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Haskell’s type classes permit the definition of overloaded operators in a rigorous and
general manner that integrate well with the underlying Hindley-Milner type system.
As a result, operators that are monomorphic in other typed languages can be given a
more general type. Most notably missing in Haskell, however, are overloaded functions
over container structures. Such overloaded functions are quite useful, but the current

Haskell type system is not expressive enough to support them.

This thesis introduces the notion of parametric type classes and a new type system
as a significant generalization of Haskell’s type classes. A parametric type class is
a class that has type parameters in addition to the placeholder variable which 1is
always present in a class declaration. Haskell’s type classes are special instances of
parametric type classes with just a placeholder but no parameters. We show that this
generalization is essential to representing container structures with overloaded data

constructor and selector operations.

The underlying type system supporting our proposed generalization is is a version



of the Hindley-Milner type system, extended to include a form of constrained quantifi-
cation. In the extended system, type classes act as constraints on the quantification
and instantiation of type variables. This is achieved by putting class constraints on
quantified type variables and adding a separate constraint inference sub-system to the
standard type inference engine. We prove that the resulting type system is decidable,
and provide an effective type inference algorithm to compute the principal types for

well-typed terms.

The meaning of a program in our system is described by translating the program,
based on its typing derivation, to a program defined in a language that includes con-
structs for manipulating overloading explicitly. We present a method for extending
the type inference algorithm to perform the translation and prove that the resulting
algorithm computes the principal translations for well-typed terms. Furthermore,
since interpretations of well-typed expressions follow the typing derivations and an
expression can be type-checked in more than one way, it is necessary to ensure the
coherence of this translation scheme. This is accomplished by defining the corre-

sponding coherence conditions.
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Chapter 1

Introduction

1.1 Overview

The Hindley-Milner type system [Hindley. 1969, Milner, 1978, Damas and Milner,
1982} was a major advance in the development of static type systems for programming
languages. It is one of the most significant aspect of the language ML [Milner et al.,
1990] and has been adopted by every other statically typed functional language,
including Miranda! [Turner, 1985] and Haskell [Hudak et al., 1990]. This is due, in
a large part, to the reasonable balance it achieves among the following somewhat

conflicting goals:

1. Security: A class of common programming errors such as passing arguments

of incorrect type to a function are detected at compile time by the type system.

2. Flexibility: Functions may take arguments of arbitrary type if in fact the

function does not depend on that type.

3. Convenience: An expression’s type is determined by a type inference algo-

rithm, instead of relying on explicit type declarations.

1«Miranda” is a trademark of Research Software, Ltd.
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4 CHAPTER 1. INTRODUCTION

While convenient for many programs, there are also examples that cannot be
described comfortably using the Hindley-Milner type system. For instance, what
type should be assigned to the following function double which makes sense only for

numeric arguments:
double x = X + X

In ML, the result is a type error, even though expressions such as 3+3 and 1.2+1.2
are permitted. In other words, while the arithmetic operator + is overloaded with
values of type either Int or Float, function double is rejected due to insufficient

information to determine which of the overloaded definitions for + is intended.

Haskell is a purely functional language designed to be a common standard for
the non-strict functional programming community [Hudak et al., 1990]. The most
innovative feature of Haskell, its type system, extends the Hindley-Milner system
with type classes [Wadler and Blott, 1989] to address the typing issues raised by
overloaded functions. Type classes permit the definition of overloaded operators in a
rigorous manner that integrates well with the underlying Hindley-Milner type system.
As a result, functions like double can be given a more general type that indicates

that they are defined over types with a + operation.

Despite this additional flexibility, type classes cannot overload functions over “con-
tainer structures,” such as lists and trees. For example, a program may manipulate
collections of various kinds-—lists, trees, arrays, etc. In this case, it is highly desirable
to have an overloaded “member” function that tests whether an object belongs to

any of these structures, as demonstrated by the following function:

scaleUp x c1 c2 = if (member x ci)
then x + X
else if (member x c2)
then x * x

else X
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Function scaleUp scales up its argument in different ways, depending on the mem-
bership tests. Ideally, different member functions will be invoked for different kinds
of collections passed to scaleUp; however the current Haskell type system is not
expressive enough to support this. As a result, the meaning of member in scaleUp
has to be fixed, thereby restricting the kind of collection that scaleUp can accept as

arguments.

This thesis explores ways to extend the Hindley-Milner type system to provide
greater expressiveness for Haskell. We introduce the notion of parametric type classes
as a significant generalization of Haskell’s type classes. The underlying type system
supporting our proposed generalization is a version of the Hindley-Milner type system,
extended to include a form of constrained quantification. Basically, in the extended
system, type classes act as constraints on the quantification and instantiation of type
variables. This is achieved by putting class constraints on quantified type variables
and adding a separate constraint inference sub-system to the standard type inference
engine. Furthermore, we prove that any overloaded-operator ambiguity that may

arise in the process can be easily detected.

The rest of this chapter briefly reviews the Hindley-Milner type system, describes
the major features of type classes, motivates and explains our proposed extension,
discusses related work, summarizes our contributions, and outlines the body of the

thesis.

1.2 The Hindley-Milner Type System

Following its success in the language ML, the Hindley-Milner type system has become
the basis of the type systems of many languages. The system was originally discovered
by Roger Hindley [Hindley, 1969], developed independently by Robin Milner for ML
[Milner, 1978] and subsequently elaborated in detail by Luis Damas [Damas and

Milner, 1982, Damas, 1984]. Our discussion here is mainly based on [Damas and
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Milner, 1982].

The type systems of strongly typed languages like Pascal are simple: they collect
type declarations of variables and function parameters from programmers to perform
some consistency check which will ensure that every program unit has a unique type.
Such type systems are said to be monomorphic in the sense that every expression
can have at most one type. In contrast, the Hindley-Milner type system allows
polymorphism—some expressions can be treated as having many different types. In
addition, the Hindley-Milner system allows type inference to eliminate the burden of

type declarations borne by the programmer.

Polymorphism occurs naturally in many programming situations. For example,

consider the Haskell function that computes the length of a list:

length [] 0

length (x:xs) 1 + length xs

It is clear that the calculation does not depend on the elements of the list (represented
by variable x in the second line of the definition). Hence conceptually the same length
function works regardless of the type of these elements. For example, length acts in
the same way on lists of integers and lists of characters. In the Hindley-Milner type
system, this is expressed by giving length a polymorphic type: for all types a, length
is a function that takes a list of elements of type a and returns an integer. This is
captured by the type scheme Ya.List a — Int. The explicit universal quantification
indicates that the choice of a is arbitrary and the types for length are obtained by
instantiating a to different types. A large number of programs whose behavior is
independent of the types of values in some components can be treated in a similar
fashion.

The essential part of the type system is an inference engine that uses a set of

natural-deduction [Prawitz, 1965] style inference rules. These rules define the typ-

ing discipline that forms the core of a language’s static semantics. Moreover, being
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presented in a highly structural manner, such type inference rules are also useful for
programmers when reasoning about their programs. For example, the following rule

specifies how to type function application:

AF eg:m—mn AF e:m

(— —elim)

AF 667
It can be read “Under some type assumption set A, if we can infer that e; has a
functional type from 7, to 7, and that e, has type 71, then we may infer that the
application of e; to e; has type m." This rule captures the requirement that the type
of an actual argument to a function must match that of its formal parameter. It is
labelled as (— —elim ) because the — in the hypothesis is eliminated. Dually, the next

rule specifies how to type functions, resulting in the introduction of functional types:

Az:mi F e 7

(— —intro)

AbF Ave:m > 7
The reasoning of this rule is similar: Under some type assumption set A, if, by
assuming that function parameter z has type 71, we can infer that the function body
e has type 72, then we may infer that the function Az.e has type m — 7. This
duality of eliminating and introducing the functional type constructor, —, shows the

system’s resemblance to natural deduction systems.

This system cannot be practical without an effective type inference algorithm to
implement the inference rules. Milner [Milner, 1978] developed such an algorithm for
the type system that allows programs without explicit type annotations. Furthermore,
it was established in subsequent work [Damas and Milner, 1982, Damas, 1984] that
the type computed by Milner’s algorithm is the most general one that can be inferred
for any typable expression. Such types are called principal types. An expression’s or

function’s principal type is the least general type that, intuitively, “subsumes all types
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the expression may assume.” Principal types often take the form of type schemes. For
example, the principal type of length is Va.List a — Int; the types Va.a — Int

and Va.a are too general, whereas something like List Char — Int is too specific.

The existence of unique principal types that can be automatically inferred is the
hallmark feature of the Hindley-Milner type system and the chief advantage that any

proposed extension is expected to retain.

1.3 Type Classes

The kind of polymorphism supported by the Hindley-Milner system is commonly
called parametric polymorphism following [Strachey, 1967]. Another kind of polymor-
phism, termed ad hoc polymorphism, is better known as overloading. An example is
numerical operators, such as +, that are used on many different kinds of numbers.
In general, ad-hoc polymorphism is necessary when the same variable name is used
to denote many functions whose types are distinct, whereas in parametric polymor-
phism the same function is used uniformly in different type contexts. Type classes
provide a structured way to blend these two forms of polymorphism. The idea was
originally described in [Wadler and Blott, 1989], and subsequently adopted by the

Haskell committee.

Overloading in monomorphic languages is easily resolved, since every expression
has only one type. However, for languages supporting parametric polymorphism,
where types may contain type variables, the situation is more complicated. It is
conceivable to follow monomorphically typed languages by treating overloading as a
purely syntactic device and insisting on compile-time resolution, yet such solutions
are bound to be overly restrictive. To illustrate the kind of restrictions that can be
imposed, consider the equality operator (== in Haskell). There are many types for
which equality needs to be defined, but also some for which it should probably not

be defined (e.g., functions). Furthermore, computing the equality of integers, for
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example, is quite different from computing the equality of, say, lists (thus parametric
polymorphism is ruled out). Now consider the definition of the function member which

tests for membership in a list:

member x [J False

member x (y:ys) if x==y then True else member x ys

There is not enough information in the second clause of the definition to determine
which version of the == operator is intended. Any commitment to a particular type of
equality would make member monomorphic, which is clearly too restrictive. Intuitively
speaking, the type of member “ought”™ to be Va.a — List a — Bool. But this would
imply that == has type Ya.a — a — Bool. even though we don’t expect == to be
defined for all types. Precisely, member is to be overloaded only on types that admit
the equality test, and then different equality operations can be invoked when member

is called with different types of lists.

Type classes solve both problems in a convenient and systematic way. For exam-

ple, to overload equality, one uses the following class definition:

class a::Eq where

(==) : a -> a -> Bool

Here Eq is the name of the class being defined, and == is the single operation in the
class. This declaration may be read “a type a is an instance of the class Eq if there

is an (overloaded) operation == of the appropriate type defined on it.”

The constraint that a type a must be an instance of the class Eq is written a: :Eq.?
We also use this notation to extend the Hindley-Milner style type scheme to provide
constrained quantification. For example, the class declaration above signifies assign-

ment of the following principal type to ==:

2In Haskell, this is written as Eq a.
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Va::Eq.a — a — Bool

This should be read, “For every type a that is an instance of the class Eq, == has type
a — a — Bool.” This is the type that would be used for == in the member example,

and indeed the constraint imposed on a propagates to the principal type for member:

Va:Eq.a — List a — Bool

This is just what is desired—it expresses the fact that member is not defined on all

types, just those for which it is possible to compare elements for equality.

We use a collection of instance declarations to specify which types are instances
of the class Eq, along with the actual behavior of == on each of those types. For

example:

instance Int::Eq where

x ==y = 1intEq x vy

The definition of == is called a method. intEq happens to be the primitive func-
tion that compares integers for equality, but in general, any valid Boolean-valued
expression is allowed on the right-hand side. The declaration specifies that Int 15
an instance of the class Eq as witnessed by the method for == on integers. Given
this declaration, we can now compare integers for equality. Similarly, the instance

declaration:

instance Float::Eq where

x ==y = floatEqx y

allow us to compare floating point numbers using ==.
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Polymorphic types such as lists can also be handled. Moreover, when needed,
additional constraints on their constituent types can be added by supplying an ap-
propriate contert as part of the instance definition. Context constraints are put before

the symbol =>:

instance a::Eq => (List a)::Eq where

(] == [] = True
0] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys) = (x ==1y) && (xs == ys)

The constraint a::Eq in the first line is necessary because the elements in the lists are
compared for equality in the last line (x==y). The additional constraint is essentially
saying that we can compare lists with members of type a for equality as long as we
know how to compare values of type a for equality. If this constraint were omitted, a

static type error would result.

1.4 The Problem

While convenient for many common overloaded functions, there are also many useful
forms of overloading that cannot be expressed using type classes. More specifically,
type classes cannot overload functions involving both container structures and their
components. A typical example is the membership test mentioned in the beginning
of this chapter that works on a container structure and the objects that may belong
to the structure. Such overloaded operations are quite useful, but type classes are

not expressive enough to support them.

To illustrate the problems that can occur, consider the concept of a collection: a
container structure with the operations insert, delete and member. There are many

possible implementations of collections: sorted or unsorted lists, arrays, binary search
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trees and so on. Since each representation has its own merits, different representations
may be appropriate for different settings. Moreover, multiple representations may
co-exist under some situations. Thus, a programmer may not wish to commit to a
particular representation when writing functions on collections. For example, consider

the function classify defined as follows:

classify x p accept reject =
if (p x)
then (insert x accept, reject)

else (accept, insert x reject)

This function takes an object, a predicate and two collections as arguments, and
inserts the object in one of the collections depending on whether or not it satisfies
the predicate. In general, the two argument collections, accept and reject, can
be collections of different kinds. If, in the definition of classify, a particular kind
of collection, say lists, must be fixed for each collection. then several versions of
classify will be required, one for each possible combination of representations used
for the two collections. The obvious cure for this name-space pollution and duplicated
code is overloading. In our context, that means specifying the notion of a collection

as a type class:

class k::Collection where

insert : a-=->k >k
delete : a->k->k
member . a -> k -> Bool

This defines three overloaded functions insert, delete and member on collections.
With this declaration, we wish to get an overloaded classify that can be reused for

different kinds of collections. But it simply does not capture the desired behavior.
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To see the problem, consider the principal type for insert specified by the class

declaration:
Vk::Collection.Va. a— k— k

This type is too general—the intended relationship that a is the type of objects
contained in structures typed by k is not expressed in the type at all. For instance,
we may instantiate a to Char while substituting (List Int) for k and get the following

invalid type instance for insert :
Char — List Int — List Int

In general, when overloading functions over container structures using type classes,
we need to be able to express the relationship between the type of the structure and
the type(s) of the stored objects. A single type constrained by simple classes such as
class k::Collection where ... is not expressive enough to achieve our goal, since
the type k is treated as atomic—it cannot assume that k is composite, containing

objects of some other type.

1.5 Parametric Type Classes

The solution that we propose is parametric type classes. Such classes can have type
parameters in addition to the constrained type variable, and thus are able to express
classes such as Collection discussed earlier. For instance, we can express the notion

of a collection using a parametric type class Collection with one parameter:

class k::Collection a where
insert : a -> k -> k
delete : a -> k -> k

member : a -> k -> Bool
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The intended meaning is that the parameter a to the class Collection should be
functionally dependent on the constrained type k. In other words, the type to which

k is instantiated will uniquely determine that of a.

This dependence relationship is established in instance declarations through some
simple static constraints. For example, the following instance declaration makes lists

a kind of collection:

instance a::Eq => (List a)::(Collection a) where

insert x xs Cons x Xs
delete x [] = []
delete x (Cons y ys) = if x==y then ys else delete x ys

member x [J] = False

member x (y:ys) if x==y then True else member x ys

This declaration may be read “If type a is an instance of class Eq, then List ais an
instance of the (parametric) class Collection a as witnessed by the three collection
methods on lists.” Here the type argument to the class Collection is the constituent
type a of the collection type List a, thereby establishing the dependence relationship
intended in the class declaration. The constraint a::Eq indicates that the methods

need to do the equality test on values of type a.

In general, all type variables occurring in the type argument to Collection should
also occur in the constrained instance type. As a consequence, the problematic situ-
ation in instantiating insert’s type described earlier is ruled out in our new system.
For example, from the parametric type class declardtion, we get the following principal

type for insert:
Va.Vk::Collectiona. a— k— k

Now type a and type k are related through the parametric class Collection, and

hence any instantiation of a has to be coordinated with that of k according to the
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instance declarations

1.6 Related Work

Type classes were introduced by Wadler and Blott as an extension of the Hindley-
Milner type system [Wadler and Blott, 1989]. They proposed a new type form, called
a predicated type, to specify the types of overloaded functions. A quite similar no-
tion was used under the name of category in the Scratchpad II system for symbolic
computation [Jenks and Trager, 1981]. Kaes’ work on parametric overloading {Kaes,
1988] provided an early treatment of extending ML-style polymorphism with func-
tion overloading. Also related are type-dependent parameter inference [Cormack and

Wright, 1990] and safe run-time overloading [Rouaix, 1990].

The type class idea was quickly taken up in the design of Haskell. Its theoretical
foundation, however, took some time to develop. The initial approach of [Wadler
and Blott, 1989] encoded Haskell's source-level syntax in a type system that is more
powerful than Haskell itself, since it could also encode predicates over arbitrary types.
This increased expressiveness can, however. make typability undecidable, as shown in
[Volpano and Smith, 1991]. More discussion about the decidability problem appears
in [Lillibridge, 1992, Thatte, 1992].

‘The source-level syntax of Haskell. on the other hand, has a sufficient number of
static constraints to guarantee decidability. Research on type systems closely follow-
ing Haskell’s syntax began in [Nipkow and Snelting, 1991], where the authors model
type classes in a three-level system of valﬁes, types, and partially ordered sorts. In
their system, classes correspond to sorts and types are sorted according the class hier-
archy. Order-sorted unification [Meseguer et al., 1989] is used to resolve overloading in
type reconstruction. The use of an order-sorted approach is mathematically elegant,
yet we have shown in [Chen et al., 1992a] that the ordering relation between classes

is a syntactic mechanism and thus not necessary for developing a type system for
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type classes. Indeed, [Nipkow and Prehofer, 1993] have recently refined this system
and presented, independently of our work, a new type system, which is essentially
equivalent to ours when all classes are parameterless. Additionally, [Peyton Jones
and Wadler, 1991] gives a static semantics for Haskell and [Hall et al., 1994] presents

a simplified version.

