Debugging a DAG Efficiently

Dana Angluin*, Yale University

YALEU/DCS/RR-591
December 1987

*Supported by the National Science Foundation, IRI-8404226

Debugging a DAG Efficiently

Dana Angluin *
Yale University

December 1987

Abstract

We formulate a debugging problem on directed acyclic graphs which is a special case
of an incremental learning problem for propositional Horn sentences. There is a correct
DAG G., and an initial DAG Gg, on the same (known) set of nodes V. G, must be
modified to be transitively equivalent to G. using information about G. from two types
of queries, equivalence queries and requests for hints. We demonstrate an algorithm that
runs in time polynomial in |V'| and uses O(log |V'|) queries per “incorrect” or “missing”
edge in Go. This query bound is shown to be optimal up to a multiplicative factor for
graphs with O(|V|?>~¢) edges.

1 Introduction

The theoretical aspects of learning have recently attracted a lot of attention; some of the
current work is cited in the bibliography. In [3] we consider a problem of learning propo-
sitional Horn sentences using equivalence queries and requests for hints, and show that in
the case of positive Horn sentences with two literals per clause, the problem can be cast
as one of debugging “errors” in a directed graph. Here we give an efficient solution to the
debugging problem in the case that the graphs are restricted to be acyclic. A directed
acyclic graph is called a DAG. Our terminology and notation for directed graphs are fairly
standard, see the references [12,14].

One special notation is the following. The assertion that there is a directed path from
z to y of length at least zero in G is denoted z ~» y in G. If this is not the case, we write
zhryinG.

If G1 and G are two directed graphs on the same set V' of nodes, then G is transitively
equivalent to G if and only if for all z,y € V, 2 ~ y in G; if and only if z ~ y in Ga.
That is, they are transitively equivalent if the same pairs of nodes are connected by directed
paths in both graphs. The size of a directed graph G is the sum of the number of nodes
and edges in G.

*Supported by NSF grant TRI-8404226

2 Formulation of the diagnosis problem for DAGs

Let V be a known set of nodes. There is an unknown DAG G, on the nodes V. The input
is another DAG G on the nodes V', called the initial graph. The problem is to find a DAG
on the nodes V' that is transitively equivalent to G. using the following two types of queries.

1. An equivalence query: propose a DAG G. If G is transitively equivalent to G, the
answer is “yes”. Otherwise, the answer is “no”, and a counterexample is provided,
that is, an ordered pair of nodes (z,y) such that there is a path from z to y in G but
not in G, or vice versa.

2. A request for a hint: propose a pair of nodes (z,y). If there is no path from z to y in
G., the answer is “no path”. If (z,y) is an edge of G., the answer is “edge”. If there
is a path but no edge from z to y in G., the answer is a node z that is not equal to z
or y but appears in some path from z to y in G.,.

Note that the choice of counterexample or hint is arbitrary; a debugging algorithm must
work properly no matter which legal counterexample or hint is given in reply to a query.

One simple algorithm for this problem is to make a request for a hint with every pair
(z,y) of nodes, record which ones are edges in G,, and finally output a graph exactly equal
to G.. This approach necessarily uses |[V|([V/| — 1) queries in the worst case, even if G, is an
extremely sparse graph. It also is not “incremental” in the sense that if the initial graph Go
is “close” to G., that information is not used to reduce the work of finding a graph exactly
equivalent to G,.

3 A Whimsical Motivation

Suppose you are a member of a very traditional society of one million or so members. There
is a high priest, who holds a position of great honor in the society, since he is the only
individual who knows the genealogies of all the members of the society for the ten thousand
generations that records have been kept. For various sacramental purposes, members of
the society consult the high priest with questions of the form “Was Ansemarde an ancestor
of Balacthon?”. The answer, which costs dearly in the traditional currency of bat’s ears,
is either “no”, or “parent”, with the obvious interpretations, or is a third possibility. The
third case is that “A.” was an ancestor of “B.”, and as a token of good faith, the high priest
gives an intermediate ancestor, e.g., “Cullaforth”, who was both a descendant of “A.” and
an ancestor of “B.”

You aspire to usurp the high priest, and by a stroke of good luck and sound bribery,
have acquired an early and somewhat incorrect draft of the entire genealogy graph. You
proceed to set up a surreptitious cut-rate genealogy service using the old draft. Every so
often, angry customers return to complain that some answer of yours differs from that of
the high priest. You are compelled to return their fees and you lose some credibility with
your other customers.

However, you have in effect a counterexample in answer to the query of whether your
genealogy graph is equivalent to that of the high priest. Using the algorithm described
below, some of your capital of bat’s ears, and a network of people paid to ask questions of

the high priest, you proceed to remove one or more bugs in your copy of the genealogy. Note
that his answers are precisely answers to requests for hints concerning the genealogy graph.
See Littlestone’s paper [23] for a formal treatment of the relationship between equivalence
queries and errors of prediction.

4 The debugging algorithm

We give an algorithm that uses equivalence queries and request for hint queries to find
incorrect and missing edges in the initial graph Go in O(log |V'|) queries per edge found to
be missing or incorrect. The algorithm is an optimized version of the incremental learning
algorithm IHL in [3].

