are currently designing and implementing a controller for alignment. A preliminary
design appears to work in simulation and will be moved to the hand-eye system in the near
future. In the longer term, we plan to construct a larger variety of “hand-eye skills” using

geometric constructions and feedback control.
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