Work has also been done to extend the type class concept to predicates over mul-
tiple types. [Smith, 1991] has looked into extensions of the original system in [Wadler
and Blott, 1989] to include subtyping with implicit coercions. [Jones, 1992b] gives a
general framework for qualified types of which type classes. subtyping and extensible
records are special instances. Unlike Wadler and Blott’s system, his system separates
overloading and instance information from the type assumption set and models them
under a general predicate entailment system. As a result, the decidability problem
of typability is reduced to that of the predicate entailment system. Our type system
shares the idea of using a separate sub-system to handle overloading constraints; how-
ever, our sub-system is designed to address the problem of overloading functions over
container structures by conservatively extending Haskell. [Kaes, 1992] also explored
extensions of the Hindley-Milner type system to include overloading and subtypes.
The resulting system is, however, very complicated even when restricted to overload-
ing.

Jones in a recent paper [Jones, 1993] proposed another interesting generalization
of type classes: constructor classes. By combining overloading with higher-order poly-
morphism, classes in this system can constrain type constructors as well as types. In
particular, a constructor class of monads can be defined to support monad compre-
hensions [Wadler, 1990a), an extension of list comprehensions to other parameterized
structures. While we cannot directly express this in our system, many instance dec-
larations for parameterized types require constraints on their constituent types that
are not permitted by constructor classes. For example, as discussed in Section 1.5,

an additional constraint a::Eq is necessary for type List a to be an instance of
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parametric class Collect a. Now if instead a constructor class Collect is used, the
instance declaration can only refer to the type constructor List, and thus is unable

to include the constraint on a.

The ambiguity problem in resolving overloaded operation is described in the
Haskell Report [Hudak et al., 1990]. [Blott, 1991] investigated this problem for a
version of their original system [Wadler and Blott, 1989]. Our result for parametric
type classes is based on [Jones, 1992a, Jones, 1994], where Jones developed a new

technique for establishing conditions sufficient to ensure ambiguity-free resolution.

1.7 Summary of Contributions
We summarize the contributions of this thesis as follows:

e We introduce a significant generalization of Haskell’s type classes. Paramet-
ric type classes can have type parameters in addition to the constrained type

variable, and thus are able to express classes such as Collection defined earlier.

e To support our proposal, we develop a type system by extending, in a highly
modular fashion, the Hindlev-Milner type system to include constrained quan-

tification. In particular:

— we add to the standard type inference engine a separate constraint infer-

ence sub-system required by constrained quantification,

— we propose a new unification algorithm that augments first-order unifica-

tion with constraint propagation,

— we provide an effective algorithm to reconstruct types for typable expres-

sions,

— we prove that the principal type property holds for the extended system.
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e We provide a translation semantics to associate meanings with typed expres-
sions, and prove that ambiguous uses of overloading can be detected at compile-

time.

e Parametric type classes are a conservative extension of Haskell’s type system:

if all classes are parameterless, the two systems are equivalent.

1.8 Thesis Organization

Chapter 2 gives a more detailed description of parametric type classes in terms of a
small example language. Chapter 3 shows how to do type inference in the presence
of instance constraints. After explaining formally when a type is an instance of a
class, two type inference systems are presented and shown to be equivalent. Chapter
4 presents unification and type reconstruction algorithms for computing the princi-
pal type for any typable expression. Chapter 5 presents a translation semantics to
associate meanings with typed expressions. Conditions to detect overloaded-operator
ambiguity are given and shown to be sufficient for the semantics in Chapter 6. Finally,

Chapter 7 reviews our results and suggests possible directions for future research.



Chapter 2

Parametric Type Classes

As discussed in Chapter 1, a type class constrains only a single atomic type, and thus
cannot express overloaded functions over parameterized types. To provide greater
expressiveness, we propose to parameterize type classes. This chapter gives a more
detailed description of parametric type classes in the context of a small example lan-
guage, followed by an example and some discussion. We focus here on the definition
of classes and instances. In subsequent chapters we will develop two type inference
systems, a type reconstruction algorithm and a translation semantics for this lan-
guage. Certain knowledge of type classes is assumed; readers are referred to the

Haskell report [Hudak et al., 1990} for this information.

2.1 Mini-Haskell"

This section describes a small example language to illustrate our idea of parametric
type classes. The language is a variant of Mini-Haskell [Nipkow and Snelting, 1991},

augmented with parameterized type classes.

19



20 CHAPTER 2. PARAMETRIC TYPE CLASSES

Type variables «

Type constructors &

Types r o= al|l ()| (m,m) | n—om | kT

Type schemes o u= 1| Vaul'.0o

Class constructors ¢

Type classes ¥ = T

Class sets I 2= {c7, - aTa} (n>0,c pairwise disjoint)

Figure 2.1: Abstract Syntax of Mini-Haskell™ Types and Classes
2.1.1 Syntax of Types and Classes

Figure 2.1 gives the syntax of types and classes. A parametric type class v in this
syntax has the form c7, where ¢ is a class constructor, corresponding to a class in
Haskell, and 7 is a type. To simplify the presentation, classes with several parameters
are encoded using tuple types, e.g., ¢ (a,a’). and parameterless classes are encoded
using the unit type, e.g., Eq(). Nevertheless, we require that in a program, every
class constructor has a fixed arity. We apply similar conventions to types: except for
the functional type constructor — and the tuple type constructor (,), all additional
type constructors, denoted by &, are unary, and application of a type constructor to
a type is expressed by juxtaposition, e.g.. List (Int ()). We will often omit the

unit type () in writing types and classes.

The definition of type schemes embodies the key device of our type system: class-
based constrained quantification, in which quantified type variables may be instanti-
ated with types that satisfy a set of class constraints. This notion of type schemes
is obtained by extending the Hindley-Milner style type scheme with class sets I' and
with the instance relationship (between a type and a set of classes) denoted by (::).

For type scheme Va::I'.o, the informal meaning is that a can only be instantiated to
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types that are instances of every class in I'. Due to the consistency requirement to be
discussed in the following section, we require that any two classes in the same class

set must have different class constructors.

As type classes may contain type variables now, the order of quantified type
variables in such extended type schemes, unlike their counterparts in the Hindley-

Milner system, is relevant. For example, the type scheme:
Va.Vk:{Collectiona}. a— k— k
is certainly different from:
Vk::{Collection a}.Va.a— k— k

Indeed, by the standard bound-variable renaming convention, the latter type scheme

is equivalent to:
Vk::{Collection a}.Vb. b— k— k

The set of type variables appearing free (bound) in an expression X is denoted
by tv(X) (btv X) and is defined in the obvious way. In particular, tv(Va:I.o) =
(tv T U tv o)\ {a}. A class v often stands for a singleton class set {v}. We use
the notation ‘v’(a,j:‘:l“,);’.r, or simply V(a;:I;). 7, to abbreviate the type scheme
Yap:Th. ... Yau:T,.7, suggesting that quantified type variables and their constraints
form a sequence, not a set; and we will refer to the type 7 as the type proper of the

type scheme.

2.1.2 Program Syntax

The abstract syntax of Mini-Haskell* programs is shown in Figure 2.2. A program
consists of a sequence of class and instance declarations, followed by an expression.
Expressions are A-terms extended with let-expressions to permit the definition and

use of overloaded and polymorphic values.
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Programs p u= class a:cT where z;:01, ..., Tp!0x in p
| inst C = 7iy where zy=¢€,...,%;, =€ in p
| e
Expressions e = =
| e e
| Az.e
| let z=¢ ine
Contexts C == {og:Ty,. .00} (n>0)

Figure 2.2: Abstract Syntax of Mini-Haskell* Programs
2.1.3 Class Declarations

Each class declaration introduces a new class v and some new overloaded functions z;
of appropriate types. For a parametric type class, there are type parameter(s) in ad-
dition to the placeholder variable which is always present in a class declaration. These
type parameters are meant to be dependents of the placeholder, which is assumed to
be a parameterized type. To distinguish between placeholder and type parameters,

we write the placeholder in front of the class, separated by an infix (::). For example:

class t::Eq where
(==) : t ->t -> Bool in

class k::Collection a where

insert : a -> k -> k
delete : a ->k ->k
member : a -> k -> Bool 1in

The first declaration introduces a class without parameters; in Haskell this would

be written class Eq t where .... The second declaration defines a type class
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Collection with one parameter; this cannot be expressed in standard Haskell.

We follow the static conventions of Haskell’s type classes. In the declarations
given above, type variables k and a are, like t, scoped only over the method-type
templates in the class body. Placeholder k is the parameterized type on which those
overloaded operations operate and thus must appear in the type of every operator.

Hence an additional overloaded constructor emptyCollect with type specification
emptyCollect : k

is permitted, whereas the following method specification is not allowed (in class

Collection):
foo : a ->a -> Int

Furthermore, two classes in scope at the same time may not share any of the same

methods.

Classes with several parameters are similarly defined. For example, we may use
the following class Map with two parameters to describe associative arrays mapping

keys of type a to values of type b:

class t::Map (a, b) where

emptyTab : t

lookup : a->t ->b
contains : a -> t -> Bool
atPut : a->b->t >t
remove T a-=>t -=>t

2.1.4 Instance Declarations

The instances of a class are defined by a collection of instance declarations. An

instance declaration provides methods ¢; to implement the class functions z; at an
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instance type 7. The infix (::) notation is also used in instance declarations and

contexts. For example, the following instance declarations assert that both Int and

Float are instances of Eq by providing the appropriate definitions of the equality

method for each type.

inst Int::Eq where

(==) = primlntEq in
inst Float::Eq where
(==) = primFloatEq in

Note that in an instance declaration, the instance type 7 must not be a variable,

since declarations such as inst a::y where r = ¢ define a to be a polymorphic, not

/

overloaded function.

The method definitions in an instance declaration may themselves contain over-

loaded operations, if they are provided with a suitable context C, which is a finite set

of instance constraints on type variables occurring in the instance type. For example:

inst {a::Eq} => List a ::

Eq where

11 == 12 = (null 11 and null 12)
or ( not (null 11)
and not (null 12)
and (head 11 == head 12)
and (tail 11 == tail 12) )

The context {a::Eq} indicates that equality over type a is needed in the method

definition and thus restricts the instantiation of a to only instances of Eq. In other

words, for type List 7 to be an instance of Eq. type 7 must be one, too. Conversely,

if type 7 admits equality, so does List 7. As we will see, contexts play a crucial role

in developing our system.
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In addition to the components discussed so far, an instance declaration for a
parametric type class supplies suitable type arguments to instantiate the class. To
establish the dependence relationship implicitly assumed between the placeholder
and the type parameters in a class declaration, we require that the type arguments
be functionally dependent on the instance type in placeholder position. For example,

consider the instance declaration presented in the previous chapter for list collections:

inst a::Eq => List a :: Collection a where
insert = listlInsert
delete = 1listDelete
member = listMember

Since the type argument a is contained in the instance type List a, the method-type
templates specified in the class declaration will be properly instantiated, e.g., the type

for listInsert is:

Va::Eq. a— List a— List a

Ambiguity

We follow Haskell’s static restrictions on instance declarations to avoid ambiguity, a
problem inherent in overloading. Ambiguity arises when the compiler does not have
sufficient type information to determine the appropriate implementation for a particu-
lar occurrence of an overloaded operator—there might be several, possibly conflicting,
implementations. Any approach to overloading must anticipate such possibilities and
find ways to eliminate them; and if ambiguities cannot be completely avoided, the
compiler should at least be able to detect them. In our system, it is clear that instance
declarations may contribute to ambiguities, since they provide implementations for
overloaded operators. For example. it is a manifest ambiguity to declare two ways to

implement list collections:
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inst a::Eq => List a :: Collection a where ..

inst b::Eq => List b :: Collection b where .

Furthermore, the following two declarations may also lead to ambiguity when the

compiler needs an implementation for collections of a more general type List a:

inst List Int :: Collection Int where ...

inst List Char :: Collection Char where ..

To eliminate these forms of ambiguity, we require that there be at most one instance
declaration for every pair of type and class constructor (%, c¢). This restriction is
necessary but not sufficient: there are other forms of ambiguities that cannot be
eliminated but can be detected. Chapter 6 presents a more detailed treatment of this

problem.

Consistency Criterion

The at-most-one restriction on instance declarations has another important conse-
quence on our system. The set of instance declarations in a program forms the basis
for asserting whether type 7 is an instance of class ¢ 7', written as 7 :: c7’, a judge-
ment to be formally defined in the next chapter. Now with this restriction, the above
requirement about dependence between instance type and type arguments guaran-
tees that, in determining whether & 7:: ¢ 7/, we may assume that type « 7 and class
¢ uniquely determine type 7'. One consequence of this is thatl instance constraints
are now subject to a consistency criterion: if we have both 7::¢ 7 and 7 :: ¢ Ty, then
we must have 7, = 75. The type reconstruction algorithm enforces consistency in
this situation by unifying 7, and 5. The consistency requirement also explains why,
in a class set I' = {¢; 71, ..., €5 T»}, we demand that the ¢; be pairwise disjoint: an

instance constraint «::I' in a context or a type scheme means that a::¢; 7; for all :.
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2.2 Example

In this section we develop a system that performs arithmetic operations on complex
numbers as a simple example of a program that uses parametric type classes. For
conciseness the program is written using Haskell-like syntax. In particular, we aug-
ment Mini-Haskell* with Haskell-like type declarations (introduced by the keyword
data) and pattern matching.

There are at least two familiar representations for complex numbers as ordered
pairs: rectangular form (real part and imaginary part) and polar form (magnitude
and angle). Addition of complex numbers represented in rectangular form reduces to

straightforward addition of coordinates:
(ri. @) + (12, 2) = (1 + 72 0+ 72)

On the other hand, when multiplying complex numbers, it is more natural to think in
terms of representing a complex number in polar form. The product of two complex

numbers is the pair obtained by multiplying their magnitudes and adding their angles:

(m1~. _(11) - (mg, ag) = (mq - mg, @ +llz)

Thus there is a preferred representation for each operator.

Our goal here is to develop a program that performs arithmetic operations on
complex numbers in a single system where both representations coexist. In particular,
we want our program to use only a single function for each arithmetic operation,
regardless of the representations of their arguments. To design such a program,
we define a one-parameter type class Complex with the following four overloaded
selectors: real-part, imag-part, magnitude, and angle. In addition, we declare two
data types to represent complex numbers and be instances of Complex. Using these
selectors and constructors associated with the data types, we can implement complex-

number arithmetic in a way that is independent of the underlying representations.
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class c::Complex a where
real-part,
imag-part,
magnitude,
angle : ¢ ->a

--Two representations of complex numbers

data Rect a = MkRect a a
data Polar a = MkPolar a a
instance a::Num => Rect a :: Complex a where
real-part (MkRect x y) = x
imag-part (MkRect x y) = ¥y
magnitude (MkRect x y) = sqrt (square x + square y)
angle (MkRect x y) = atan y x
instance a::Num => Polar a :: Complex a where

r * cos t

real-part (MkPolar r t)

imag-part (MkPolar r t) = r * sin t
magnitude (MkPolar r t) = r
angle (MkPolar r t) = t

-- Arithmetic operations on complex numbers

cAdd z1 z2 = MkRect (real-part z1 + real-part z2)
(imag-part z1 + imag-part z2)
cSub z1 z2 = MkRect (real-part z1 - real-part z2)
(imag-part z1 - imag-part z2)
cMul z1 z2 = MkPolar (magnitude z1 * magnitude z2)

(angle z1 + angle z2)

cDiv z1 22 MkPolar (magnitude zi / magnitude 22)

(angle z1 - angle z2)

Figure 2.3: Complex-number Arithmetic
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The program appears in Figure 2.3. Two polymorphic types, Rect and Polar,
are declared to represent complex numbers using the data declarations. MkRect
and MkPolar are (data) constructors, and, when applied, yield values of types Rect
and Polar respectively. These two parameterized types become instances of the
parametric class Complex if their constituent type supports arithmetic operations
and trigonometric functions such as cos and atan, which are put together under the
class Num. The definition of Num is not pertinent and has been omitted. With these
declarations, we can add and subtract complex numbers in terms of real and imaginary
parts while multiplying and dividing complex numbers in terms of magnitudes and

angles.

The use of overloaded selectors ensures that the definition of the complex-number-
arithmetic operators cAdd, cSub, cMul, cDiv is independent of which representation
we choose. Indeed, this is reflected in our type system by the principal type of cAdd
and cSub:

Va::Num.Vc1::Complex a.Vc2::Complexa. c1— c2— Recta
and similarly of cMul and cDiv:
Va::Num.Vcl::Complex a.Vc2::Complexa. c1— c2— Polara

Quantified type variables c1 and c2 can be independently instantiated to any types

that are instances of Complex.

In contrast, we cannot write similar programs using Haskell’s type classes with-
out being overspecific: either a particular representation of complex number or the

constituent type a has to be fixed.
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2.3 Discussion

2.3.1 Class Inclusion

We have described the proposed extension of type classes and illustrated its features
with an example. One aspect of the system of type classes used in Haskell that we
have not discussed so far is the notion of class inclusion. For example, we may wish
to define a class Ord which inherits all the operations in Eq, but has in addition a set

of comparison operations:

class a::0rd where
a::Eq

(), (k=) : a ->a -> Bool

The constraint a::Eq in the class body stipulates that Eq is a superclass of Ord,
and any instance of Ord must also be an instance of Eq. This subclass/superclass
facility is used extensively in the definition of the predefined classes of Haskell to

group overloaded operators into class hierarchies.

Despite their wide use in Haskell, superclass declarations are largely a syntactic
mechanism and thus do not play an essential role in the development of our type
system. Indeed, we can model the subclass/superclass relationship using class sets.
Consider, for example, the class Eq() of equality types and its subclass 0rd() of
ordered types. We can always represent Ord () as a set of two classes, {Eq(), 0rd’ 0O},
where 0rd’ contains only operations (<, <), which are defined in Ord but not in Eq.
Translating all classes in a program in this way. we end up with sets over a flat
domain of classes. This shows that we can without loss of generality disregard class

hierarchies in our system.

1n Haskell, this is written as class Eq a => 0rd a where (<), (<=) :: a -> a -> Bool.
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2.3.2 Multi-parameter Type Classes

Before going into the formal treatment of our type system, it is worth considering
parametric type classes from a different perspective. In Haskell, type classes are
viewed as unary predicates over types, as suggested by the notation used, e.g., Eq t.
As such, it is natural to consider classes over multiple types. In some ways, parametric
type classes can be seen as a special form of multi-parameter type classes. To see

this, we rewrite our definition of Collection using Haskell-like syntax as follows:

class Collection a k where

insert : a -> k -> k
delete : a -> k -> k
member : a -> k -> Bool

However, the similarity is superficial. The differences between the two systems are

very fundamental and lead to significant consequences that merit some explanation.