4.1 Incorrect and missing edges

Let G denote any DAG on the nodes V. An edge (z,y) is incorrect if there is no path from
z to y in G,. Let {(G) denote the number of incorrect edges in G. The correct part of G,
denoted C(G), is the graph obtained from G by deleting all the incorrect edges. An edge
(z,y) is defined to be missing with respect to G if z ~» y in G, but not in C(G). Let m(G)
denote the number of edges in G, that are missing with respect to G.

Our measure of how close any graph G on the nodes V is to the correct graph G, is

d(G) = {(G) + m(G).
As an example, suppose V = {1,2,3,4}, G, has edges

{(1,2),(1,3),(2,4),(3,4)}
and G has edges
{(1,2),(1,4),(2,3),(3,4)}-

Since there is no path from 2 to 3 in G., the edge (2,3) of G is incorrect. The remaining
edges of G are correct, so i(G) = 1 and C(G) has edges

{(1,2),(1,4),(3,4)}.

Since there is no path from 1 to 3 and no path from 2 to 4 in C(G) (though there are such
paths in G), the edges (1,3) and (2, 4) of G, are missing with respect to G. Thus m(G) = 2
and d(G) = 3.

Lemma 1 G 1is transitively equivalent to G. if and only +f d(G) = 0.

Suppose G is transitively equivalent to G.. Then for every edge (z,y) in G, z ~ y in G,
so there are no incorrect edges in G and {(G) = 0. Thus C(G) is equal to G. For every
edge (z,y) in G., z ~ y in G and therefore also in C(G). Hence there are no edges of G,
missing with respect to G, so m(G) =0 and d(G) =0. .

Conversely, suppose d(G) = 0, so {(G) = 0 and m(G) = 0. Since i(G) = 0, there are
‘no incorrect edges in G, and for every edge (z,y) of G, z ~ y in G.. Since m(G) = 0, for
every edge (z,y) of G., z ~ y in C(G) and hence in G. These imply that G and G, are
transitively equivalent. Q.E.D.

4.2 Description of subprocedures

The main procedure, Debug, is called with a DAG Gg and uses equivalence queries and
calls to subprocedures to find a DAG transitively equivalent to G,. We first describe
the subprocedures Find-Path, Remove-Incorrect, Add-Edges, and Find-Missing. There is a
global variable G, called the current graph, which is initially equal to G and is modified by
the addition and deletion of edges to be transitively equivalent to G,.

The procedure Find-Path(z,y)

The procedure Find-Path takes as input a pair of nodes z and y. If there is no path from
z to y in the current graph G, the output is the special value none. Otherwise, the output
is a directed path from z to y in G. A breadth-first or depth-first search of G starting from
the node z returns a correct output in time linear in the number of edges of G.

The procedure Remove-Incorrect(z,y)

The procedure Remove-Incorrect takes as input a pair of nodes z and y such that z ~» y
in G and z % y in G.. It modifies G by removing one edge (z',y') of G that is incorrect.

The method is to call Find-Path(z,y), which returns a directed path z;,z,,..., z, from
z = z1 to y = z, in G. At least one edge in this path is incorrect. If the path consists
of one edge, this edge is removed from G. Otherwise, a binary search is used to locate an
incorrect edge in the path, which is then removed.

In particular, let m = [n/2]. Use a request for a hint to determine whether there is
a path from z; to zp, in G.. If not, recursively search the segment of the path from z;
through z,. If so, recursively search the segment of the path from z,, through z,. This
method runs in time linear in the size of G and makes at most [log(n — 1)] queries, where
n < |V|.

The procedure Add-Edges(E)

The procedure Add-Edges takes as input a set E of edges of G,. It adds each edge in E
to G after removing enough incorrect edges to be sure that no cycles are created in G.

1. For each edge (z,y) in E, do the following.

(a) While y ~» z in G, call Remove-Incorrect(y, z).
(b) Add edge (z,y) to G if it is not already there.

2. When all edges in E have been processed, return.

Lemma 2 If Add-Edges is called with a set E of edges of G, and G is any DAG on the
nodes V', then some incorrect edges may be removed from G and the edges in E will be in G
when this procedure returns. The graph G will remain acyclic when this procedure returns.
The procedure runs in time bounded by a polynomial in the size of G and |E|, and makes at
most O(log [V'|) queries per removed edge.

If (z,y) is an edge of G. then since G, is acyclic, y % z in G.. Thus, Remove-Incorrect
is called with correct input conditions, and will remove at least one incorrect edge from G.
Since no incorrect edges can be added to G, step (1a) must eventually terminate.

No edge in F is incorrect, so no edge in E can be removed by Remove-Incorrect. Since
every edge in E is added to G if it is not already present, G must contain all the edges in
E when this procedure returns. If G is acyclic when this procedure is called, no cycles can
be created by the added edges.

It is clear that the running time is bounded by a polynomial in the size of G and |E|.
Since the only queries made are from the Remove-Incorrect routine, there is a bound of
O(log |V'|) queries per removed edge. Q.E.D.

The procedure Find-Missing(z,y)

The procedure Find-Missing takes as input a pair of nodes z and y such that z ~ y
in G. but z % y in G. It modifies G by deleting a set I of edges that are incorrect. It
returns a set of edges M that are in G, and that are missing with respect to G. The set
M is non-empty. Find-Missing runs in time bounded by a polynomial in the size of G and
makes O((|M|+ |I|) log|V'|) request for hint queries. The method is described and analyzed
in the next section.

4.3 The main procedure

The procedure Debug(Go)

The procedure Debug takes as input a DAG Gg on the nodes V. It uses equivalence
queries and calls to Remove-Incorrect, Find-Missing, and Add-Edges to find a graph that is
transitively equivalent to G,.

1. Initialize G = Go.
Make an equivalence query with G. If the reply is “yes”, output G and halt.
Otherwise, the reply contains a counterexample (z,y).

If z ~» y in G, then call Remove-Incorrect(z,y), and go to step 2.

LA S

If z % yin G, then let E be the set of edges returned by Find-Missing(z,y), call
Add-Edges(E), and go to step 2.

We now analyze Debug, deferring discussion of the Find-Missing proceduré to the next
section.

Theorem 3 If the procedure Debug is called with the DAG Gy as input, its output is a DAG
that is transitively equivalent to G.. Moreover, it runs in time polynomial in the sizes of
Go and G. and makes at most d(Go) + 1 equivalence queries and O(d(Go)log |V |) requests
for hints.

G is initially the DAG Gy on the nodes V. If G is a DAG when step (2) is executed,
then the equivalence query returns a correct answer. Thus, if the reply is “yes”, G is a
DAG that is transitively equivalent to G., and it is correct to output G and halt.

Otherwise, the reply is a correct counterexample (z, y), and control continues with step
(3). If z ~ y in G then it must be that z % y in G,, so the call to Remove-Incorrect in
step (4) has proper input conditions, so an incorrect edge will be removed from G. Then
G will remain a DAG when control returns to step (2) from step (4).

If z % y in G, then it must be that z ~» y in G., so the call to Find-Missing in step (5)
has proper input conditions. Then Find-Missing may delete some incorrect edges from G,
and returns a nonempty set E of edges of G, missing with respect to G. Thus G will remain
a DAG after Find-Missing returns, and the call to Add-Edges has proper input conditions.
Then Add-Edges may delete some incorrect edges from G, and adds the edges in F to G.
When Add-Edges returns, G is guaranteed to be a DAG, so it remains a DAG when control
returns to step (2).

Thus G is a DAG throughout the execution of the Debug procedure. Edges are only
removed from G by the procedure Remove-Incorrect, and they must be incorrect edges.
Edges are only added to G by the procedure Add-Edges, and they must be edges of G, that
are missing with respect to the current value of G. Such an edge is not incorrect and cannot
be subsequently deleted from G.

Thus i(G) is decreased by one for each edge deleted from G, and it is never increased.
Since the correct part of G, C(G), can only have edges added to it, an edge missing with
respect to the current value of G must be missing with respect to Go. When the edges in E
are added to G by Add-Edges, m(G) is decreased by at least |E|, and it is never increased.
Recall that |E| is at least one.

Every equivalence query in step (2) that is answered “no” causes either Remove-Incorrect
or Find-Missing to be called. Remove-Incorrect decreases i(G) by one and Find-Missing
decreases m(G) by at least one. Since G is transitively equivalent to G, when i{(G)+m(G) =
0, this can happen at most d(Go) = i(Go) + m(Go) times. Thus, there are a total of at
most d(Go) + 1 equivalence queries made before Debug halts with a correct answer.

There are at most O(log |V'|) request for hint queries made for every edge deleted from
or added to G, so there are a total of at most O(d(Go) log [V'|) request for hint queries made
before Debug halts with a correct answer.

A straightforward implementation of Debug clearly runs in time polynomial in the sizes
of G and G,. Q.E.D.

5 The Find-Missing procedure

To complete the analysis of the Debug procedure, we must give a detailed description and
analysis of the Find-Missing procedure.

5.1 Some motivation

Since the Find-Missing procedure is somewhat complicated, we motivate its design by first
considering the following straightforward but inefficient procedure.

Given the pair (z,y) such that z ~» y in G, but not in G, make a request for a hint
with (z,y). If the reply is “edge”, we have found an edge of G. missing with respect to G.
Otherwise, the reply will be a hint 2. If z % z in G then we iterate with (z, z), otherwise,
we iterate with (z,y). Because G, is acyclic, this process must find an edge of G, that is
missing with respect to G after at most |[V'| — 1 requests for hints.

One case in which this simple procedure is needlessly inefficient is the following. Suppose
V is the set of nodes numbered 1 to n+ 1, and G is the graph with an edge from 1 to 1 + 1
fort1=1,...,n—1. Suppose G, is equal to G with one additional edge, from some ¢ < n to
the node n + 1. An equivalence query with G might return the pair (1,n + 1). Successive
requests for hints might return the intermediate nodes 2,...,n, until finally a query with
(n,n + 1) yields the reply “edge”. Here n queries have been used to find just one missing
edge.

One obvious improvement in this particular case is to do a binary search. Let m = [n/2]
and make a request for a hint with (m,n+1). If the answer is that there is a path, then we
restrict further queries to nodes m through n. If there is no path, then we restrict further
queries to nodes 1 through m — 1. Continuing recursively, an edge of G, that is missing
from G will be discovered after O(logn) queries.