Essentially, we view type classes as constraints on individual types, and introduce
judgements like 7::Eq to express that type 7 satisfies the constraint Eq. Parametric
classes are our approach to generalizing standard classes so that we may constrain
both a parameterized type and any constituent types in a way that the dominance of
the parameterized type over its constituents is captured. In other words, it is still the
case that only one type is constrained, but the type constrained determines the others.
A multi-parameter type class, on the other hand, is viewed as a general predicate over

multiple types; no pre-existing relationship among the types is assumed.

We use the Collection example given above to illustrate two consequences re-
sulting from the different views. The first concerns grouping operators into classes. It
is reasonable and desirable to include constructor emptyCollect in class Collection
to represent empty collections. However. its typing in a system of multi-parameter

classes is:
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emptyCollect : Collection a k => k

This is unacceptable in the system since it is ambiguous: type variable a occurs in the
constraint (Collection a k), but not in the type-part proper (k). Ambiguous types
must be rejected, since they signal the possibility of ambiguity. (Chapter 6 deals with

this issue.) By contrast, our system gives the following typing:
emptyCollect : Va.VkiCollectiona. k

Since a depends on k, which appears in the type-part proper (k), the typing is valid in
our system. The distinction between constrained and dependent type variables allow

us to avoid this problem.?

The second consequence has to do with the consistency criterion discussed in
Section 2.1.4. This is an integral part of our system, whereas in a system of multi-
parameter classes no such notion as consistency 1s maintained, since the multiple
types constrained by a class need not be related by any pre-existing dependence
relationship. As a result, the two systems have different notions of well-typedness.
For example, consider the following function foo that inserts two objects of different

types into a collection:
foo ¢ = insert 5 (imsert ’f’ ¢)

Our system will reject this function as an ill-typed one due to the inconsistent con-
straints derived in typing it: k: :Collection Char and k::Collection Int. In the
system of multi-parameter classes, on the other hand, the function foo can be typed

as follows:

foo : (Collection Int k, Collection Char k) => k -> k

2QOne may argue that this problem can be circumvented in this case by having the emptyCollect
constructor in a different class from the other operations. This is true, but it would severely restrict
the way in which operators can be grouped.
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Only when the function is applied to a particular collection will the two constraints

Collection Int k and Collection Char k be checked for satisfiability.
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Chapter 3
Type Inference Systems

Type inference systems are used to determine types for program expressions through
a set of inference rules without any need for explicit type declaration. The Hindley-
Milner type system is one such example that works well for languages like ML, in
which polymorphic functions behave uniformly over a range of types. In dealing
with a combination of polymorphism and overloading a la Haskell, we face addi-
tional complexity: programmers can supply class/instance declarations to stipulate
the behaviors of certain operations on various data types. Thus type inference in
this system has to be conducted in accordance with the constraints imposed by these

declarations.

This chapter presents two type inference systems for Mini-Haskell*. Since types
in Mini-Haskell* may be constrained by classes, we begin with a constraint inference
system that allows us to deduce, according to the instance declarations in a program,
what class constraints a type satisfies. We then describe the first type inference system
for Mini-Haskell*. It is obtained by extending the Hindley-Milner type system in a

highly modular fashion to include the constraint inference system.

The second type inference system adapts the first one towards developing a type

reconstruction algorithm. In the original system. there are many ways in which
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the typing rules can be applied to a single expression, so that the order in which
the rules are applied in constructing a proof of type inference is not obvious. In
contrast, the second system has a more restricted set of typing rules and the choice of
rules is completely determined by the syntactic structure of the expression involved.
This syntax-directed property permits more systematic typing-proof constructions
and thus makes these rules more suitable for implementation. Furthermore, we show
that the syntax-directed system, despite its simplicity, is equivalent to the original
system; therefore, we can use the same type reconstruction algorithm to compute

typings that can be inferred from both systems.

Proofs for results of this and following chapters can be found in [Chen et al.,
1992b]. They can also be derived from those included in Appendix A for the results
of Chapter 6, where the type system is extended to provide a translation semantics

for Mini-Haskell*.

For ease of reference, the abstract syntax of Mini-Haskellt is shown again in
Figure 3.1. We have made one simplification with respect to the syntax given in
the previous chapter by allowing only one operator symbol in each class declaration:

classes with multiple operators can be coded using tuples.

3.1  Instance Constraint Inference

This section presents an inference system for deducing whether a type 7 is an instance
of a class set ', and investigatcs its properties in the setting of the type inference

systems mentioned above.

3.1.1 Instance Entailment

We refer to the problem of checking whether a type 7 is an instance of a class set I as

the satisfiability of an instance predicate 7:T. the result of which is obviously deter-
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Type variables a

Type constructors &

Types r o= a| ()| ()| n—om| kT
Type schemes o u= 71| Vaul'.o

Class constructors ¢

Type classes Ny o u= cT
Class sets I == {am, .t} (n>0, ¢ pairwise disjoint)
Programs p == class a7y where 1.0 in p

| inst ("= 71:y where r=¢ in p

| e

Expressions e u= I | e 6| Are | let T=€ ine

Contexts C o= {oulyeoapiTa} (n>0)

Figure 3.1: Abstract Syntax of Mini-Haskell*

mined by the set of instance declarations X in a program. We use these declarations
to generate an inference system for a theory whose sentences are instance judgements
of the form C H 7::T, which asserts that from C, it follows that 7:I' is true. In-
formally, the context C records the class constraints on the type variables occurring
in 7. Instance declarations such as inst 7':y’ where ... are interpreted as axioms
of the system, while those with contexts such as inst C' = 7'y’ where ... are
interpreted as inference rules by treating C' and 7’114 as antecedent and conclusion
respectively. Finally, a type 7 is an instance of class set I' if it is an instance of all

the classes in T'.

The inference rules given in Figure 3.2 formalize our idea of instance entailment.
Note that singleton class sets of the form {7} are written simply as 7. An instance

judgement is true in the theory if it can be deduced using these rules. The context
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Viel.n(CH 1)

I) (n>0)
CH 1:{y1,y ey Yn}
v € Ca

o) e
CH ay

Viel.n(CH rTy)

finst {1} =1y € B, n>0
CH 1y ( { s 7 )

7)

Figure 3.2: Inference Rules for Class Constraints

C' in these rules is a finite set of instance assumptions of the form a::I', with no «
occurring twice. We also regard a context as a finite mapping from type variables
to class sets, 1.e., Ca = I' iff a:I' € . The set of instance declarations ¥ in a
program is taken as an implicit parameter to this entailment system. In other words,

the judgement C H- 7::T" is really an abbreviation of ' H-y 7::T.

As noted earlier, in an instance declaration inst ' = 7::4 where ..., type 7
must not be a variable; therefore, inferences using these rules proceed according to the
structure of 7. In particular, for an instance predicate (x 7°:: ¢ 7"’), the inference con-
sists of an application of rule (1) to a possibly empty set of instance predicates {7;::T'; },

each of which is derived from the instance declaration that matches (k7’'::¢7").

The following lemma states that extra type variables in the context of an instance

judgement C' H- 7::I' that are not free in the predicate 7::I' may be ignored.

Lemma 3.1 (weaken) If C(a) = C'(a) for all o € to(r:T'), then C K 7T iff
C'H 7T,

In the sequel, we will write C H {7;::[';} to express the satisfiability of a set
of instance predicates {r::I'y, ..., 7,::I', } under some context (', assuming that the

range of ¢ is clear from the given setting.
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3.1.2 Contexts

We now introduce some notions about contexts that will be used through the subse-

quent development of our system.

A context records the type variables and the class constraints associated with
them in a given scenario. It can be seen as a special form of an instance predicate
set, a “normalized” one, where type variables but not general types are constrained.
The domain of a context C, written dom(C), is defined as the set of type variables
a such that (a::T') € C. Viewing contexts as finite maps from type variables to class

sets, we want to think of the region of a context C:

reg( (') = U tv(Ca).

~edom(c)

Using this notion, we define the closure of a context C over a set of type variables

A, written C*(A), as the least fixed point of the following equation:
C*(A)y=A U C*(reg Cla)

where C |, is the restriction of C to A. Intuitively, C*(A) is the set of type variables
that are related, directly or indirectly. to those in A through the class constraints in

C.

We say C) is contained in Cy, written Cy <X (i, if dom(Cy) C dom(C,) and
Cia C Cya for each @ € dom( (). We write Gy & C; for the disjoint union of two
contexts and C\, for restriction of a context (' to all type variables in its domain other
than «. As a consequence of the consistency criterion given in 2.1.4, the set union
of two contexts is well-defined only for compatible contexts. Two contexts C; and
C, are compatible, written Cy X Cy, if, for any class constructor ¢ and type variable

a € dom(Cy) Ndom(Cy,), we have 7 = 7" whenever ¢ 7 € Gy and ¢ ' € Cha.

A context C is closed if C*(dom C) = dom C, or, equivalently, if reg(C) C

dom(C). A context C is acyclic if the type variables in dom(C’) can be topologically
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sorted according to the ordering given by: a < 3 if a € tv( C3). We shall restrict our
discussion to only closed acyclic contexts in the remainder of the thesis. For example,
the contexts {a::Klc a} and {a::Kls b, b::Kls a} are both “recursive” (cyclic)
and thus prohibited.! The exclusion of recursive contexts has to do with the structure
of type schemes in our system: the ordered quantification in a type scheme rules out
such a possibility.

Finally, we say that context C covers an expression 0 if tv(II) € dom(C). In the
following discussion, unless stated otherwise. we will always assume that this is the
case for expressions such as C H {7;2:I';}. since unconstrained type variables simply

have empty class sets in the context.

3.1.3 Substitution, Context and Instance Entailment

Substitution plays an important role in Hindley-Milner style systems of parametric
polymorphism. To integrate our instance entailment system into the Hindley-Milner

type system, we need to investigate its interaction with substitution.

A (type) substitution is a map from type variables to types. The domain of a
substitution S, dom($), is the set of type variables a such that Sa # a. The region
of a substitution can be defined in the same way as the region of a context. As
usual, the composition of substitutions S and R 1s denoted by SoR, or simply by
juxtaposition SR. The extension to a substitution S by mapping type variable a to

type T is denoted by [7/a]S.

In our system, we will apply substitutions not only to types, but also to (sets

of) classes and (sets of) instance predicates. On all of these, substitution is defined

1The type reconstruction algorithm enforces this restriction by performing clique detection on
the underlying context after each call to unification.
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pointwise, i.e., it is a homomorphism on sets, class constructor application and (::):

S(ct)=1¢ST S{vi} ={Sn}
S(r:T) = Sr::8T S{rT;} = {S(mi=Ty)})

Since a context is a special form of an instance predicate set, substitutions can
be applied to contexts. However, the result of such a substitution is in general not
a context, as the left hand side @ of an instance predicate a:I' can be mapped to a
non-variable type. Our entailment rules, on the other hand, require contexts instead
of general instance predicate sets. Thus, applying an arbitrary substitution to an
instance judgement C H 7:I' may not give us another one. In other words, instance

judgements are not closed under substitution.

The following two properties do hold in our system, the second of which shows

the interaction between substitution and instance entailment:

e monotonicity: For any contexts C and C'.if €' = C then CH C'.

e transitivity under substitution: For any substitution S, contexts C and

C'.if CH 7r:' and C'H SC, then C'H- S(r:T).

The first property is fairly obvious. The second one can be established by a straight-
forward structural induction on type 7. It indicates that, to apply a substitution to
an instance judgement, we need to find a new context that entails the original one

under the substitution.

The following lemma shows how the context closure operation interacts with sub-

stitutions under proper context change.

Lemma 3.2 Let C and D be contexts and S a substitution such that D H- SC. Then
for any A C dom(C), we have to(S (*(A)) © D*(tv SA).
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3.2 Constrained Type Inference

This section presents our first type inference system for Mini-Haskell*. Like the
Hindley-Milner type system, type inference in our system depends on type assump-
tions. A type assumption set is a set of type predicates z:0 in which no z appears
twice. The difference is that our system includes an additional context containing
instance predicates c::I' in the typing rules to restrict the set of types that these
type variables may range over. This leads to a modular combination of the instance
constraint inference system presented above with the Hindley-Milner type inference

system.

Figures 3.3 and 3.4 give the typing rules that allow us to derive typing judgements

of the form

A,C F p:o,

which asserts that program expression p has type o when the types of the free variables
in p are specified in A while the class constraints on the free type variables in A are

specified in C.

The rules in Figure 3.3 specify how to type expressions along the lines of the stan-
dard Hindley-Milner system. These are the same six rules as in [Damas and Milner,
1982], but with the constraint system added. The constraint extension contributes to
the restricted instantiation and quantification of type variables, which becomes man-
ifest in two particular rules: the quantified type variable in a type scheme Vo::I'.0
can be instantiated to a type 7 only if we know from the context that r::I' (V-elim),
and type variables are generalized together with their class constraints recorded in
the context (V-intro). We write C.euT for C U {a:T'}, assuming a ¢ dom(C). A
similar convention applies to the type assumption set A. Note that, to ensure type
variables are “discharged” from the context in a proper order, we have included the
additional constraint about reg(C) in the side condition of rule (V-intro). For ex-

ample, if C = {a:Eq, k::Collection a} and A = @), then we cannot discharge the
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(var) (z:0)€ A
AC Fz:0
(V-elim) A, C F e:Val'o CH 7T
-elim

A,C F e:fr/alo

ACaTl F e:o
V-intro . o & tv(A) U reg(C
( ) A C F e:Val.o # tv(4) 8(C)

(r-elim) ACF 17— A C F e 1
ACEF e T
Az, C F €:
(A-intro) il T
A C F dre:7m =71
(let) ACF e:o Ar:o,C F e:7

A, C F {(let r=¢ ine): T

Figure 3.3: Typing Rules for Expressions

constraint a::Eq until we first discharge k::Collection a, since a depends on k.

One may observe that, in rule (let), a single context C is used to derive the types
for both the let-definition €, and the let-body e;. Another reasonable choice would

be to use two contexts as follows:

ACi F g0 Az:io,Cy F e T

G =G
A, Cy F (let r =€ ine): 7

The following lemma shows that the two alternatives lead to equivalent systems.

Lemma 3.3 Suppose that A, C' + ¢:0. If (" 2 C and dom(C) Nb(c) = 0,
then A,C F e:o.
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A.z:Vch)Va::{'y}.a, CFp:o

A,C F (class a:y where r:0 inp):o

(class) -

AC 3 g:Va:{y}.o A, CUC + e:[t'/a]o A, CF p:o
A,C F (inst C' = 7'iy where z =¢ in p): o’

(inst)

Figure 3.4: Typing Rules for Declarations

The rules in Figure 3.4 extend this system from expressions to programs. In rule
(class), the overloaded identifier z is added to the type assumption set with its most
general type. Rule (inst) expresses a type compatibility requirement between an

overloaded identifier and its instance definition.

To sum up, a program consists of a series of declarations followed by an expression.
Class declarations in a program provide the type templates for overloaded functions,
while instance declarations instantiate those type templates properly and generate
an entailment relation H-. Together they supply the constraint information needed to
infer the type of the main expression in a program. Since the method definition in
an instance declaration is also an expression, in the remainder of the thesis we shall
focus only on the problem of how to derive types for expressions, omitting the other

bookkeeping operations for handling declarations.

3.3 A Syntax-directed Approach

In this section we present a syntax-directed type inference system. Compared to the
typing rules in the previous section, the rules here are formulated so that the typing
derivation for a given term e is uniquely determined by the syntactic structure of e.
As a result, these rules are better suited for use in a type reconstruction algorithm.

We show that the system is equivalent to the previous one in terms of expressiveness
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and, in addition, has all the nice properties required for the construction of a type

reconstruction algorithm.

The use of a syntax-directed, Hindley-Milner style inference system originates
in [Clément et al., 1986]. They call it “deterministic” in the sense that there is
only one rule stating how to type each syntactic construct, whereas, in the original
system, rules (V-intro) and (V-elim) may be invoked at any time in building a proof
for A F e : o, thus rendering the system non-deterministic. The technique they
developed is to apply rule (V-elim) only to variables and rule (V-intro) only to the
definition sub-expression of a let-expression. We will follow their method to derive
a syntax-directed system for Mini-Haskellt, but we need to introduce the notion of

generic instance first.

3.3.1 Ordering Type Schemes and Type Assumptions

A useful fact about the Hindley-Milner type system is that when an expression e has
a type, there is a principal type which captures the set of all other types derivable
for e through the notion of generic instance. an ordering relationship between type

schemes.

Definition 3.1 (Generic instances) A type scheme o' = V(a):T%). 7' is a generic
instance of another type scheme o = V(a;:l';). 7 under a context C, if none of the
variables o} appears free in o or C'. and there exists a substitution S on {a;} such
that

Sr=1" and Cw{a)zI} H S{aTi}

We write in this case, o' <¢ o, and we drop the subscript in <¢ if C ={}.
p

The definition of <¢ is an extension of the ordering relation defined in [Damas

and Milner, 1982]. The new requirement on instance entailment is needed for the
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extension of parametric type classes. It is easy to see that < defines a preorder on

the set of type schemes.

The following properties of (X¢) follow directly from its definition.
Lemma 3.4 If o' <c o and C X C' then o' <¢1 0.
Lemma 3.5 If 0" <¢c o' and o' <¢ o then ¢" Z¢ 0.

The next lemma shows the interaction between substitutions and the ordering on
type schemes. It is a consequence of the transitivity under substitution property of

the instance entailment system H-.
Lemma 3.6 If o' <¢c o and C'H SC then So’' <¢ So.

The ordering on type schemes (<) extends naturally to an ordering between
type assumption sets: for type assumption sets A’ and A, and context C, A" <¢ 4

iff dom A’ =dom A and A'(z) X¢ A(z) for all x, x € dom A.

Clearly, the ordering between two type assumption sets still holds when the con-

text is enlarged.

Lemma 3.7 If A’ <¢ A and C <X ('. then A" ¢/ A.