We can generalize this idea to do a kind of binary search in single-source or single-sink
DAGs. However, there are two ways that this approach can break down. One of them
is there may be no node to divide the graph nearly in half. In this case, it turns out
that the value of the hint allows us to discard about half the remaining nodes. Another is
that incorrect edges in the current graph may cause us erroneously to discard nodes from
consideration. In this case, the Remove-Incorrect procedure is invoked to delete an incorrect
edge from G, and the process is restarted.

5.2 Critical nodes

We need a little graph-theoretic machinery at this point. Let G be a DAG on a subset of
the nodes V. If z is any node, let R}(z) denote the set of nodes y such that (z,y) is an
edge of G. Let R;(z) denote the set of nodes y such that z ~» y in G. Similarly, let P§(z)
denote the set of nodes such that (y,z) is an edge of G, and let P}(z) denote the set of
nodes y such y ~ z in G.

Define the R-weight of the node z in G, denoted wf(z), to be |R%(z)|, the cardinality
of the set of nodes reachable from z in G. Define the P-weight of the nodes z, denoted
wE(z), to be |P3(z)].

Suppose now that the DAG G has a single source node, zo. Let n denote the R-weight
of zo in G, that is, the number of nodes in G. We define a node z of G to be R-critical in
G if and only if w&(z) > n/2, and for each y € RL(z), wZ(y) < n/2. That is, the R-weight
of z is at least half of that of zo but this is not true for any of the immediate successors of
z in G. The definition of P-critical in a DAG with a single sink is analogous.

Lemma 4 If G is any DAG with a single source node then there ezists an R-critical node
in G. Moreover, some R-critical node in G can be found in time linear in the size of G.

Let the single source of G be zo and let n = wf(zo). Imagine the nodes in G each
labelled by its R-weight. From z, construct a directed path in G by successively selecting

any node y with R-weight at least n/2. This path will terminate in a node z of weight at
least n/2 such that for every y € R(z), the R-weight of y is less than n/2. (Note this is
vacuously true if z has no out edges.) Hence z is an R-critical node.

It is clear that we can compute the R-weights of all the nodes in time linear in the size
of G by processing them in reverse topological order. Then an O(|V'|) search suffices to find
an appropriate z. Q.E.D.

The analogous lemma for the predecessor relation is proved similarly.

Lemma 5 If G ts any DAG with a single sink node then there exists a P-critical node in
G. Moreover, some P-critical node in G can be found in time linear in the size of G.

5.3 A sketch of Find-Missing

Given nodes z and y such that z ~» y in G, but not in G, we attempt to find an R-critical
node z' in the subgraph of G reachable from z and an P-critical node ¢ in the subgraph of
G from which y is reachable such that ' ~+ ¢’ in G.. If we succeed in finding such a pair
and make a request for a hint with z' and ¢, the answer may be “edge”, in which case we
have found a missing edge (z',y') which can be returned.

Otherwise, the answer is a hint z. If 2’ % z and z % y' in G, then we can recursively call
Find-Missing on the pairs (z',z) and (z,y'), and be guaranteed that at least two distinct
missing edges will be returned. If, however, 2’ ~» z in G, then we iterate, replacing z by z.
Since 7' is a R-critical node, we have eliminated at least half the nodes that were reachable
from z from consideration. Similarly if z ~» ¢’ in G.

To find the pair z' and y', we first find an R-critical node z". A request for a hint is used
to test whether 2" ~» y in G,. If s0, we let z' be z"" and begin the search for /. Otherwise,
we remove the nodes reachable from z” in G from consideration, and continue. Since z" is
R-critical, this is at least half the remaining node reachable from z. Once z' is found, the
search for y' is similar.

One further complication is that incorrect edges in G may disrupt the progress of the
algorithm described above, so checks must be included to detect this situation, and Remove-
Incorrect must be called to get rid of the edges causing problems.

5.4 Detailed description of Find-Missing

The input nodes are z and y, and G is the current graph. X and Y are subsets of the nodes,
and z', y', and z are individual nodes. G, X,Y, ', ¢/, and z are modified as the algorithm
progresses, but z and y always denote the input nodes.

As the algorithm progresses, nodes may be removed from X or Y. When a node v is
removed from X or Y in step (3) or (5), we associate with it a node, r(v), which is the node
“responsible” for the removal of v. The initial value of r(v) is L.

We use the notation G/X to denote the subgraph of G induced by the set of nodes X,
and similarly for G/Y. It will be shown that the graph G/X has a single source, denoted
source(G/X), and G/Y has a single sink, denoted sink(G/Y).

The procedure Find-Missing(z,y)

. Let X = R;(z) and Y = P§(y). Also,let r(v)=L forallveV.

. Let z' be an R-critical node in G/X. Make a request for a hint with (source(G/X),z').
If the reply is “no path”, call Remove-Incorrect(source(G/X),z'), and go to step 1.

. Make a request for a hint with (z',sink(G/Y)). If the reply is “no path”, set r(v) = 2’
for each v € R 5 (2'), set X = X — R x(z'), and go to step 2.

. Let y be a P-critical node in G/Y. Make a request for a hint with (y', sink(G/Y)).
If the reply is “no path”, call Remove-Incorrect(y', sink(G/Y)), and go to step 1.