3.3.2 Syntax-directed Typing Rules

The typings rules for the syntax-directed system are given in Figure 3.5. The rules
(V-intro) and (V-elim) have been removed and typing judgements are now of the form
A,C F' e: 7 where 7 ranges over the set of type expressions rather than the set
of type schemes as in the typing judgements of the previous section. Other major

differences are that rule (var’) instantiates a type scheme to a type according to the
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(z:0)€ A T=¢c0O

var’
( ) ACVHF z:1

ACFH ¢:1 A C FH e 1
(A-elim’) a:’ 7 ©2:7

ACF ege: T
Az:7.C F e:

(A-intro’) kil °T

A C H dze:t' >

AC'H e:n Ar:io.C F e:T
(let") A.C FH (letz=¢ ine): 7

(0. C") = gen(m. A.C"), (" = C

Figure 3.5: Deterministic Typing Rules for Expressions

definition of generic instance and rule (let’) uses the generalization function, gen, to
introduce type schemes. In other words, only type expressions are involved in the

matching process; type schemes can only appear in the type assumption set.

The function gen acts as the rule (V-intro) of the original type system. It takes as
arguments a type scheme, an assumption set, and a context, and returns a generalized

type scheme and a discharged context. It is defined as follows:

gen (0, A, C) = if Ja € dom(C)\(tv A Ureg C) then
gen (Va::Ca.o, A, C\4)
else (0. ().

In other words, instance assumptions in the given context, except those constraining,
directly or indirectly, type variables in the type assumption set, are discharged and
moved to form a more general type scheme in an order such that type variables are

properly quantified.? This is formalized in the following lemma:

2To make it well-defined, any implementation of this function must fix a particular order to
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Lemma 3.8 If gen(r,A,C) = (0,C"), then o0 = Y{a;:Ca;)}.7 for some n > 0
such that {a;} W dom(C’) = dom(C) and dom(C’) = C*(tv A).

We also need the following lemmas about gen to investigate the properties of the
syntax-directed system and its relationship with the original system. The first two

lemmas follow directly from gen’s definition.
Lemma 3.9 If A,C + e:7 and (0,C’) = gen(1,A,C), then A,C' F e:o0.

Lemma 3.10 Let (0,C;) = gen(r. A, C) and (o'.C}) = gen(1,A,C & C"). Then

o' <o and o <X¢ 0.

The next two lemmas describe the interaction between the gen function and sub-

stitutions under the common scenario A.C + € :7.

Lemma 3.11 Suppose that (o,C’) = gen(r.A.C). Let D be a context and S a
substitution. If gen(St,SA, D) = (¢, D’). then o' <p So whenever D H SC.

This result indicates that, in general, the composition of generalization and substi-
tution is not commutative. However, under certain conditions, we can find a suitable

substitution that satisfies the commutativity. as shown in the following lemma.

Lemma 3.12 Suppose that (o, C') = gen(1,A. C). Let C" be a context and S a
substitution such that C” W= SC'. Then there exists a substitution R and a context
D such that

RA=SA and DH RC.

Furthermore, if gen(Rt,RA,D) = (¢',D’) then

So =0 and D' =< (C".

discharge instance assumptions from the given context.
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3.3.3 Properties of the Syntax-directed System

This section presents some useful properties of the syntax-directed type system. The
first property is about substitution and typing judgements. Like instance judgements,
typing judgements are not closed under arbitrary substitution: a matching context is

necessary.
Lemma 3.13 If A,C ' e:7 and C'H SC, then SA,C’ H oe:ST.

The next two lemmas express a form of monotonicity of typing derivations with

respect to the context and the type assumption set.
Lemma 3.14 If A,C V' e:7 and C < (C'. then 4,C" F' e:T.

Lemma 3.15 If A.z:0,C F e:7 and 0 <c o', then Azx:0',C F e:T.

3.3.4 Relationship with the Original Type System

Given the results of the preceding sections, we can show that the syntax-directed
system ' is equivalent to the original system F in the following sense. First, the

syntax-directed system is sound with respect to the original one:
Theorem 3.16 If A, C ' e:7 then A,C F e:T.

Second, for each typing derivation in the original system we can always find a
derivation in the syntax-directed system such that the inferred type, obtained using
the gen function, is more general than the type scheme determined by the original

derivation:

Theorem 3.17 If A,C F e:o then there is a context C', and a type T such that
C<C', A C VF e:1and 0 <c o where (o/,C") = gen(7, A, C".
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Chapter 4

Unification and Type

Reconstruction

We have seen in the previous chapter how we can do type inference in the presence
of parametric type classes by adding an instance constraint inference system into
the Hindley-Milner type system. In particular, using the syntax-directed system, we
can infer the types for an expression in a way that the application of typing rules is
determined by the syntax of the expression. Nevertheless, since rule (var') can choose
any generic instance of the type of the identifier z, the system is non-deterministic. In
this chapter, we refine the syntax-directed system to develop a deterministic algorithm
that reconstructs, for an expression. the most general type that can be inferred from

the type system.

As usual, type reconstruction relies on unification, so we will first work out what
kind of unification is needed for parametric type classes. This leads to our develop-
ment of a contezt-preserving unification algorithm, which augments first-order unifi-
cation by propagating the class constraints associated with type variables. We show
that the unifiers produced by the algorithm are, in a certain sense, the most general

unifiers possible.
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We then go on to present a type reconstruction algorithm based on the unification
algorithm. We show that for any expression that can be properly typed by the type
systems presented in Chapter 3, the type reconstruction algorithm will assign a type
from which all other types can be derived. In other words, our type system has the

so-called principal type property.

4.1 Context-Preserving Unification

Type reconstruction usually relies on unification to compute most general types. One
consequence of rule (V-elim) of the type system given in Section 3.2 is that the well-
known first-order unification algorithm of Robinson [Robinson, 1965] cannot be used
since not every substitution of type variables to types satisfies the given class con-
straints. [Nipkow and Snelting, 1991] has shown that order-sorted unification can be
used for reconstruction of types in Haskell, but it is not clear how to extend their
result to parametric type classes. In this section we develop an algorithm to compute
the most general unifier of two types that also preserves the class constraints of any

given context.

4.1.1 Constrained Substitution

Usually, a substitution S is called a unifier for the type expressions 7 and 7’ if ST =
S7', and the main use of unification in type reconstruction is to compute a unifier for
the type of a function’s parameter and that of its actual argument. Unification in our
system has, however, an additional task—namely, preserving the underlying context.
As discussed in Section 3.1.3, applying a substitution to a context usually yields some
general instance predicate set that needs to be further normalized until a preserving
context is obtained. To express such interaction between substitutions and contexts

in our unification algorithm, we introduce the notion of constrained substitution:
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Definition 4.1 (Constrained substitutions) A constrained substitution is a pair

(S, C) where S is a substitution and C is a context such that C = SC.

As we shall see, a unifier in our system is such a pair of substitution and context.

The following definition introduces an ordering on constrained substitutions by
extending the standard ordering on substitutions to include the notion of context

preservation.

Definition 4.2 A constrained substitution (S’, C’) preserves another constrained sub-
stitution (S, C) if there is a substitution R such that 5" = Ro S and C'H RC, in
which case we write (S',C") 2 (S.C).

Given the ordering on constrained substitutions, we can define the most general

constrained substitution that satisfies certain requirements.

Definition 4.3 A constrained substitution (S, C) is most general among those con-
strained substitutions that satisfy some requirement R if (S, C) satisfies R, and, for
any (S', C') that satisfies R. (S', C") < (S, ).

In particular, we are interested the following two requirements on constrained

substitutions.

Definition 4.4 A constrained substitution (S, C) 1s a

(a) (So, Co)-preserving unifier for the type expressions 7 and 7' if ST = ST’ and

(S, C) = (So, Co).

(b) (So, Co)-preserving normalizer of an instance predicate set P if C - SP and
(S, C) = (S, Co)-

Our goal in the remainder of this section is to compute the most general unifiers and

normalizers that also preserve a given context.
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4.1.2 Restrictions on Instance Declarations

An important property of Robinson’s unification algorithm is that it is able to find the
most general unifiers, if they exist. To establish a similar property for our unification
algorithm we need to impose some restrictions on the instance declarations in a pro-
gram, since unifiers in our system have to preserve the underlying class constraints.

The restrictions are as follows:

(i) There is no instance declaration of the form inst C = a:c7T vhere ... .

(i) For every pair of type and class constructor (x, ¢), there is at most one instance

declaration of the form inst C' = «7'::c 7 where ... . Furthermore,

a) 7' must be the unit type. or a possible empty tuple of distinct type vari-
p p yp

ables.

(b) Both dom(C') and tv(7) must be contained in tv(r’).

Basically, these are the same restrictions that were informally described in Sec-
tion 2.1.4. Restriction (i) is fairly obvious, and restriction (ii) is a generalization of the
restrictions in Haskell to incorporate parametric type classes. In particular, because
of (ii)[a], instance declarations are simple templates that can be instantiated using a
standard matching operation. Restriction (ii)[b] ensures that all the type variables

involved appear in 7'-—i.e., there are no “unbound” type variables.

Furthermore, the set of instance declarations in a program must not satisfy any
recursive contexts since we exclude recursive contexts from our system. Consider, for

example, the following two instance declarations:

inst List a :: Cl1 a where ...

inst Int :: C2 (List Int) where ...

Both of them follow the restrictions (i) and (ii) stated above. Nevertheless they must

be rejected since they satisfy recursive contexts such as { a::C1 b, b::C2 a } (using the
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substitution [List Int/a]{Int/b]). This is achieved by doing a clique-detection on the
set of types related by the instance declarations: In the example, the first instance
declaration establishes an “edge” between List a and a, in particular List Int
and Int. But Int is in turn “connected” to List Int through the second instance

declaration, thereby forming a clique.

More formally, we consider the graph formed by viewing types as vertices and
letting every instance declaration establish certain edges between certain types. The
edges, denoted by ~, are derived as follows. From the instance declaration, removing

the auxiliary tuple type constructors.
inst C = (k" a1....,¢a,) = (¢™ Ty 0, Tm) where
we obtain the following edges:
S(K™ ajy. . ay) ~ S7i, 1<i<m

where S is an arbitrary substitution on a;. since 7; contains no type variables other
than those of ;. Then, to support the exclusion of cyclic contexts, we require that

the resulting graph be acyclic.!

Given these restrictions on the instance declarations in a program, we show in the
following section that our unification algorithm computes the most general context-

preserving unifiers.

4.1.3 Algorithm

The context-preserving unification algorithm is shown in Figure 4.1; it consists of four

mutually recursive functions: mgu. mgu’, mgn and mgn'.

Function mgu takes two types and returns a transformer on constrained sub-

stitutions. The application mgu 7 7, (S, C) returns a most general constrained

1Note that this is a conservative simplification since we have ignored the additional context C
that may exist in an instance declaration.
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mgu:1T—=T17—=>SxC—->5%xC
mgn:7T =T —=>8xC—-S5xC

mgu 1 72 (S, C) = mgu' (Sm) (S72) (5, C)

mgu' a « = ddsxc

mgu a7 (S,C) | agtv(r) = mgnt(Ca)(lr/a]oS,[r/a]C\a)
mgu' 7 o (S, C) = mgua 7 (5.C)

mgu’ () () = tdsxc

mgu' k7 7' (S, C) = mgurt 1 (5.C)

mgu' (11,72) (71, 73) = (mgu 7)o (mgu 7y 7g)

mgu' (11 — 72) (11 = 73) = (mgu 7 7])0 (mgu 12 Ty)

mgn 7 {} = idsxc

mgn 7 {7} (S, C) = mgn' (S7) (S7)(S.C)

mgn 7 (1 UT,) = (mgn 7 T1)o(mgn 7 1)

mgn’ a ct (S,C) = if 3r'.(c7 € Ca) then mgu 7 7' (S, C)

else (S.C[CaU{c7}/a])

mgn’ &7 ¢r (8§,C) | 3 inst "= ki'e7 € &

= let §' = match 7 7'
(8”,C") = mgu Tt (5'7) (8,C)
{ri:ly,. . el )} = S'C

(and similarly for —, (,), ())

Figure 4.1: Unification and Normalization Algorithms
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substitution that unifies the types 7, and 7, and preserves (S, C), if such a substitu-
tion exists. A subsidiary function mgu’ is used to thread the constrained substitution
through recursive calls that traverse the structures of the given types. The algorithm
is similar to the one of Robinson, except for the case mgu’ a 7 (S, C'), where a may
be substituted by 7 only if 7 can be shown to be an instance of Ca. This constraint

translates to an application of the subsidiary function mgn to 7 and Ca.

The call mgn 7 T (S, C) computes a most general (S, C)-preserving normalizer of
{r:T}, provided one exists. This is accomplished by normalizing 7::y for each y € T’
using mgn’. In mgn'. it may in turn call mgu 7 7’ to solve a subproblem of the form
C.c::({c} UT') # a:cr. The unification is required since all class constructors
in a class set are pairwise disjoint. Thus, the above entailment has 7 = 7' as a
logical consequence. The other call to mgu is made when solving the entailment
C W k7'::c7. Since there is at most one instance declaration for each (x, ¢) pair, 1t
either fails or finds the proper instance declaration. The standard pattern matching
operation match is to instantiate the instance declaration 'O = ket It takes
the pair of types (7/,7') and returns a most general substitution S’ such that St =1'.
Then, due to the consistency criterion. it calls mgu to unify 7 and S'7. Finally, it

instantiates the declared context (' and recursively normalizes it.

We now investigate the properties of the algorithm. The first two properties
concern the type variables that are involved in the computed unifiers. Note that
in an instance declaration, 'C’ = «k7/::¢ 7. the type 7/ is either a unit type or a
tuple of distinct type variables. and both tv(7) and dom((") are contained in tv(r’).
Thus it suffices to use the standard matching operation to instantiate an instance
declaration, and no new type variables will be introduced in the normalization process.
Furthermore, the substitution is only extended in mgu, which does not introduce any

new type variables. Consequently, we have the following lemma:

Lemma 4.1 Let (S, C) be a constrained substitution and T, 72 types such that C
covers both St and Stp. If mgu 7 1 (S.C) = (S, ("), then there exists a sub-
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stitution R such that S’ = R o S and both dom(R) and reg(R) are contained in
C*(tv ST1 U tv S1y).

Moreover, in the course of computing the unifier, whenever the substitution is
extended with [r/a] in mgu', the class constraints on a are discharged from C and

all occurrences of a in C are replaced by 7. Hence we have the following lemma:

Lemma 4.2 Let (S, C) be a constrained substitution and 11, T, types such that C
covers both Sty and Sto. If mgu 7 75 (5. C) = (S', C"), then (S', C") is a constrained
substitution and dom(S')\ dom(S) = dom(C') \ dom(C").

This lemma points out an important property of the algorithm—in its execution,
the context C is never enlarged and whenever S is extended, C' will be correspondingly

diminished. This property is crucial to our proof of the termination of the algorithm.

Lemma 4.3 (Termination of mgu) For any constrained substitution (S, C) and

types Ty, Ty, the invocation mgu Ty T, (S, C) either fais or terminates.

The next lemma states the soundness of our algorithm. It consists of two mutually
dependent parts—namely, mgu computes a unifier and mgn computes a normalizer,

both of which preserve the given context.

Lemma 4.4 (Soundness of mgu and mgn)
1. If mgun 7 (S,C) = (S',C"), then S'ry = S'ry and (§'.C") 2 (S, C).
2. If mgn T (S,C)=(S",C"), then " H S'(1:T) and (§',C") < (S, C).
Furthermore, our algorithm is also complete. More specifically, if there are context-

preserving unifiers and normalizers in a specific setting, our algorithm will computes

the ones that are most general.
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Lemma 4.5 (Completeness of mgu and mgn)
1. If there is an (S, C)-preserving unifier (S, C) of 11 and 7, then the invocation
mgu 1 73 (S, C) succeeds with (S, C') such that S'm = S'r, and (S,C) =
(8, C") 2 (S, C).

2. If there is an (S, C)-preserving normalizer (S,C) of 7 and T, then the invo-
cation mgn 7 T' (S, C) succeeds with (S', C') such that C' # S'(r3::') and
(S,C) <(S',C")=(S,0).

As a corollary of these lemmas. we have the following theorem for our unification

algorithm:

Theorem 4.6 (Unification theorem) Let (S, C') be a constrained substitution and
71, T2 types such that C covers both Sy and St;. Ifthereis a (S, C)-preserving unifier
of 1 and Ty then mgu 7y 75 (S, C) returns a most general such unifier. If there is no

such unifier then mgu 7 75 (S. C) fails in a finite number of steps.

4.2 Type Reconstruction

Given the context-preserving unification algorithm, we now present an algorithm for
deciding, under a fixed setting, if there is any type that can be inferred for a given
expression. We show the soundness and completeness of this type inferencer with
respect to the type system of Scction 3.2 through the syntax-directed typing rules
given in Section 3.3 and the equivalence result established therein. As a corollary of
these results, we obtain a principal type property for our system analogous to the one

in [Damas and Milner, 1982].
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4.2.1 Algorithm

The type reconstruction algorithm is shown in Figure 4.2.? Function tp takes as argu-
ments an expression e, a type assumption set A, and an initial constrained substitu-
tion (S, C). It returns, when it succeeds, a type 7 and a final constrained substitution
(S', C") such that S’A,C" F e: 7. The intended initial scenario is as follows: The
“refined” type assumption set SA holds the types of the variables occurring free in
e, including those overloaded class operators and certain primitive operations. The
context C, on the other hand, contains class constraints on the type variables that

are free in SA.

Function p proceeds by cases dispatching on the form of the expression e. Ex-
cept for the case of let-expressions, the algorithm 1s a straightforward extension of
Milner’s algorithm W [Milner; 1978] to support constraint processing for paramet-
ric type classes. Indeed, {p uses the same two major components—instantiation of
type schemes with new type variables and a unification algorithm—to synthesize a
type for e. The extension concerns the maintaining of instance assumptions in the
context C: when new type variables are introduced, they are added to the context
with suitable class constraints; and, as discussed in Section 4.1, mgu performs context

normalization as well as unification.