. Make a request for a hint with (z',y').
(a) If the reply is “no path”, set r(v) = ¢ for each v € P} /Y(y'), set Y =Y —
Pc*'./Y(y'), and go to step 4.

(b) If the reply is “edge”, then return {(z',y')}.

(c) Otherwise, the reply is a hint =.

. If 2’ ~ z in G/X, then let X = R%,,(2) and go to step 2. If z ~» ¢’ in G/Y, then
G /X

let Y = Pg/y(2) and go to step 2.

. f2' ~» zin G but z' % z in G/X, then call Remove-Incorrect(r(z),z) and go to step
1. If z~ y' in G but 2 % ¢ in G/Y, then call Remove-Incorrect(z,r(z)) and go to
step 1.

. Return the union of the sets returned by the recursive calls Find-Missing(z', z) and
Find-Missing(z,y').

Analysis of Find-Missing

This section is devoted to a proof of the following lemma.

Lemma 6 Suppose that when Find-Missing is called the current graph G is a DAG on the
nodes V and the input nodes z and y are such that z ~ y in G, and z % y in G. Let G,
denote the value of G when Find-Missing is called. Find-Missing may modify G by deleting
a set I of incorrect edges. It returns a set M of edges of G, missing with respect to Gy.
Each edge in M 1is on some path from z to y in G,. It makes at most O((|I|+ |M|)log |[V])
requests for hints, and can be implemented to run in time bounded by a polynomial in the
sizes of Gy and G,.

The following correctness conditions will be useful.

Correctness conditions

1. The graph G is obtained from G; by deleting some (possibly empty) set of incorrect

edges.

2. X and Y are disjoint subsets of V' such that G/X has a single source, denoted
source(G/X), and G/Y has a single sink, denoted sink(G/Y).

3. z ~» source(G/X) and sink(G/Y) ~ y in G and in G,.

4. source(G/X) ~» sink(G/Y) in G, but source(G/X) 7» sink(G/Y) in G.

5. If z4,...,z, is the sequence of distinct values taken on by source(X) and y;,...,y:
is the sequence of distinct values taken on by sink(G/Y) since step (1) was last
executed, then both in G and in G., z; ~ z;41 for i =1,...,8— 1 and y;4; ~» y; for

i=1,...,t— 1.

6. If for some v and w, source(G/X) ~» win G/X and w ~ v in G but not in G/X then
vg X, r(v) # L, and r(v) ~ v in G. Similarly, if for some v and w, w ~ sink(G/Y)
in G/Y and v ~ win in G but not in G/Y then v €Y, r(v) # L, and v ~ r(v) in
G.

7. The node z' is an R-critical node in G/X such that source(G/X) ~» z' in G.,.

8. z! ~» 8ink(G/Y) in G,.

9. The node y' is a P-critical node in G/Y such that y' ~ sink(G/Y) in G..

10. ' ~ z and z ~ ¢ in G.,.
11. ' % zin G/X and 2 % ¢ in G/Y.

12.

z' 7 zand z %+ ¢y in G.

We begin by proving the following lemma about these correctness conditions.

Lemma 7 Suppose the graph Gy is ¢ DAG when Find-Missing is called, and the inputs
are nodes z and y such that z ~» y in G, but not in G. If we consider the ezecution of
Find-Missing until either a return statement or a recursive call is ezecuted, the following
correctness conditions are true.

1.

S I T TR ol

At the start of step (1): condition (1) holds,

at the start of step (2): conditions (1) - (6) hold,
at the start of step (3): conditions (1) - (7) hold,
at the start of step (4): conditions (1) - (8) hold,
at the start of step (5): conditions (1) - (9) hold,
at the start of step (6): conditions (1) - (10) hold,
at the start of step (7): conditions (1) - (11) hold,
at the start of step (8): conditions (1) - (12) hold.

The proof is tedious; we divide it into one lemma per step.

10

Lemma 8 If condition (1) holds before the ezecution of step (1), then conditions (1) - (6)
hold after it is ezecuted.

Suppose condition (1) holds before step (1) is executed. Since G is unchanged by step
(1), condition (1) must still hold.

To see that condition (2) holds, note that X is the set of nodes reachable from z in G,
and Y is the set of nodes reaching y in G. Since G is a subgraph of G, z 7% y in G, so X
and Y are disjoint, G/X has the single source z and G/Y has the single sink y.

To verify condition (3), we note that z ~» z and y ~ y in G and G.. By the input
conditions, z ~ y in G., and since z % y in G, condition (4) is verified.

Condition (5) is vacuously satisfied, since step (1) just terminated, and source(G/X)
and sink(G/Y’) have taken on only one value. Condition (6) is also satisfied, since for every
v and w such that source(G/X) ~ w in G/X and w ~ v in G, we have w ~ v in G/X,
and similarly for G/Y. Q.E.D.

Lemma 9 If conditions (1) - (6) hold before step (2) is ezecuted, then either control is
transferred to step (1) and condition (1) is true, or control is transferred to step (3) and
conditions (1) — (7) are true.

Suppose conditions (1) — (6) hold when step (2) is executed. Then G/X has a single
source, so there must be an R-critical node z' in G/X. Clearly source(G/X) ~» z' in G.