Note that let-expressions need some extra context processing. To construct the
type for expression let = = ¢ in € given type assumption set A and constrained
substitution (S, C), we first construct the type of €. However, as the let-expression
may be a sub-expression of another expression, the context C may contain instance
assumptions besides those needed in constructing the type for e;. If we were to
make a direct recursive call tp (€1, A4, S, C), the resulting context would also contain

those extra instance assumptions, which in turn will be discharged by function gen in

2This is actually a simplification of the real algorithm because we can get a cyclic context after
the call to unification function and thus violate our restriction on contexts. So what is missing here
is a clique-detection algorithm, which is simply a variant of occur checking. We omit it here for
simplicity. This is safe since recursive instance declarations are not allowed.
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tp (e,A,S,C) = case e of
z . inst (S(Az),S,C)

eer : let (11,5,C) = tp(e1,A4,5,C)
(72,52, Ca) = tp (€2, 4,51, C1)
o be a new type variable
(S5, C3) = mgum (12— a) (S, Cr.a:{})
in (Sa,S5;, Cs)

Mz.e : let a be a new type variable
(11,5, 1) = tp (e1,Az:0, S, C.a::{})
in (Sia—7.5,.0G)

letz=¢ ine : let (7 ={{a:Ca)|ae C*(tv SA)}
D = C\('
(11,51, Cy) = tp (e, A,S,C")
(0.C2) = gen (11,514, Cy)
(7.5, C3) = tp (€2, Az:0,5, ()
in (7,5%.C ¥ D)
where
inst (Va:I'.o.S.C) = let 3 be anew type variable
in inst ([8/alo, S, C.B:T)
inst (1.5,C) = (1,5,C)

| Figure 4.2: Type Reconstruction Algorithm
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forming a type scheme for e;. As a result, the type scheme would be overgeneral and
the context would become incomplete. Therefore, we cannot pass the whole context

C to construct the type of €, but only the pertinent part.

Our strategy is to partition the context C into two parts: one that contains
instance assumptions on type variables that are free in the type assumption set SA
(denoted by C’ in tp) and the other the extra ones that are generated in previous
stages (denoted by D in tp). Since all variables occurring free in e; have their types
recorded in SA, sub-context C'is all we need for constructing the type of ¢;. Asto D,
we simply restore it to the context after the type of the let-expression is synthesized.
Indeed, this scheme is based on the syntax-directed type inference rules of Section 3.3,
where two contexts are used in the antecedent part of rule (let’s) while only one is

used in all other rules.

One may argue that the extra context processing in the case of let-expressions is
due, in a large part, to the way the function gen is defined (Section 3.3). A conceivable
alternative is to discharge from the given context only instance assumptions that
constrain type variables appearing free in the given type, but not the type assumption
set:

gen' (o, A, C) = if Ja € tv(o)\(tv AUreg C) then
gen’ (Va:Ca.a, 4, (\,)
else (o, ()

This function gen’ will leave those instance assumptions generated earlier intact in C
while generalizing the type of e, and hence no loss of context information will occur.
However, it will not be able to discharge ambiguous instance assumptions from C and
therefore will fail to return a more general type of ¢;. We will have more to say about

this interaction between ambiguity and function gen in Chapter 6.

Now let us investigate the properties of our algorithm. We begin by showing
that tp, when given an appropriate constrained substitution, produces a constrained

substitution that preserves the given one.
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Lemma 4.7 Let e be an expression, and let (S, C) be a constrained substitution and
A a type assumption set such that C covers SA. If tp(e, A,S,C) = (r,5,C"), then
(S', C") is a constrained substitution and (S, C") <(S,0).

Henceforth, to simplify the presentation, we shall assume as an implicit side-

condition that C covers SA when writing tp (e, 4,5, C).

The following theorem establish the soundness of ¢p with respect to the syntax-

directed type system.
Theorem 4.8 If tp(e, A, S, C) = (1.5, C"). then S'A.C'"F e:T.

Combining this with the result of Theorem 3.16 gives us the soundness of tp with

respect to the type system of Section 3.2.

Corollary 4.9 (Soundness of tp) If tp(e. A, 5. () = (7, S',C"), then S'A,C"

eE:T.

The next theorem shows that the typing judgements obtained by tp are, in a
precise sense, the most general ones derivable for a given expression from the syntax-

directed system.

Theorem 4.10 Suppose that S'A, C' +' e : 7" and (5, C") X (S0, o). Then
tp(e, A, S, Co) succeeds with (1,5.C). and there is a substitution R such that

1. §' = RS, except possibly on new type variables of tp(e, A, So, Co),
2. C'H RC, and

3 1= Rr.

Combining this with the result of Theorem 3.17 we obtain the following complete-

ness result for ¢p.
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Corollary 4.11 (Completeness of tp) Suppose that S'A, C' F e : o' and
(§8',C") < (So, Co). Then tp(e, A,So, Co) succeeds with (r,5,C), and there is a
substitution R such that

1. S’ = RS except possibly on the new type variables of tp(e, A, So, Co), and
2, o’ jcl Ro

where (o, C) = gen(t, SA, C).

4.2.2 Principal Type Property

We are now in a position to show, for our type system, the existence of reconstructible
principal types, the key property of the Hindley-Milner type system. First, let’s make

precise the notion of principal types in our system.

Definition 4.5 (Principal types) Given type assumption set A, contert C, and
expression e, we call type scheme o a principal type for € under A and C iff A,C F

e: 0o , and for every type scheme o', if A.C' - e:0' then o' Zco.

As a consequence of the completeness of tp. we have the following two corollaries
about principal types. The first one shows that the type computed by tp is principal

in a specific setting.

Corollary 4.12 Suppose that dom(Cy) = (Co)*(tv SoA). If tp(e, A, So, Co) =
(,5,C) and gen(1,SA, C) = (0,("), then o is a principal type for e under SA and
C'.

An interesting case occurs when tv(A4) = 0 (and hence no initial context is necessary):
if tp(e, A,id,0) = (7,5, C), then gen(7, A, () = (0,0) and o is a principal type for

e under A.
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Note that we need the condition dom(Cy) = (Co)*(fv SoA) to apply Theorem 4.11
to prove the corollary. The condition ensures that no redundant instance assumptions
occur in Cg, for, if there are, they will remain intact during type reconstruction and
will in turn be discharged from C by gen in calculating o and C’. This would then
falsify the premise (S, C") < (So, Co) required to apply Theorem 4.11.

We say that expression e is well-typed under type assumption set A and context
C iff there exist a type scheme o such that 4,C F e : 0. The next corollary states

that, under a given scenario, an expression has a principal type if it has a type.

Corollary 4.13 (Principal type theorem) Ife is well-typed under A and C, then
e has a principal type under A and C.
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Chapter 5

Translation Semantics

So far we have concentrated on the type system of Mini-Haskellt—namely, how to do
type inference and reconstruction for parametric type classes. In this chapter we turn
to the problem of associating meaning with well-typed Mini-Haskellt expressions.
One feature of Haskell-style overloading is that at compile time, it is possible to
translate, based on typing derivations, a program using overloaded operators to an
equivalent program that does not. Since our main concern is overloading resolution,
such a translation scheme can be seen as a semantic specification for the source
language. Our proposed parametric extension maintains this feature, and it requires

the same mechanisms to realize the translation.

This chapter begins with a short introduction to the translation scheme and then
leads to the development of a formal translation semantics for Mini-Haskellt. The
target language is a version of the polymorphic A-calculus called CP that includes ex-
plicit constructs to handle overloading. Except those constructs, CP is very similar to
Mini-Haskellt. One of the main uses of CP is to assign meaning to Mini-Haskell* ex-
pressions by translating them into CP expressions where overloading is made explicit.
The translation is based on a mapping between typing derivations in Mini-Haskell*

and CP. More specifically, we show that each typing derivation for a Mini-Haskell*

67
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expression corresponds to a typing derivation for a CP expression with explicit over-
loading, which thereby serves as a translation for the given expression. In other words,
every well-typed Mini-Haskell* expression has a translation and all the translations

obtained in this way are well-typed in CP.

5.1 An Informal Presentation

It is instructive to describe the translation scheme informally before we proceed to
the formal semantics. The complex number example of Section 2.2 will be used to

illustrate the main ideas.

Class/Instance Declarations

Following [Wadler and Blott, 1989], type classes and their instances are replaced
by so-called (method) dictionaries which contain all the functions associated with
a class. In particular, each instance declaration generates an appropriate definition
of a dictionary that contains methods for all the (overloaded) operators associated
with a class at a given type. For example, corresponding to the following instance

declarations:

instance Int::Eq where

(==) = primEqlnt

instance Int::0rd where
(<)
(<=)

primLelnt

primLeqInt

we have the dictionaries:
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DEqInt = <primEqlInt>
DOrdInt = <primLeInt, primLeqInt>
Here, (e1,...,¢€,) builds a dictionary of n methods. The dictionary for Eq contains

only the equality method while the one for Ord has two methods for (<) and (<=).

If an instance declaration has a context, then it translates into a definition of a
dictionary constructor whose parameters correspond to the dictionaries required by

the context. For example, the declaration:
inst a::Num => Rect a :: Complex a where .

translates into the definition of the unary dictionary constructor DComRect:

DComRect dNum

1}
A
A%

Given a dictionary for a::Num, this dictionary constructor yields a dictionary for
instance (Rect a :: Complex a). Hence (DComRect DNumFloat) generates a dic-

tionary for Complex in rectangular form.

Finally, for each operation in a class, there is an selector to extract the appropriate
method from the corresponding dictionary. Hence for the Comp class, we generate the

following selectors:

real-part <r, i, m, a> = T
imag-part <r, i, m, a> = 1
magnitude <r, i, m, a> = m
angle <r, i, m, a> = a

Overloaded Expressions

Having introduced how class/instance declarations are handled, we now turn to over-

loaded expressions. Each reference to an overloaded operator is translated into an
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extraction from some dictionary variable, which will either be resolved to a concrete
dictionary or remain unknown and become a parameter to the whole expression. For

example, the cAdd function of Section 2.2, defined by:

cAdd z1 z2 = MkRect (real-part zi + real-part z2)

(imag-part zi + imag-part z2)
is translated as follows:

cAdd dNum dComl dCom2 zl1 z2 =
MkRect ( (+ dNum) ((real-part dComl) z1)
((real-part dCom2) z2) )
( (+ dNum) ((imag-part dComl) z1)
((imag-part dCom2) z2) )

Three additional parameters, dNum, dCom1. and dCom2, are generated, corresponding
to the required dictionaries. In general, these dictionary parameters witness the class
constraints in the type of an overloaded function. as demonstrated by the type of

cAdd:

Va::Num.Vci::Complex a.Vc2::Complexa. c1— c2— Recta

Finally, each call of an overloaded function supplies the appropriate dictionary ar-
guments. Thus the application cAdd (MkRect 1.5 2.5) (MkPolar 4.0 3.5) trans-

lates to

cAdd DNumFloat (DComRect DNumFloat) (DComPolar DNumFloat)
(MkRect 1.5 2.5) (MkPolar 4.0 3.5)
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Type variables e
Type constructors K
Types o =al ()] (61,02) | o1 > 02| ko | Vol o
Class lists ' 5= v,... .7
Expressions e u= = term variables
| e e applications
| Az.e abstractions
| ed dictionary applications
| Av.e dictionary abstractions
| let r = ¢ ine; local definitions
Dictionary constructors x
Dictionaries d = v dictionary variables

| vdy...d, dictionary construction

Figure 5.1: Abstract Syntax of CP

5.2 CP: The Target Language

This section describes the target language of our translation semantics, a version
of polymorphic A—calculus that includes explicit constructs for handling dictionary
expressions. We called the system CP. intended as a mnemonic for “Constrained
Polymorphic A-calculus.” The surface syntax of CP is designed to be very similar to
that of Mini-Haskell*, although semantically Mini-Haskell® is a proper sublanguage
of CP.

5.2.1 Syntax of Types and Expressions

Figure 5.1 presents CP’s syntax of types and expressions. Compared to Mini-Haskell*,

there are two major differences. First, C'P has a more expressive set of types. Follow-
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ing Mini-Haskell*, quantified type variables may be associated with class constraints
T, but there is no distinction of simple types and type schemes, since quantifica-
tion of type variables is no longer restricted to be outermost. Thus types such as
(Va::Eq.a — a) — Int are valid in CP. In other words, functions may take arguments
of polymorphic and/or overloaded types. Section 6.3 explores this feature to relate a
group of CP expressions whose types are ordered by the instantiation ordering (<X¢)

defined in Section 3.3.1.

Second, CP has additional abstraction and application constructs for dictionary
expressions. Overloaded Mini-Haskell* functions will be translated to dictionary ab-
stractions in CP while occurrences of overloaded Mini-Haskell* functions will become
dictionary applications in CP. With such explicit use of dictionary expressions, the
order of class constraints on a type variable in the type of an object (and hence the
order of dictionary parameters taken by an overloaded value) can no longer be ig-
nored. Indeed, expressions such as (e d,)d; may become meaningless if replaced by
(edy)d;. Thus all notions defined in previous chapters using sets must be replaced

by those using lists, e.g., lists of class. lists of instance assumptions (contexts).

The set of free term and dictionary variables in an expression e are defined in an
obvious manner and denoted by fv(e) and dv(e) respectively. As usual, we use the
notation [¢'/z]e to represent substitution of an expression ¢’ for the free occurrences
of a variable z in an expression e, and assume the standard use of renaming to avoid

variable capture.

5.2.2 Dictionary Expressions

A dictionary expression is either a dictionary variable or a construction obtained from
an instance declaration similar to that of Mini-Haskell*. After introducing some nota-
tional conventions for writing objects that involve dictionary expressions, this section

describes CP’s program declarations and how dictionaries are synthesized through a
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straightforward extension of the instance entailment system given in Section 3.1.

Notations

Since we will mostly deal with multiple dictionary expressions grouped into separate
lists, it is useful to introduce some notations for writing lists of dictionary expressions.
In particular, fonts are used to distinguish dictionary expressions of different units,

as detailed by the following table:

Object expression abbreviation
List of dictionary variables Vi,...,Vy v

List of list of dictionary variables Viyeees Un v

List of dictionary expressions dy,...,d, d

List of list of dictionary expressions di, ..., dy d
Dictionary abstraction AVy.... Av,.€ Av.e
Dictionary application (...(edy)...)dy e-d

We also use u and w to denote dictionary variables. Note that we only deal
with lists without repetitive elements since each dictionary corresponds to a class
constraint. Concatenation of lists is simply expressed by juxtaposition, e.g., vw. In
some situations, to emphasize that we are concatenating two disjoint lists, we use @

as the concatenating operator, e.g., v & w.

The empty list is denoted by e. The length of a list is denoted by |l]. We use |k
for indexing the kth element in a list object, e.g., vlk = v;. Alist lis a sublist of
another list I/, written [ C /', iff Vi € 1..|I], I|i = I' |k for some 1 <k < [I']. Two lists

! and I’ are isomorphic, written [ = I'. iff [E ' and I'C 1.

In addition, to describe the dictionary construction scheme, we introduce some

notations for combining instance judgements with dictionary expressions. Given the
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setting:
Ii = 91y Yin Lists of type classes
v = Vilyeeo, Vi, Lists of dictionary variables
V = U,...,0n List of list of dictionary variables
C = ap:l,...,an:l,; Context—List of instance assumptions

we define dictionary-augmented contexts as follows:

v:C & niarl). . ov(antl'n)

In other words, we pair off lists of dictionary variables »; and instance assumptions
a;::I';. The notation

vi(a::l)

expresses that, for all ¢, 1 < ¢ < |I'|, dictionary variable v|7 is associated with the
instance assumption o ::I'|i—namely, one dictionary for one class constraint. And we
often overload the operations involving simple contexts to operate on augmented ones,
e.g., membership test v:{a:T') € v:C and context restriction (V:C\yi(azr). When
there is no particular need to explicitly mention the dictionary variables associated

with an augmented context we will often write just C in place of v: C.

Similarly, we define dictionary-augmented instance predicates as follows:

def
d:P Z di:(r:Ty). o cdpi(menTn)
where
di = di1,....dig, Lists of dictionaries
= dy,...,dn List of list of dictionaries

P = 7Ty, ..., 7wl List of instance predicates
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Program Declarations

Like Mini-Haskell*, a CP program consists of a sequence of declarations followed
by an expression. As illustrated in the informal presentation, these declarations
introduce overloaded operators (as selectors) and their dictionary implementations
to be used in the main expression. To simplify the presentation of the translation,
however, we make the syntax of CP declarations very similar to that of Mini-Haskell*.
In particular, the declarations are “sugared” as class and instance declarations that
declare overloaded operators and define their implementations respectively, as detailed

below:

Programs p = class a4 where 17:0y,...,2Z,:0, in p
| x:inst v:(= 77 where 7y =¢€,...,T, =€, in p

| e

Indeed, the syntax is closely modeled on that of Mini-Haskellt. What is new here is
the additional dictionary “annotations™: Each instance declaration is assigned a dic-
tionary constructor x, and the context (' is paired with matching dictionary variables

v, which may occur in the method expressions ¢;.

The informal meaning of these declarations is as follows: a class declaration in-
troduces a selector definition and an instance declaration defines a dictionary using
the specified dictionary constructor. In the simplified case where a class introduces
only one operator, every overloaded operator is simply the identity function and a
dictionary is just a function. Essentially, these declarations are merely syntactic sugar
for global definitions. For example. an instance declaration stands for a binding of a

dictionary constructor:
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Viel.|T| (v:CH dli(r:Tli))
v:C i d:(7:1)

vi(a::l) € v:C

v:C W vli: (anT]i) (i=1,...,]T)

:C K d: (T
T) ’ L) (x:"inst vi(r:ly) = 1y €X)
viCH xd: ()

Figure 5.2: Augmented Instance Entailment System

However, by making their surface syntax similar to that of Mini-Haskellt, we get a

simpler description of the translation.

Instance Entailment and Dictionary Construction

An important step of our translation scheme is dictionary construction whereby over-
loading is made explicit. In CP, as an advantage of the syntax similarity discussed
above, the set of instance declarations T in a program forms the basis for both instance
constraint inference and dictionary construction. This is easily achieved by extend-
ing the inference rules for Mini-Haskell* instance entailment given in Section 3.1 such
that the satisfication of an instance predicate is witnessed by a list of matching dictio-
naries. More specifically, given ¥, the extended inference rules presented in Iigure 5.2

allow us to deduce augmented instance judgements of the form
v:C K d:(r:T),

which assert that, from the augmented context v:C, it follows that type 7 is an

instance of class list T as witnessed by dictionary list d. If d is a list of dictionaries of



5.2. CP: THE TARGET LANGUAGE 7

proper length for a list of instance predicates (7i:I';)i=1,a, then we use the notation
v:C H d: ()
to represent
Viel.n (v:C H dli(rinly))
This notation is used in the rule (7) above to synthesize parameterized dictionaries.

The augmented instance entailment system forms the complete engine of overload-
ing resolution: Any references to an overloaded operator in an expression is checked
by the system and, in addition. if validated, a proper implementation is supplied by

the system in the form of dictionaries.

The following properties of the augmented system are easily established.

o (dvars) If v:C # d:(7:T'), then dv(d) C dv(v).

e (weaken) If v:CH d:(7:T), then viC & v (7 H d:(7:T).

o (strengthen) If vi: () & vi(anI) & ve: G B di(rul') and o & tv(r) U
tv(T), then vi: 1 & vo: Gy W di(7l).

o (swap) If vi:Cy @ vy: Gy = difrul), then vy: Cy @ vy: Cy = d:(ruT).

The lemma of transitivity under substitution presented in Section 3.1 extends

naturally to the augmented system.

Lemma 5.1 For any substitution S, augmented contexrts v:C and v:C', if v:CH
d:(ruT) and v:C' W d': SC, then v:C" # [d'/v]d : S(r:T).
Uniqueness of Dictionary Construction

Since a dictionary constructed from the instance declarations implements certain

overloaded operators, we need to impose, as before, certain restrictions on instance



78 CHAPTER 5. TRANSLATION SEMANTICS

declarations to avoid ambiguity. In fact, the CP programs we will consider are the
translations of valid Mini-Haskellt programs, and hence maintain all the restric-
tions stated in Section 4.1.2 for Mini-Haskell*. In particular, for every pair of type
and class constructor (k,c), there is at most one instance declaration of the form
x : inst C = k7'::c 7 where ... . Furthermore, we require that the dictionary con-
structor associated with an instance declaration be unique within a program. It is
then easy to show that there is at most one dictionary that makes a type an instance

of a particular class within a program:

Lemma 5.2 When the set of instance declarations S in a program satisfies the two
restrictions discussed above, then the augmented instance entatlment system admils
unique construction of dictionaries. In other words, if v:C H d:(7:T') and v:C K

d':(t:T), then d=d'.

5.2.3 Typing Rules for CP

The typing rules for CP expressions and declarations are given in Figure 5.3 and
Figure 5.4 respectively. Similar to the case of instance entailment, these rules are
derived from those of Mini-Haskell* (Section 3.2) by extending them with support
for dictionary expressions. Indeed, if we remove all the dictionary augmentations, we
obtain the same sets of typing rules. Note that, as mentioned earlier, we omit the
list of dictionary variables from the augmented context when they are not explicitly

referenced.

5.3 Translating Mini-Haskell™ to CP

This section presents the formal definition of the translation scheme. We show that
every well-typed Mini-Haskellt program has a CP translation and all translations

obtained in this way are well-typed in CP. Similar schemes
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Alz) =0
(var)
A, CFz:0o
(V—E) A, CF e:Va:l'o C H d:(r:T)
A, CF ed:[r/a]o
A Covrael)d G F e:o
V-1 ad fv(A)Ureg(C C
( ) A, C,Cy F dv.e:Vaul.o 7 fv(4) 8(GC)
(- E) A, CF eg:0 -0 A, CF e:0
A. C F e e:0
=1 Az:o', CF e:o
A, CF dze:o —o
(let) A, CF ¢:0 Az:o, CF e:0

A, C F (letz=¢ ine): o

Figure 5.3: Typing Rules for CP Expressions

The translation scheme is based on the similarities between the typing derivations
in Mini-Haskell* and CP. As mentioned in the previous section, every Mini-Haskell*
type can be treated as a CP type. Moreover, the typing rules of Mini-Haskell* are
just a restricted version of the rules for CP, except that typing derivations in the
latter involve augmented contexts rather than simple contexts and require explicit
dictionary application and abstraction in the rules (V—elim) and (V— intro) respec-
tively. Based on these observations, we can easily establish a correspondence between

Mini-Haskell* and CP typing derivations using two auxiliary functions: The first
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Az ViyyVa{v}o, C F p:o

A, C F (class a:y where z:0 in p): o

(class) ,

A, C F z:Va{y}o A, v:C@®V:C' t e:fr/ao A, CF p:do
A, C F (x: inst v':C' = 7y where £ =¢ in p): 0’

(inst)

Figure 5.4: Typing Rules for CP Declarations

function Crt maps an augmented context to the corresponding simple context:

Czt(vi:C @ v:C") = Crt(v:C) & Crt(v:(")
Crt(v:(a:I)) = {aul'}
Crt @ = 0

The second function Erase maps CP expressions with explicit overloading to Mini-Haskell*

expressions by eliminating all occurrences of dictionary expressions:

FErase(z) =

Erase(e; €3) = FErase(e,) Erase(ez)

Erase(Az.e) = Az.Erase(e)

Erase(let z = e in €;) = let v = Erase(e;) in Erase(e;)
FErase(ed) = FErase(e)

Erase(\v.e) = FErase(e)

Analogous functions are defined in [Jones, 1992a] to investigate similar problems.
In an earlier work, [Mitchell and Harper, 1988] introduced a type erasure function
to explain the implicit polymorphism of ML-like languages in terms of the explicit

polymorphism of the polymorphic lambda calculus [Reynolds, 1974].
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The correspondence between Mini-Haskell* and CP can now be formally described

by the following theorem:

Theorem 5.3 If A, C + e : o in Mini-Haskell", then there is a CP expression
e’ and an augmented contert v':C' such that C = Crt(v:("), e = Erase(e') and

A, v':C' + €' :0 using a derivation of the same structure.

In other words, every well-typed Mini-Haskell* expression has a well-typed CP trans-

lation that can be obtained from its typing derivation.

The proof is straightforward, using induction on the length of A, CF e:o We
thereby define the expression ¢’ in the statement of the theorem to be a translation of
e and use the notation A, C + ¢ ~» ¢’ : o to refer to a translation of an expression
in a specific setting. Note that, in general, a Mini-Haskell* expression will have many
distinct translations in any given setting, each corresponding to a different derivation
of A, C + e:o in Mini-Haskell*. The issue of well-definedness will be addressed in
the next chapter.

This theorem also suggests a more succinct way to describe the translations of
Mini-Haskell* expressions—i.e., by combining the typing rules of Mini-Haskell* and
CP expressions, as illustrated in Figure 5.5. It is easy to show that A CF e~ceé:o
according to the original definition of translations above if, and only if, the same

judgement can be derived from these rules.

Since the method defined in an instance declaration is also an expression, we can
easily generalize the correspondence result to program declarations. Specifically, we

extend the definition of Erase to declarations as follows:

Erase(class a:y where rz:0 in p) = class a:iy where r:oin FErase(p)
Erase(x : inst v': (' = 7'iy where r = e in p) =

inst Crt(v': (') = 7':y where z = Frase(e) in Erase(p)
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A(z) = o
(var)
A, CFHaz~zx 0o
(V—E) A, CF e~ ¢ Vaulo C H d:(r:T)

A, Ct e~ed:[r/ao

A, G (el C, + "
(V=1 1O (@) ®CF e e 0 g f(A) U reg(GCh)
A CC F e~ Ave' (Val'o

(A= ) A, C F eg~é) 7 =1 4. CF e~ ey o7
A.CF g g~ ey ey o1
(1) Az:7', CF e~eé 17
A, C F Az.e~ Aze! 17— 7
(let) A, CF e~e i0 Ar:io, C F e~¢€q i1
e

A, Ct (letz=e ineg)~ (letz=¢1iney) o7

Figure 5.5: Typing & Translation Rules for Mini-Haskell* Expressions

Then the previous theorem naturally extends to the following result.

Theorem 5.4 If A, C + p : o in Mini-Haskell*, then there is a CP program
p’ and an augmented context v':C' such that C = Czt(v:C'), p = Erase(p’) and

A, v:C' + p': 0 using a derivation of the same structure.

Such a correspondence effectively specifies a translation semantics for Mini-Haskell*.
In the next chapter, we will extend the syntax-directed system and the type recon-
struction algorithm given in earlier chapters to include the calculation of translations,

and deal with the situation where a single expression has multiple translations.



Chapter 6

Ambiguity and Coherence

In this chapter we address the problem of overloaded-operator ambiguity. As men-
tioned in Chapter 2, despite the at-most-one restriction on instance declarations, there
are situations under which ambiguous uses of overloading can occur, and the compiler
needs to detect them. Indeed, the problem manifests itself in our translation seman-
tics when there are many different derivations for a single typing judgement, which
may in turn yield semantically distinct translations; choosing one would give different
results than the other. Our aim here is to develop conditions that are sufficient to

detect such ambiguous situations.

More specifically, as a result of such ambiguous expressions in Haskell as well as
our parametric extension, we cannot hope to establish a general coherence theorem
[Breazu et al., 1989] (a property referring to translation semantics in which all deriva-
tions of a given typing judgement yield the same meaning). Instead, we derive some
simple syntactic conditions that are sufficient to exclude those undesirable expres-
sions, and thus identify a collection of expressions for which the coherence property
can be established. Like Haskell, the conditions are based on the principal type com-
puted by our type reconstruction algorithm for any given expression. Essentially, if an

expression’s principal type 1s unambiguous in a specific sense, then all its translations

83
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will have the same meaning.

To begin with, it is necessary to specify when two translations are equivalent. Af-
ter illustrating the incoherence problem, we develop a typed equational theory for CP
expressions whereby we can formally establish the equivalence between translations.
Then, following [Jones, 1992a}, we define conversions to relate different translations
of an overloaded expression based on their types. In particular, such conversions
are CP expressions derived from a type scheme and its generic instances in a way
that, when applied to a translation of an expression. they repackage the dictionaries

involved to yield another translation whose type is less general.

Based on the notion of conversions. we define principal translations along the
lines of principal types. We extend our type reconstruction algorithm to include the
calculation of translations and show that, analogous to the principal type property,
the extended type inferencer computes the most general translation for every well-
typed expression. In other words, any translation of an expression can be obtained by
applying a conversion to its principal translation. Consequently, the equivalence of
two translations at a given type is determined by the equivalence of the conversions
from which they are derived. We show that when an expression’s principal type is
unambiguous, the conversions that can be derived from the type and any of its generic

instances are all equivalent, thereby establishing the conditional coherence result.

Detailed proofs for the results of this chapter are included in Appendix A. Most

of them are extensions of earlier results from Chapter 3 and Chapter 4.

6.1 The Coherence Problem

This section motivates the problem of overloaded-operator ambiguity and identifies

it with the incoherence of our translation semantics.

Usually compilers rely on type information to resolve overloaded operators. For
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polymorphic languages such as Haskell, overloading resolution is complicated by the
presence of type variables. As described in the preceding chapters, constraints on type
variables and explicit dictionary abstractions are used to handle unresolved overloaded
operators. When demanded, these operators are properly resolved according to the
types at which they are used. As long as the type that instantiates a type variable
satisfies the associated constraints, unique resolution is guaranteed by the restrictions

imposed on instance declarations (Lemma 5.2).

There are, however, situations under which the type inferencer cannot determine
the suitable type to instantiate a constrained type variable and is therefore unable
to supply the proper dictionary to resolve a particular occurrence of an overloaded
operator. Arbitrary instantiations of such type variables may lead to inconsistent

resolutions and thus the ambiguity problem.

As an example, consider the following class Parsable that declares two overloaded

operations parse and unparse, which convert strings to/from values of a certain type:

class a::Parsable where
parse : String -> a

unparse : a -> String

Now suppose that only Int and Float are instances of Parsable. Then the expression
unparse (parse “123”) is ambiguous: The composition of parse and unparse creates
an intermediate value, parse “123”, whose type, a type variable, is constrained by
class Parsable, but does not appear in the type of the whole expression, String. As
a result, even though the final type (String) is clear, the type inferencer is not able
to determine the intermediate type via unification; instantiating it to Int or Float

will give different results: “123" and “123.0” respectively.

Our translation semantics exploits an expression’s typing derivations to resolve
overloaded operators; it maps Mini-Haskell* typing derivations into CP typing deriva-

tions whereby overloading is made explicit. As such. ambiguity can occur when there
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are many different derivations for a single typing judgement, which in turn yield many
semantically distinct translations. Indeed, the ambiguity in the preceding example
can be described in this manner: There are two ways to derive the typing judgement
I unparse (parse “123”) : String, one using integer parse/unparse functions and
one floating-point parse/unparse functions, and consequently two translations which

are clearly not equivalent:
intUnparse (intParse “123”) and floatUnparse (floatParse “123”)

In general, ambiguity arises in our translation semantics when it is possible to get,
from derivations A, C F e~ e :0 and A, C + €~ e, : 0, translations ¢ and e;

of a Mini-Haskellt expression e that are not equivalent.

The existence of such ambiguous expressions indicates that our translation seman-
tics is not coherent, i.e., the meaning associated with a typed expression depends on
the way that its type is derived. As a result, the mapping from expressions to trans-
lations is not well-defined. Indeed, ambiguous expressions do not have well-defined
semantics and must be eliminated. A proposal to make the translation semantics
coherent by restricting the type class mechanism have been made [Wadler, 1990b],
but further study is needed to assess its feasibility. Instead, following Haskell, we
choose to develop conditions that are sufficient to exclude those expressions and thus

ensure that the semantics of an expression 1s well-defined.

6.2 Equality of Translations

As a first step, we need to specify formally what it means for two translations to be
equivalent. This section defines a typed equational theory for CP expressions; two
translations of an overloaded expression are said to be equivalent if they are provably

equal within the theory.
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y & fv(Az.e)
A, C F (Az.e) = (Ay.ly/z]e) : 0

w ¢ fv(lv.e)
A, C F (Av.e) = (Mwfw/v]e) : 0

y & fv(e)Utv(e’)

(a-let)

A, CF (letr=c¢ine) = (lety=¢ in[y/zle) 0
(B) A, C F (Ar.e)e’ = [¢'/z]e 1o
(Ba) A, C F (Qv.e)d = [d/v]e :0

(p-let) A, CF (letz=¢ine) = [¢//z]e 10

v € dv(e)
A, CF (Qvev) =€ 10

Figure 6.1: Equation rules for CP expressions, |

The theory comprises equational judgements of the form:
A, CFe=¢€:0

where we assume that ¢ and e’ have type o in the setting determined by type assump-
tions A and instance assumptions C. Intuitively, the judgement A, Cre=¢:o
asserts that expressions e and €’ denote the same element of type & in environments
that satisfy A and C. The implicit side-condition that both A, C F e: 0 and
A, C + ¢ : o hold is necessary since only typed expressions and their translations

are considered meaningful.
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( ) A, CF e=¢
sym
Y A, CF ée=¢:0
A, CFe=¢€ :0 A, C+ e=¢ :0
(trans)
A, CF e=¢€":0
Alz) =
(var) (2) ?
A, Craz=12:0
A, CF e =¢€ :Yaulo CH d:(7:T)
(app-d) ,
A, CF ed=¢-d :[r/a]o
A, C Y& Cy ke =€ v
(abs-d) 1@ofanl) HCaF e =€ 0 a ¢ ftv(A) U reg(C)
A, C1Cy, + Av.e = Ave’ Vaulo
A, CF e =¢ 10 >0 A . CF e =¢ 0
(1) ; ,
A.C b eyea = €16y 10

(€

(cong-let)

Az:o/, CF e=¢€¢ 0

A, CF dze =dre’ 10/ =0

A, C ¢+ g =¢f:0 Axio, CF e =¢€p :7

A, C + (let r =€ 1n 5'2) = (let Tz = 611 in €I2) -7

Figure 6.2: Equation rules for CP expressions, I1
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The axioms and inference rules of the theory are given in Figures 6.1 and 6.2. The
axioms in Figure 6.1 include the familiar definitions of a-conversion and S-conversion
and their extensions to dictionary-augmented expressions. Also included is a rule of

n-conversion for removing unnecessary dictionary abstractions.

These axioms, except a-conversion, are often formulated as reduction rules by
orienting them from left to right. As such, they have simpler side-condition of well-
typedness since it can be shown that if the expression on the left has type ¢ then the
reduced expression on the right also has type o. This is a consequence of the subject
reduction property—reduction preserves typing—which can be proved using standard

techniques as in [Hindley and Seldin, 1986].

The second group of axioms and inference rules in Figure 6.2 makes the typed
equality an equivalence relation and a congruence with respect to the expression
formation operation. To make the equality an equivalence relation, we have included
the symmetry rule (sym) and the transitivity rule (irans). On the other hand, there
is no need to include the reflexivity rule since it is a direct consequence of the other
rules, which are closely modeled on the original typing rules of Figure 5.3 to make the
equality a congruence by allowing the equivalence of sub-expressions within a given

expression.

One may observe from rule (app-d) that the congruence property does not include
dictionaries. This is a consequence of Lemma 5.2. As discussed in Section 5.2.2, dic-
tionary construction is unique within a program when the set of instance declarations
in a program satisfies the restrictions mentioned therein. Hence there is no induced

equivalence relation over dictionaries to be included in rule (app-d).

The following lemma states some useful properties of let-expressions that follow

directly from rule (5-let).

Lemma 6.1 For any CP expressions 1, €; and €' and distinct term variable z and
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y such that y & fu(er):
1.A, C F (letz=¢ in [¢//z]e;) = (letz =[e;/z]e’ ine;) : 0
2.4, C F dy.(letz=¢ ine) = (letz = ¢ in Ay. e) 10
3.A,C F ¢(letz=¢€ ine) = (letz=¢ in €'ey) : 0
4.4, C F (letz=r¢ ine)e’ = (letz=¢ in ee’) : 0
To give a flavor of typed equational reasoning in our system, we include here the

proof of the first property of this lemma. In particular, we lay out the equational

deduction as follows:

A, C + (letz = ¢ in[e'/z]e;) = [er/x]([€'/x]e2) (B-let)

H

[[er/x]€’ /2] €2 (substitution)
= (let r = [e;/z]e' in€;) 10 (f-let)

Note that we have also used rules (sym) and (#rans) in the deduction. Furthermore,

the required side-condition on types is preserved by the intermediate steps: From the

given hypothesis A, C + (let z = ¢ in [¢//1]€r) : 0 and the subject reduction

property it follows that A, C F [ei/z]([¢'/2]er) : 0. Hence the first application of

(B-let) is justified. Similarly, another hypothesis 4. C' F (let z = [e1/z]€’ in €3):

o justifies the second application of (3-let).

Given the typed equality over CP expressions, our task in the subsequent sections

is to derive conditions sufficient to guarantee that:

If A,v:iC F e~ ¢ :0 and A, viC F e~ €0, then A viCF eg=¢€:0.