If the query discloses that source(G/X) % z' in G., the call to Remove-Incorrect has
its input conditions satisfied, so an incorrect edge in G will be removed. Condition (1) is
preserved by this change to G, and control is then transferred to step (1).

If the query indicates that source(G/X) ~ z' in G, then G, X, Y, and r(v) for all
v are unchanged by this step, and the conditions (1) - (6) must still hold after it is exe-
cuted. Moreover, condition (7) is now true, since z’ is an R-critical node in G/X such that
source(G/X) ~» z' in G.,. In this case, control is transferred to step (3). Q.E.D.

Lemma 10 If conditions (1) - (7) hold before step (3) is ezecuted, then either control is
transferred to step (2) and conditions (1) - (6) are true, or control is transferred to step (4)
and conditions (1) - (8) are true.

Suppose conditions (1) — (7) hold when step (3) is executed.

If the query in step (3) indicates that there is a path from z' to sink(G/Y) in G.,, then
G, X,Y, 7', and r(v) for all v €V are unchanged, so conditions (1) - (7) are preserved in
this case. Moreover, condition (8) is now true, since z' ~» sink(G/Y) in G,. In this case,
control is transferred to step (4).

If the query in step (3) indicates that z' % sink(G/Y) in G,, then X is modified by
removing all the nodes reachable from z' in G/X. Let X; denote the value of X before these
nodes are removed, and let X; denote the value of X after these nodes are removed. Since
by condition (4), source(G/X;) ~+ sink(G/Y) in G., z' is some node of G/X; other than
the source. Thus, G/X; has the same single source as G/X; and G and Y are unchanged,
so conditions (1) — (5) hold in this case.

11

To see that condition (6) holds, consider any nodes v and w such that source(G/X3) ~» w
in G/X32 and w ~» v in G but not in G/X;. Then source(G/X;) ~ w in G/X;.

If w % v in G/X, then at the start of this step, since condition (6) holds, v is not in
X1, r(v) # 1, and r(v) ~» v in G. Since v € X}, the value of r(v) is unchanged by this step.
Since G is not modified and X is a subset of Xy, then after this step is executed, v ¢ Xj,
r(v) # 1, and r(v) ~ v in G. Thus in this case, condition (6) holds at the end of this step.

If, however, w ~» v in G/X;, then some node on a path from w to v in G/X; must
be removed in computing X;. This node must be reachable from z’' in G/Xj, so v is
reachable from z' in G/X;. Thus, v is one of the nodes removed at this step, so v & X,,
and r(v) =z’ # L. Since G is unchanged, r(v) ~ v in G. Thus in this case also, condition
(8) is preserved. Hence when control is transferred to step (2), conditions (1) - (6) hold.
Q.ED.

Lemma 11 If conditions (1) - (8) are true before step (4) is ezecuted, then either control
is transferred to step (1) and condition (1) is true, or control is transferred to step (5) and
conditions (1) - (9) are true.

Suppose conditions (1) — (8) hold when step (4) is executed. Then G/Y has a single
sink, so there is a P-critical node y'. Clearly y' ~ sink(G/Y) in G.

Hence if the query in step (4) indicates that y' % sink(G/Y) in G., the call to Remove-
Incorrect has its input conditions satisfied. In this case, an incorrect edge will be removed
from G, which preserves condition (1), and control will be transferred to step (1).

If the query indicates that y ~» sink(G/Y) in G,, then G, X, Y, ', and r(v) for all
v € V are unchanged, so conditions (1) — (8) are preserved. Moreover, condition (9) is
now true, since y' is a P-critical node in G/Y such that y' ~» sink(G/Y) in G.. Thus,
conditions (1) - (9) hold when control is transferred to step (5). Q.E.D.

Lemma 12 If conditions (1) — (9) hold when step (5) is ezecuted, then either control is
transferred to step ({) and conditions (1) - (8) are true, or a return statement is ezecuted,
or control is transferred to step (6) and conditions (1) - (10) are true.

Suppose conditions (1) — (9) hold when step (5) is executed.

If the query with (z',y') indicates that z' % y' in G,, then by condition (8), ' ~»
sink(G/Y), so y' must be distinct from sink(G/Y). In this case, the nodes reaching y'
in G/Y are removed from Y, so G/Y still has the same single sink. The argument that
condition (6) is preserved by this change is analogous to that in Lemma 10. Since G,
X, sink(G/Y), and z' are unchanged, conditions (1) - (8) are preserved, and control is
transferred to step (4).

If the query indicates that (z/,y') is an edge of G,, then a return statement is executed.

Otherwise, the reply to the query must be a hint z such that ' ~» zin G, and z ~ 3/
in G,. Since G, X, Y, 7/, ¢/, and r(v) for all v € V' are unchanged, conditions (1) - (9)
are preserved. Moreover, condition (10) is also true, since ' ~» z and z ~» ' in G,. Thus,
conditions (1) — (10) are true when control is transferred to step (6). Q.E.D.

12

Lemma 13 If conditions (1) - (10) are true when step (6) is ezecuted then either control
is transferred to step (2) and conditions (1) - (6) are true, or control is transferred to step
(7) and conditions (1) - (11) are true.

Assume conditions (1) - (10) hold when step (6) is executed. If neither z' ~» z in G/X
nor z ~ y' in G/Y, then step (6) leaves G, X, Y, z', ¢/, 2, and r(v) for each v € V
unchanged, so conditions (1) - (10) are preserved. Moreover, condition (11) is now true,
since z' %4 z in G/X and z % ¢’ in G/Y. Thus, in this case control is transferred to step
(7) with conditions (1) - (11) true.

Suppose z' ~» z in G/X. In this case we must show that conditions (1) — (6) are
preserved when control is transferred to step (2). Let X; denote the value of X at the start
of this step, and let X; = Ry, /% (2), the nodes reachable from z in G/X;. Clearly X, is a
subset of X;. We must show that conditions (1) - (8) are true when we change the value
of X from X; to Xs.

Clearly G is unchanged by this action, so condition (1) is preserved. X is a subset of
X and so is disjoint from Y. The graph G/X; has a single source, 2. Thus setting X to
X, preserves condition (2).

Since by condition (3), z ~ source(G/X;) in G and in G., and by condition (7),
source(G/X1) ~ z'in G and in G,, and 2’ ~ 2z in G and in G, by the assumptions of this
case, £ ~ z in G and in G, in this case, so condition (3) is preserved if X is set to Xj.

Since z ~ y' in G. and by condition (9) y' ~ sink(G/Y) in G., z ~ sink(G/Y) in
G.. Moreover, since z ~» z in G and sink(G/Y) ~» y in G, z % sink(G/Y) in G, for
otherwise z ~» y in G, violating the input conditions and condition (1). Thus, condition
(4) is preserved if X is set to Xj.

When X is set to X3, z will become a new distinct value z;1, in the sequence of values of
source(G/X) since step (1) was last executed. The previous value, z;, is just source(G/X,),
and we have shown above that source(G/X;) ~+ z in G and in G.. Thus condition (5) is
preserved when X is set to Xj.

Finally, to see that condition (6) is preserved, suppose that v and w are nodes such that
source(G/Xz) ~» win G/X; and w ~ v in G but not in G/X;. Then since source(G/Xy) ~
source(G/X3) in G/X,, source(G/X1) ~ w in G/X;.

If w 2% v in G/ X, then because condition (6) holds at the start of this step, and G and
the value of r(v) are unchanged, v € Xy, r(v) # L, and r(v) ~» v in G. Thus, v & X3, and
condition (6) is preserved in this case when X is set to Xj.

However, suppose w ~+ v in G/X;. Since source(G/X;) ~ w in G/X, and therefore
also in G/ X1, and source(G/Xz) = z, z ~» win G/X;. Since w is reachable from z in G/X,
every node along the path in G/X; from w to v is likewise reachable from z in G /X1, so
this path must also be in G/X;. Thus, w ~ v in G/Xj, contradicting the hypotheses of
this case.

Thus, if z' ~ 2z in G/X, conditions (1) - (6) are preserved when X is replaced by
R x(2) and control is transferred to step (2).

The argument is exactly analogous to show that conditions (1) - (6) are preserved if
z~y' in G/Y,Y is set to Py /Y (2), and control is transferred to step (2). Q.E.D.

13

6.2 The case of any € € (0,1)

Let 0 < € < 1. The generalization for graphs of O(n?~¢) edges is now sketched. Let n be
any positive integer. Let L = [n€], and N = [n17¢]. The base graph G, . consists of 2LN
nodes. Note that 2LN is certainly bounded by 6n + 2.

The first LN nodes are organized into N groups of L consecutive nodes each. The rt*
group is V, and consists of the nodes (r — 1)L+ 1 through r L. Within each group, the nodes
are connected sequentially, that is, there is an edge from node ¢ to nodes ¢t + 1. However
there are no edges between nodes in different groups. Clearly this graph has N(L —1) edges.

From this base graph we obtain a family of graphs C,, ¢ as follows. For r = 1,..., N and
8§ =1,...,NL let i;, be a node in the group V;. Then the graph G;,, is obtained from
Gn, by adding for each r = 1,..., N, and for each s = 1,..., NL, the edge from node i, ,
to node NL + s. The resulting graph has N(L — 1) + N2L edges.

An argument similar to the one given above shows that any algorithm using equivalence
queries and requests for hints must essentially make a separate binary search in a group of
L nodes to discover each of N2L missing edges. Thus N 2L[log L] queries will be required
in the worst case. Since the total number of missing edges is N%2L, the number of queries
required per missing edge is at least [log L], which is at least [e¢log n] queries. In terms of
the number of nodes, this is at least elog |[V'| — O(1) queries per missing edge in the worst
case.

7 Comments

The case of debugging a non-acyclic directed graph is open. For some of the pitfalls, see
the examples given in [3].

The Find-Missing procedure arrived at its current form through several iterations of
simpler but incorrect versions. The procedure is not terribly complex, but its detailed
proof of correctness is. I cannot help thinking there must be a cleaner and more simply
analyzed version of Find-Missing, but I have been unable to find it.

8 Acknowledgements

The support of the National Science Foundation, grant IRI-8404226, is gratefully acknowl-
edged.

References

(1] D. Angluin. Learning k-bounded contezt-free grammars. Technical Report, Yale Uni-
versity Computer Science Dept., TR-557, 1987.