6.3 Ordering and Conversion Functions

This section explores the generic instance ordering between type schemes (<¢) to

relate the translations of an overloaded expression. Following [Jones, 1992a], we
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show that any two translations of an expression can be related by certain functions
if their types are related by the ordering. Such functions are called conversions since
they convert one translation to another, whose type is less general. Furthermore,
the notion of conversions between translations naturally leads us to define principal
translations along the lines of principal types. Later in this chapter we will show that
the principal translation property holds for our translation system. As part of the
technical development, we extend the definition of conversions to type assumption

sets.

6.3.1 Conversions and Principal Translations

Given that each typing derivation for a Mini-Haskell* expression yields a type as
well as a translation, and all the types that we can associate with an expression
are generic instances of its principal type, it is conceivable to consider the relation
between the translation obtained from the principal-type derivation and those from
other derivations based on the relation between their types. Indeed, as we will show
immediately, a proper relation between these translations can be established through

a semantic interpretation of the ordering between their types.

Conversions are functions we use to relate translations; they convert a translation
of a more general type to another translation of the same expression whose type is
less general. Furthermore, they can be expressed in our system as CP terms. More
formally, given a Mini-Haskell™ expression e and two of its translations e and e

obtained from the typing derivations A, (' F e~» e :0and A, C F e~ e o'

with ¢’ <¢ o, we are interested in functions K such that 4, C' b Ke; = €; : o'.

We have, therefore, the following characterizations of the conversions. First, it is
clear that the type for such expressions is ¢ — ¢’, under 4 and C. Note that this
type, in general, cannot be expressed as a Mini-Haskell* type scheme since it uses the

richer structure of CP types. Second. from the translation semantics we know that
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Erase(e;) = ¢ = Erase(e;). Since Erase(Ke) = Erase(K)FErase(e;) and Key = ez,
we need to ensure that Erase(K)Erase(e1) = Erase(e;). An obvious choice is to

require that Erase(K) be equivalent to the identity function id = Az.z.

The insight of [Jones, 1992a] is that we can derive from the definition of generic
instance ordering a “canonical” conversion that suits our purpose. Such conversions,
when applied to a translation of an overloaded expression, repackage the dictionaries
involved to yield another translation whose type is less general. In our system, the

idea is embodied in the following definition of conversions:

Definition 6.1 (Conversions) Given type assumption set A and contert v:C. Sup-
pose that o' = Y(a}:T}).7" and 0 = V{a;:T;).7 and that none of the o) occurs
free in 0 or C. A CP expression K of type 0 — o' under A and v:C such that
Erase(K) = id is called a conversion from o to o under A and v : C, writlen
K:0' <4v.c 0, if there are types ;. dictionary variables w. and dictionary erpres-

sions d such that

[ ] TI = [T,‘/a,’]T
o v:C @ wi(aiul") H di[r/e](eiTy) and

e A, v:C F K =Xz Aw.z-d

Since conversions contain no free term variables and hence only context v:C' is signif-
icant in the setting of A and v:C, we will drop the type assumption set A from the
subscript of <4v.c. We will also omit the dictionary application symbol and write

zd for z-d in what follows.

It is straightforward to verify that Az.Aw.zd is itself a conversion from o to o’
under A and v:C; clearly Erase( A\z.Aw.zd) = Ar.z and the following derivation

establishes the required typing:
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Az:o,viC F z:0
Az:o, v:C F z:V(a;ul;).r
Az:o, viC @ wiaj:T}) F zd:[n/ai]T
Az:o, v:C@w:iajl}) F zd: 7
Az:o, v:C F dw.zd : 0o’
A, viC F Az dw.zd:o— 0o

o = Y(a;:T;).7

(V-elim)

= [rijoi)T

(V-intro), o' = V(aj::T%). 7’
(A-intro)

This canonical conversion works by repackaging the dictionaries involved. Also, as
noted earlier, the types of conversion functions utilize the more expressive polymor-

phism provided by CP.

The following two lemmas state some properties of conversions that will be useful

in subsequent work. The first one is pretty straightforward.
Lemma 6.2 If K :0' <y.c 0 and v:CCw:(", then K :0' Zy.cr 0.

The second lemma shows when two conversions can be meaningfully composed.
Lemma 6.3 If K': 0" <y.c 0 and I : 0’ <y.c 0. then (K' o K): 0" Zy.c 0.

The introduction of conversions is a key step towards our goal. With the notion
of conversion we can generalize the definition of principal types to that of principal
translations, which are translations obtained from the principal-type derivations and
from which all other translations can be derived. If the principal translation property
holds for our system, our task of determining the equivalence of two translations is
reduced to that of the two conversions derived between the principal translation and
the respective translations, which is simpler since conversions are also CP expressions
but with regular structures. The following definition formalizes the notion of principal

translations:

Definition 6.2 (Principal translations) Given A, v:C, and e, we call ¢":0 a
principal translation for e under A and v:C iff A, v:C F e~ e’ : o, and for every

o if A,viC F e~ ¢€" 0" and K :0' <y.co. then A, v:C + K e =¢":0.
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6.3.2 Conversions Between Type Assumption Sets

We have seen, in Section 3.3.1, the extension of the generic instance to an ordering
between type assumption sets. Similarly, we can extend the definition of conversions
to type assumption sets. The additional complexity here is that we need to express
multiple conversions, one for each pair of types associated with a term variable in the
respective type assumption sets. Since each of these conversions maps a term variable
to an expression, we use ezpression substitutions to define the conversions between

type assumption sets, as suggested by [Jones. 1992a).

As a simple example, consider the following two type assumption sets:
A" = {(==):Va:Eq.List a—List a — Bool}
and A = {(==):Va:Eq.a— a — Bool}

Assuming that w:(a::Eq) H (DEqList w) : (List a :: Eq), one possible conversion
between A and A’ would be a substitution that maps (==) to Aw.(==) (DEqList ),

but leaves other variables unchanged.

The following definition formalizes the idea:

Definition 6.3 (Conversions between type assumption sets) A substitution K
is a conversion from a type assumption set A to another type assumption set A’ under

context v:C, written K:A" <y.c A, if
o dom A = dom A’ and

o For each z € dom A there is a conversion \z.K(z): A'(z) Zv.c A(z). On the
other hand, if z & dom A, then K(z) = .

Note that since every conversion is a CP expression without any free term variables,
it follows that the only free term variable that appears free in the expression of the
form K (z) is the variable z itself. Based on this observation, we can easily establish

the following results:
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Lemma 6.4 If K:A' <y.c A, then

1. K(Az.e) = Az. K¢,

2. K(let z = ¢ in ;) = (let z = Ke; in K, e),
3. K, :(A.x:0) =v.c (A.x:0) for any o, and

4. [a/z](K.e2) = (Kler/z])e2 for any e and e

where K, stands for the substitution such that K,(z) = ¢ and K,e = Ke for any

expression e that = & fu(e).

The following lemma is another useful consequence of the definition of conversions

between type assumption sets. It is easily proved using Lemma 6.2.

Lemma 6.5 If K : A’ <v.c A and v:C Cu:(’, then K : A" Zy.cr A

6.4 Syntax-directed Translation

The next three sections follow the developments of Chapter 3 and Chapter 4 to extend
our type inferencer to include the calculation of translations for any given expression.
To begin with, we extend the syntax-directed typing rules of Section 3.3 to include

the construction of translations. Figure 6.3 gives the extended inference rules.

Note that although the structure of a derivation A, C F' e~ € :7 is uniquely
determined by the syntactic structure of the expression e, it need not be the case for
the translation e’. The reason is that in rule (var’), the dictionary expressions d are
determined by the types 7; we choose to instantiate the quantified type variables,
and there may be distinct choices for such types and consequently distinct dictionary

expressions. This is exactly where incoherence may occur in the translation semantics

of Mini-Haskell.
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(var’) A(z) = V{ai:ly).7 CHd: ([ri/ai] (e;iT4))
var
A, C +H z~2d :[Ti/ai]T
(/\‘E’) A,C = 61’\-»6/1 T A’Cl_/ 62'\-»(3,2 -
A> C l_, € €3 ™2 6’1 6’2 T
() Azir, CH e o7
A C F dze~dze 17— 7
(let’) A, vi:C' +! € ~ ell T Ax:o, v:C - €y~ 6'2 .

A, C F (letz=¢ ine)~ (let x = Aw.e'; ine€’y) 1 7y

where (o, v":C", w) = gen(r;. 4. v:(C'.¢) and v":C"Cv:C

Figure 6.3: Syntax-directed Translation Rules

To accommodate dictionary abstractions in translating let -expressions, we ex-

tend the definition of function gen as follows:

gen (o, A, v:C, w) = if I(vi(axl)) € v:C and o & ( tv(A4) U reg(C))
then gen (Va:T.o. A, (ViC\uya:r), ¥W)
else (o, v:(', w)

In other words, now gen not only extracts generic type variables from the context

but also accumulates the dictionary variables associated with those type variables.

The following three lemmas about the extended gen function are easily established.

Lemma 6.6 If gen(r,A,v:C,¢) = (o,v:C',w) then 0 = (a;::Ca;)7.7 for some

n >0 such that wi(ca;::Ca;) & v:C" and dom(C") = C™(tv A).
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Lemma 6.7 If A, v:C + e~ ¢ : 7 and (o,v:C', w) = gen(r,A,v:C,¢), then

A V:C'F e~ Aw.e 0.

Lemma 6.8 Suppose that (o, C;,w) = gen(r, A, C,€) and u:D is disjoint from v:C.
Then (o', Ci,Vv') = gen(r, A,v:C @ u:D,¢€) for some o', v':C’, and W' such that

C'=C, w=2uw, Az Iw.zw) 10’ <o and (Az.Aw.zw') : 0 Zu.p o'

As in Chapter 3, our goal in the remainder of this section is to show that the
set of syntax-directed translation rules is equivalent to the original set of translation
rules given in Figure 5.5. By a straightforward induction, we can show that the

syntax-directed system is sound with respect to the original one:
Theorem 6.9 If A, v:C F e~ ¢ :7 then A, v:C F e~ e':T.

To show that the syntax-directed system is also as general as the original system, we
need to develop a series of lemmas about the former. We begin with the following two
lemmas that describe the interaction between the gen function and type substitutions

under the common scenario A, v:C' F e~» €' : 7.

Lemma 6.10 Let (o, C',w) = gen(r,A,v:C,€) and o = V(a;:I;). 7. Suppose that
there exist dictionary expressions d such that w:D t d : SC. If gen(St,5A,u:D,€) =
(o/,u’:D',w'), then

(AzAw'. 2d") : o' <y.pr So.

where d’ is a sublist of d such that u:D H—v d’': S{a;:Ty).

Lemma 6.11 Let (0, Co,w) = gen(r,A,v:C,¢). If v':C' = d : SC, then there
ezist a substitution R, an augmented context u:D and dictionary expressions d’ such
that

RA =S4, uDH d :RC and d' = wd.
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Furthermore, if gen(R7, RA,u:D,¢€) = (¢', D', w') then

So=0¢', DEC and W' = w.

The next group of lemmas states the properties of the syntax-directed translation;
with the exception of Lemma 6.12, these results are extensions of the properties of the

syntax-directed type system in Section 3.3.3 to address the calculation of translations.
Lemma 6.12 If A,v:C F e~ ¢ :7 then dv(e') Cv

Lemma 6.13 If A,v:C F e~¢ : 7 and v:C T v:(', then A, v:C" V'

e~ e T,

Lemma 6.14 If A, v:C F e~ ¢ : 7 and v:C'H# d : SC, then SA, v:C' +

e~ [d/v]e: 7.

Lemma 6.15 If A/, v:C F e~¢€ 7 and K : A" =v.c A, then A, v:C F

e~ e 1 with A, v:C F Ke' =¢":7.

Finally, using these lemmas, we can show that the syntax-directed translation system

is complete with respect to the original one in the following sense:

Theorem 6.16 If A, vi:C + e~s ¢’ :a, then there is a context v':C’, a type 7' and
an expression e’ such that viCCv':C' and A, v':C' V' e~ ¢€" : 7. Furthermore,
if gen(t', A,v":C"¢) = (o/,C",w), then A.v:C" F K(\w.e") = ¢ : o, where

K:o0<y.co.

Therefore, any translation derived from the original set of translation rules can also

be obtained by using the set of syntax-directed translation rules.
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6.5 Unification and Dictionary Construction

Before we can extend our type reconstruction algorithm to include the calculation of
translations, we need to develop some mechanisms to synthesize dictionaries. This
section extends the unification algorithm given in Section 4.1.3 to incorporate dic-
tionary construction. As discussed there, unification of types is associated with a
context normalization process to ensure that the underlying context is properly pre-
served. This normalization sub-algorithm can be viewed as an implementation of
the instance entailment system of Section 3.1. We have also shown in Section 5.2.2
that we can easily extend the instance entailment system to include dictionary con-
struction using augmented judgements of the form v:C' H- d : (7::T"). Therefore, our
main task here is to extend the normalization algorithm to implement the augmented

instance entailment system.

Augmented Constrained Substitutions

We extend constrained substitutions defined in Section 4.1.1 with dictionary substitu-
tions to handle dictionary construction. In addition to substitutions of type variables
by types, we will also use dictionary substitutions given by maps from dictionary vari-
ables to dictionaries. More specifically, the extended unification algorithm operates on
a type substitution as well as a dictionary substitution. During type reconstruction,
as types get unified, along with the associated context normalization process, dictio-
naries will be constructed to replace dictionary variables involved in the translation
being synthesized, thereby yielding more refined dictionary substitutions. At the end,

we obtain the complete translation by applying the resulting dictionary substitution.

Using © to denote a dictionary substitution, we extend the definition of con-

strained substitutions as follows:

Definition 6.4 An augmented constrained substitution is a triple (5, v: C,0) where
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S is a substitution, v: C an augmented context, and © a dictionary substitution such

that C = SC and v=0v .

Consequently, definitions derived from constrained substitutions have to be ex-
tended to include dictionary substitutions. The following definition extends the no-

tion of context preserving to augmented constrained substitutions.

Definition 6.5 An augmented constrained substitution (S,v : C,0) preserves an-
other augmented constrained substitution (So, Vo : Co,00) if there is a substitution
S" and a dictionary substitution ©' such that S = 5" o S, O = O o0, and
v:C K O'vy : §'Cy. We write in this case (S.v:C,0) < (So,vo: Co, Oo).

The augmented context-preserving unifiers and normalizers are similarly defined.

Definition 6.6 An augmented constrained substitution (S,v:C,0) is a
(a) (So,vo: Co, Oo)-preserving unifier of the type expressions T and 7 if ST = S7’
and (S, V:C, @) j (So, V()IC(). @0)

(b) (So,Vo:Co, Oo)-preserving normalizer of an instance predicate set P if there ez-
ist dictionary expressions d such that v : C - d : SP and (S,v:C,0) =<
(S(),V()ZCO,@()).

Augmented Unification Algorithm

Given the notion of augmented constrained substitutions, we can extend our unifica-
tion algorithm to include dictionary construction. vFigure 6.4 presents the augmented
algorithm. A few words on our notations may be helpful here. As before, we have used
simple contexts where augmented contexts are meant. Thus expression Ca yields the
class list T associated with a as well as the matching list of dictionary variables v.
Such augmented class lists are denoted by v : I', but we may simply write I' if there

is no need to mention v.
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mgu:T——>T——>SxCx@——>SxCx@
mgn:7’——>F——>SxCx@xd—>SxCxOxd

mgu 1 72 (S, C,0) = mgu' (S11) (S72) (S,C,0)

mgu’ a = idsxcx®

mgu' a7 (S,C,0) | a¢fv(r), vi(a:T) € (v:C) =
let (S',C,0,d) = mgnt Ca([r/a]oS, [7/a]C\a, O, €)
in (5',C', [d/v]0©)

mgu' T a (S, C,0) = mguarT(S.C,0)

mgu’ () () ' = idsxcxo

mgu' kT kT = mgutT1(S,C,0)

magu' (11,72) (71, 73) = (mgu 1 7)o (mgu Ty T3)
mgu' (1, — T2) (11 — T3) = (mgu 1 7]) 0 (mgu T3 T3)
mgn 7 {} = tdsxcxoxd

mgn T v:{(v) (S, C,0,d) = mgn' (S7)v:(Sy) (S.C,0,d)
mgn T (v1:T1 & v2:l'9) = (mgn 7 v:T1) o (mgn 7 v2:T2)
mgn' avi(c7)(S,C,0,d) = if v, wicr’) € Ca

then let (S'.(C",0) = mgur 7 (S5,C,0)
in (S, C",0', wd)
else (S, C[Ca 3 v:(cT)/a],0, vd)

mgn' k7' cT(S,C,0,d) | 3 Tyiinst (" =k #uc7'in &
let S’ = match 7 (k7')
(§".C",0") = mgur (S'7)(S,C,0)
(7'1::F1.__....Tn::1“n> = S'C’
(513 (1,01, dld) =
(mgn 7 Ty (... (mgn 7, Ty (8", C", 0", d))))
in (5;. C1,01. (xdy)d)

(and similarly for —, (,), ())

Figure 6.4: Augmented Unification and Normalization Algorithms
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The augmented algorithm retain the basic structure of the original algorithm.
There are still four mutually recursive functions: mgu, mgu’, mgn, and mgn’; all
follow the same calling patterns of their predecessors. On the other hand, two major
changes are made to incorporate dictionary construction. First, the common state
thread becomes an augmented constrained substitution. Second, the normalization
functions mgn and mgn’ are threaded with an additional argument d to accumu-
late the dictionaries constructed in checking the satisfiability of the given instance

predicate.

More specifically, the context in the augmented constrained substitution keeps
track of both the class constraints on the underlying type variables and their associ-
ated dictionary variables. In the meantime. any change to those dictionary variables
will be recorded in the dictionary substitution of the augmented constrained sub-
stitution. As in the original algorithm. the call mgu’ « 7 (S, C,0) will, in turn,
invoke mgn to check the satisfiability of 7::C'a: but. in addition, mgn will return a
list of dictionaries as a witness to the satisfication of this instance predicate and as
a source for updating the dictionary substitution. These dictionaries are individu-
ally constructed by function mgn’ using the augmented context and the given set of

instance declarations.

By some straightforward manipulation, we can extend the properties of the origi-
nal algorithms to include the construction of dictionaries. More precisely, the follow-

ing two lemmas are established by similar induction proofs.

Lemma 6.17 (Soundness of mgu and mgn)
1. If mgumn 7 (S,v:C,0) = (8 .v:(C'.0). then S'ry = S'rp and (S',v":C",0") X
(S,v:C,0).