(2] D. Angluin. Learning k-term DNF formulas using queries and counterezamples. Tech-
nical Report, Yale University Computer Science Dept., TR-559, 1987.

[3] D. Angluin. Learning propositional Horn sentences with hints. Technical Report, Yale
University Computer Science Dept., TR-590, 1987.

20

[4] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87-106, 1987. Preliminary version appeared as YALEU/DCS/RR-
464.

[5] D. Angluin. Types of queries for concept learning. Technical Report, Yale University
Computer Science Dept., TR-479, 1986. Revised version, Queries and concept learning,
submitted for publication.

[6] D. Angluin, W. Gasarch, and C. Smith. Training sequences. Technical Report, Univer-
sity of Maryland, CS-TR-1894, UMIACS-TR-87-37, 1987. Submitted for publication.

(7] D. Angluin and P. Laird. Identifying k-CNF formulas from noisy ezamples. Technical
Report, Yale University Computer Science Dept., TR-478, 1986. Revised version,
Learning from noisy ezamples, to appear in Machine Learning.

[8] P. Berman and R. Roos. Learning one-counter languages in polynomial time. In Proc.
28th IEEE Symposium on Foundations of Computer Science, pages 61-67, IEEE, 1987.

[9] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable
geometric concepts with the Vapnik-Chervonenkis dimension. In Proc. 18th ACM
Symposium on Theory of Computing, pages 273-282, ACM, 1986.

(10] J. Cherniavsky and C. Smith. Using telltales in developing program test sets. Technical
Report, Georgetown University, Dept. of Computer Science, TR-4, 1986.

[11] J. Cherniavsky and R. Statman. Testing and inductive inference: abstract approaches.
1987. Preprint, Georgetown University.

[12] S. Even. Graph Algorithms. Computer Science Press, 1979.

[13] U. Feige and A. Shamir. Learning in permutation groups (extended abstract). 1987.
Preprint, Applied Mathematics Dept., The Weizmann Institute of Science.

(14] F. Harary. Graph Theory. Addison-Wesley Publishing Company, 1969.

(15] D. Haussler. Learning conjunctive concepts in structural domains. Technical Report,
University of California at Santa Cruz, Dept. of Computer Science, UCSC-CRL-87-1,
1987.

[16] D. Haussler. Quantifying inductive bias in concept learning. Technical Report, Uni-
versity of California at Santa Cruz, Dept. of Computer Science, UCSC-CRL-86-25,
1986.

(17] D. Haussler, N. Littlestone, and M. Warmuth. Expected mistake bounds for on-line
learning algorithms. Preprint, University of California at Santa Cruz, April 1987.

[18] M. Kearns and M. Li. Learning in the presence of malicious errors. Technical Report,
Harvard University, Center for Research in Computing Technology, TR-03-87, 1987.

[19] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae. In
Proc. 19th ACM Symposium on Theory of Computing, pages 285-295, ACM, 1987.

21

[20] K. Kelly and C. Glymour. On convergence to the truth and nothing but the truth. Tech-

nical Report, Carnegie Mellon University, Laboratory for Computational Linguistics,
CMU-LCL-87-4, 1987.

[21] P. Laird. Inductive inference by refinement. In Proc. of AAAI-86, pages 472-476,
AAALI 1986.

[22] P. Laird. Learning From Good Date and Bad. PhD thesis, Yale University, 1987.
Computer Science Dept. TR-551.

[23] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. In Proc. 28th IEEE Symposium on Foundations of Computer
Science, pages 68-77, IEEE, 1987.

[24] B. K. Natarajan. On learning boolean functions. In Proc. 19th ACM Symposium on
Theory of Computing, pages 296-304, ACM, 1987.

[25] L. Pitt and L. Valiant. Computational limitations on learning from ezamples. Technical
Report, Harvard University, Center for Research in Computing Technology, TR-05-86,
1986.

[26] L. Pitt and M. Warmuth. Reductions among prediction problems: on the difficulty of
predicting automata (extended abstract). 1987. Preprint.

[27] R. Rivest and R. Schapire. Diversity-based inference of finite automata. In Proc. 28th
IEEE Symposium on Foundations of Computer Science, pages 78-87, IEEE, 1987.

(28] R. Rivest and R. Schapire. Inference of visible simple assignment automata with
planned experiments. 1987. Preprint, MIT Laboratory for Computer Science.

[29] R. Rivest and R. Schapire. A new approach to unsupervised learning in determinis-
tic environments. In Proc. of the {th International Workshop on Machine Learning,
pages 364-375, Morgan Kaufmann Publishers, Inc., 1987.

(30] S. Rudich. Inferring the structure of a Markov chain from its output. In Proc. 26th
IEEE Symposium on Foundations of Computer Science, pages 321-326, IEEE, 1985.

[31] C. Sammut and R. Banerji. Learning concepts by asking questions. In Machine Learn-
ing, Vol. II, pages 167-191, Morgan Kaufmann Publishers, Inc., 1986.

[32] L. Valiant. Learning disjunctions of conjunctions. In Proc. 9th IJCAI, pages 560-566,
1JCAI 1985.

[33] L. G. Valiant. A theory of the learnable. C. ACM, 27:1134-1142, 1984.

22