2. If mgn 7 T (§,v:C,0,d) = (§.v:(C", 0", dd), then v:C' H dy : §'(7::T)
and (§',v":C',0") =2 (5,v:C,0).
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The soundness lemma states that mgu computes a unifier and mgn computes a nor-
malizer, both of which preserve the given context. In addition, mgn yields the dic-

tionaries that satisfy the instance predicate to be normalized.

Lemma 6.18 (Completeness of mgu and mgn)
1. Suppose that (S',C',0") = (S, Co,00) and S'ry = S'r,. Then the tnvoca-

tion mgu 1 Ty (So, Co,Oo) succeeds with (S, C,©) such that Sty = ST, and
(S,C,0) < (5',C",0") X (S, Co,O0).

2. Suppose that (S', C',0") < (So. Co,00) and there exist dictionary ezpressions d’
such that C'W d': S'(r:T). Then the invocation mgn 7 I' (So, Co, o, d) suc-
ceed with (S, C,0, dyd) such that C'H dy : S(r::T), (S, C,0)=<(5,C,0) =
(So, Co, Og) and d' = ®dy for some dictionary substitution @ on variables of d;.

The completeness lemma states that our algorithm computes the most general context-
preserving unifiers and normalizers. In addition, mgn yields, for the given instance
predicate, the most general dictionaries that are obtainable in terms of the ordering

derived from dictionary substitutions.

Moreover, since the recursive calling patterns are unchanged, the termination property

of the original algorithm carries over to the augmented one.

Lemma 6.19 (Termination of mgu) For any augmented constrained substitution
(S, C,0) and types 71, T2, the invocation mgu 11 Ty (S, C,0) either fails or termi-

nates.

Based on these results, we can easily establish the following theorem for the aug-

mented unification algorithm.

Theorem 6.20 Given an augmented constrained substitution (So, Co,90) and two
types T, T2, if there is a (So, Co, Oo)-preserving unifier of 71 and T3, then the invo-
cation mgu 11 T2 (So, Co, ©g) returns a most general such unifier. If there is no such

unifier then mgu 1 72 (So, Co, ©o) fails in a finite number of steps.
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6.6 Type Reconstruction and Translation

As the last step towards the coherence result, this section extends our type recon-
struction algorithm to include the calculation of translations, and shows that the
augmented algorithm computes the most general translation for any given expres-

sion.

Figure 6.5 gives the augmented type reconstruction algorithm. As before, func-
tion tp proceeds by cases dispatching on the form of the input expression, but it
yields a translation in addition to a type. More precisely, if tp(e, 4, S, v:C, ©) =
(r,¢,8,v': C',0), ©¢ would be the translation of ¢ at type 7. The dictio-
nary bindings maintained in the dictionary substitution O’ are acquired by extending
© through calls to the augmented unification algorithm presented in the preceding
section.

In the remainder of this section, we will establish the principal translation prop-
erty for our translation semantics. We begin with the key property of tp that the
augmented constrained substitution produced by tp preserves the input one, as for-

malized by the following lemma.

Lemma 6.21 Let ¢ be a Mini-Haskell" expression, and let (S,v:C,0) be an aug-
mented constrained substitution and A a type assumption set such that C covers SA. If
tp(e, A, 8,v:C,0) = (1,5',v":(",0), then (S'.C',0") is an augmented constrained
substitution and (S',v":C",0") X (5,v:C.0).

The following theorem states that any typing and translation obtained by tp can

also be derived using the rules for the syntax-directed system described in Section 6.4.

Theorem 6.22 If tp(e, 4,5, v:C,0) = (r,¢. 5, v: (', ©"), then S'A, v': C"

e~ Qe 7.

Combining this result with Theorem 6.9, we obtain the soundness property of tp:
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tp(e, A, S,v:C,0) = case ¢ of

T : inst (S(Az),z,S,v:C,0)

€ € : let (71,€41,5,vi:(1,0;) = tp(e, A, S,v:C,0)
(T2, €'2, 82, V2:C2,02) = tp(e, A, S1,v1:C1, 01)
o be a new type variable
(S5.v3:(5.03) = mgu 7y (12 — &) (82, G2 @ (::()), ©2)
in (Ssa. (e'1€'2), S3, (3,03)

Az.e : let « be a fresh type variable
(Tl, 6’1,51, C’V},Ol) = tp (ela A.;r:a, Sﬂ C @ (a::(>)’®)
in (‘S]O’ — T, (/\J‘.Ell). S], C],Ol)

let 7 = ¢ ine: let v:C' = ( Ca | a€ C*(fv.SA))

u:D = (v:C)\(v:C")

(11, €'1,51,v1:C1,04) = tp (e1,A4,8,v:C',0)
(o,ve:Ch, W) = gen (11, 514, v1:Cl,€)

(7, €'2,5,v3:(5.0,) = tp (e, Az:0, S1,v2:Cs, 04)
(7, (let r = AW.Oq¢] in €3), 52, v3:C3 D u:D, 0,)

in

where

inst (Va:T.o,¢/,S,v:C,0) = let 3, ube new variables
in inst ([3/]a, (' v), S,v:C & u:(B:T), ©)
inst (,¢',S,C,0) = (1,¢.5,C,0)

Figure 6.5: Type Reconstruction & Translation Algorithm
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Theorem 6.23 If tp(e, A, S,v:C,0) = (1, ¢, 5, v':C', 0), then S'A,v': (" +

e~ Qe 7.

Furthermore, any translation derived from the syntax-directed system can be ex-

pressed in terms of the translation synthesized by tp.

Theorem 6.24 Suppose that S'A, v:C' F e~ ¢ : 7' and (S',Vv':(C"0) =<
(So,vo: Co,00). Then tp(e, A, So,vo:Co,00) succeeds with (r, ", S, v:C, 0), and

there exist a substitution R and dictionary expressions d such that
1. 8" = RS, except possibly on new type variables of tp(e, A. So, vo:Co, ©p),
2. 7" =Rr,
3. v:C'"Hd: RC,
4. S’A, v:C" F ¢ =[d/v]@e” : T

Combining this result with Theorem 6.16, we obtain the completeness property

of tp:

Corollary 6.25 Suppose that S'A, v': " F e~ e : 0 and (§,V:C',0) =
(So,vo: Co,00). Then tp(e, A, So,Vo: Co,00) succeeds with (7, ¢”, S, v:C, ©), and

there exist a substitution R, a conversion K and dictionary expressions d such that
1. §' = RS, except possibly on new type variables of tp(e, A, So, Vo: Co, ©o),
2. K : o’ jvl;c/ Ro 5
3. v:C'"H d: RC", and
4. S’A, v:C' + K(Aw.[d/u]Oe")=¢ :0’

where (o,u:C",w) = gen(r,54,v:C,¢).
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As a corollary, we obtain the principal translation result:

Corollary 6.26 (Principal translations) Suppose that dom(Cp) = (Co)*(tv SoA)
and tp(e, A, S, v0:Co,00) = (7, ¢, 5, v:C,0). Then Aw.O¢':0 is a principal
translation for e under SA and v':C', where (o,v':C’,w) = gen(r, SA, v:C, €).

6.7 The Coherence Result

Having established the principal translation property, we can now proceed to develop
the conditions that are sufficient to ensure coherent translation. This section defines
the notion of ambiguous types and shows that unambiguous principal types entail

coherent translations.

The notion of ambiguous types, first described in the Haskell report [Hudak et al.,
1990], has a rather intuitive interpretation. For example. the following type is am-
biguous:

Va::Parsable.String

In this type scheme, the quantified type variable a is constrained by the class Parsable,
but does not appear in the type proper String. Given such a type scheme during type
reconstruction, unification is not able to determine which instance type of Parsable
is intended for a since only the type proper of a type scheme is used in unification.
Indeed, as indicated in Section 6.1, overloaded expressions of this type may have

several distinct translations and hence should be rejected.

Our definition of ambiguous types generalizes that of Haskell to include parame-
terized classes. Before presenting the formal definitions, it is instructive to consider
some examples: the following type scheme is ambiguous for reasons similar to those

of the preceding example on the quantified type variable k.

Va::{Eq}.Vk:{Collectiona}.a — Bool
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However, the following one is not considered ambiguous:
Va::{Eq}.Vk::{Collectiona}.k — k

In this type scheme, although the quantified type variable a is constrained by class
Eq and does not appear in the type proper, it is, through the constraint Collection
a, a dependent of another type variable k, which does appear in the type proper.
Once k is instantiated to some type 7 through unification, we can obtain a’s value as

a consequence of solving the instance predicate 7::Collectiona.

As illustrated in the examples, quantified type variables manifest the potential
ambiguity of a type scheme. In general, a type scheme is not ambiguous if its quanti-
fied type variables that are constrained by classes are also depended upon, directly or
indirectly, by its type proper. This dependency relation can be expressed through the
context closure operation C* defined in Section 3.1.2, which computes, for a given set
of type variables A, the set of type variables that are related, directly or indirectly, to
those in A through the class constraints in (. The following definition of ambiguous

type variables formalizes this idea.

Definition 6.7 (Ambiguous type variables) A quantified type variable a in a
type scheme o = ¥(a;:T;).7 is ambiguous if C,(a) # 0 and a ¢ C;(tv 1) where

C, stands for the generic context, {(a;::I';), of 0.

A type scheme is ambiguous if it contains ambiguous type variables. Note that
in standard Haskell, C(tv 7) = tv 7, so this definition generalizes the notion of

ambiguous types described in the Haskell report.

For the coherence result, we are more interested in unambiguous types.

Definition 6.8 (Unambiguous type schemes) A type scheme o = V(a;:T'y). 7 is

unambiguous if none of the a; is ambiguous.



6.7 THE COHERENCE RESULT 109

We are now ready to illustrate why unambiguous types entail coherent transla-
tions. From Corollary 6.26, we know that any translation of a Mini-Haskell* expres-
sion e in a particular setting can be written in the form Ke' where e’ is €’s principal
translation and K is some suitable conversion. Now suppose that we have two ar-
bitrary derivations A, v:C + e~ e} :0' and A, v:C t e~ ¢ 10 It follows
that:

A viC + ei=K ¢ :0' and 4, v:C F eg=Ky¢' : 0’
where K; and K, are conversions from e’s principal type o to ¢ under v:C. Clearly,

the two translations would be equivalent if v:C' F K, = K.

Assume that o' = V(a}:I').v" and ¢ = V(a;::I';).v and that none of the o occurs

free in o or C. It follows from the definition of conversions that
[ri/ailv = v and v:C & wi(a) D)) H dy: [ri/ail{aTi)

for some types 7; and that v:C' + &} = Ar.Aw.zd;. Similarly, for K; there are

types 7/ such that
[r//a;lv="1" and v:C & wi{a):T) H dy: [7]/ai]{aTy)

and v:C + K, = Az.)w.zd,. Obviously, it is sufficient to show that d, = d; to
prove that these two conversions are equivalent. This in turn depends on whether the
two instance predicate lists [r;/a;](a;:T;) and [r!/ai](a;::T;) are identical since the
dictionaries are uniquely determined by the instance predicates. But in general this

is not true due to the differences between the types 7; and 7.

On the other hand, since [1;/a;lv = v/ = [1//ai]v, it follows that 7; = 7! for all
a; € tv(v). This result can be further extended to those type variables’ dependents.

Recall the consistency requirement for parameterized classes:
ricT and 7:c¢ T, implies T = 7.

The requirement enables us to equate more types between 7; and 7'. Indeed, a

straightforward induction gives 7, = 7/ for all a; € C7(tv v).
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Now, if ¢ is unambiguous, then for all a;, either C,a; = @ or a; € C;(a;).
The former case needs no dictionary; the latter one yields the same dictionary since

7i = 71. Consequently, all conversions from o to any of its instances are equivalent:

Lemma 6.27 If K, K, : 0’ =<v.c 0 are conversions and o is an unambiguous type

scheme then v:C + K; = K.

As a corollary, it follows that an unambiguous principal type entails coherent trans-

lations.

Theorem 6.28 (Coherence) If A, vi(' F e~ ¢ 10 and A, v:C F e~ e 10
and the principal type of e under A and C is unambiguous. then A, v:C + ¢ =
e 1 0.

Analogous results were established in [Blott. 1991] for a version of their original
system [Wadler and Blott, 1989] and in [Jones, 1992a] for his system of qualified types
[Jones, 1992b].

The practical significance of this technical result is clear. If the principal type,
computed by the type inferencer, of the given expression is ambiguous, we cannot
guarantee a well-defined semantics for the expression and hence must reject it. Oth-

erwise, we are sure that the translation gives a well-defined semantics.

Function gen Revisited

In Section 4.2.1, we briefly argued that our definition of gen is adequate out of the
consideration of ambiguity detection as well as principal types. Given the results we

have developed, it is easy to elaborate our argument. For ease of reference, we include
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the original definition of gen below:

gen (o, A, C) = if 3a € dom(C)\(tv AUreg C) then
gen (Va::Ca.a, A, C\y)

else (0, C)

Basically, our definition of gen is complicated by the presence of ambiguous ex-
pressions. As an example, consider the type reconstruction for the expression given
in Section 6.1:

unparse (parse “1237)

In the final step of reconstructing its type, gen will be invoked with the type String,
the context {a::Parsable}, and the empty type assumption set. The issue here is
the instance assumption a::Parsable in the context. Suppose that we had used the

alternative definition (gen’) given in Section 4.2.1 and partially repeated below:

gen' (0. A, C) = if Ja € tv(o)\(tv A Ureg C) then

Since a ¢ tv(String), we would not discharge it and therefore fail to obtain the
most general type for this ambiguous expression. In contrast, using gen, we would
discharge the instance assumption to form the principal type Va::Parsable.String

for the expression, thereby detecting the underlying ambiguity.

In general, since the ambiguity test is based on an expression’s principal type,
we must ensure that the type inferencer computes the most general types for any
given expression, including ambiguous ones. This in turn relies on gen to discharge
as many instance assumptions from the underlying context as possible to obtain the
most general type scheme. Therefore. we have adopted the more general version of

generalization function.
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Chapter 7
Conclusions

In this chapter, we review the results of this thesis and discuss future work.

7.1 Results

This thesis generalizes Haskell’s type system to support overloaded operators over
parameterized types. The solution that we proposed is a parametric extension of
Haskell’s type classes, called parametric type classes. Unlike standard type classes
which constrain a single type only, parametric type classes can constrain a param-
eterized type and its constituent type(s) as well. Therefore, for example, we can
use them to overload data constructors and selectors on container classes such as

Collection.

To support our proposal, we have developed a type system by extending, in a
highly modular fashion, the Hindley-Milner type system to include constrained quan-
tification. In the extended system, type classes act as constraints on quantification
and instantiation of type variables. This is achieved by putting class constraints on
quantified type variables and adding a separate constraint inference sub-system to

the standard type inference engine. To glue the two systems together, we have devel-

113
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oped a new unification algorithm that augments first-order unification with constraint
propagation. Then, based on the augmented unification algorithm, we have given an
effective algorithm to reconstruct types for typable expressions. Most important of

all, we have proved that the principal type property holds for the extended system.

We have also provided a translation semantics to associate meanings with typed
expressions. This is done by translating a given program, based on its typing deriva-
tion, to a program defined in a language that includes constructs for manipulating
overloading explicitly. We have presented a method for extending the type recon-
struction algorithm to perform the translation, and proved that it yields the principal
translations for well-typed expressions. Furthermore, since interpretations of expres-
sions follow their typing derivations and an expressions can be type-checked in more
than one way, it is necessary to ensure the coherence of our translation scheme. As
in Haskell, this is accomplished by defining sufficient conditions that ensure coherent

translations.

Overall, parametric type classes are a conservative extension of Haskell’s type

system, since if all classes are parameterless. the two systems are equivalent.

7.2 Future Work

Although parametric type classes can overload many operations over various kinds of
parameterized types, there are some operations that cannot be similarly overloaded
without extra machinery. In particular, operations that involve more than one param-
eterized type which share the same structure but contain distinct constituents are not
directly supported by parametric type classes. A typical example is the overloaded
map function, which takes a function and a parameterized structure as arguments,
and builds another structure by applying the function to the elements of the given

structure.
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How do we type the overloaded map using parametric type classes? A naive

solution is to introduce a class called Map and type map as follows:
map : Va.Vb.Vma:Map a. Vmb::Map b. (2 — b) — ma — mb

But this may be more general than we would like, since 1t would admit also imple-
mentations that take one structure (e.g. a list) and return a structure of a different
kind (e.g. a vector). What is needed is some way to specify that map returns the
same kind of structure as its argument. but with a possibly different element type.
Without additional mechanisms. the best we can do is to adopt a less general type
for map:

map : Va.Vma:Map a.(a— a)—ma—ma

which is clearly rather restrictive. The solution that we proposed in [Chen et al.,
1992a] is an encoding scheme that can capture the requirement of structural similarity
among type variables. The basic idea is to introduce a special root class TC with one
parameter but no operations in it. Every type (x 7) is an instance of TC by virtue of

an instance declaration

inst k a : TC(x ())

which is implicitly generated for every algebraic data type. Effectively, TC is used to
“isolate” the top-level type constructor of a type. That is, if two types are related by
a TC constraint, we know that they have the same top-level type constructor. The TC

technique enables us to type map precisely:
map : Va.Vb.Vt.Vma:{Map a, TC t}.Vmb::{Map b, TC t}.(a—b)—ma—mb

This states that ma and mb are instance types of Map with element types a and b, and
that ma and mb share the same type constructor. More details can found in [Chen

et al., 1992b)].

Another solution is to use constructor classes, as recently proposed in [Jones,

1993]. By combining overloading with higher-order polymorphism, classes in this
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system can constrain type constructors as well as types. For example, using our
notations, a constructor class Functor that overloads the map function at both List

and Tree type constructors can be described by the following declarations:

class f :: Functor where
map : (a->b) >fa->fb

inst List :: Functor where
map f 1 =

inst Tree :: Functor where
map f 1 =

Furthermore, using a constructor class of monads:

class m :: Monad where
unit : a ->ma
bind : ma->(a->mb) ->mb
map : (a->b)->fa->fb

join : m (m a)

we can define monad comprehensions [Wadler, 1990a], an extension of list compre-

hensions to other parameterized structures.

On the other hand, many instance declarations for parameterized types require
constraints on their constituent types that are not expressible in this system since
constructor classes constrain only type constructors, excluding their constituent types.
For example, we would like to constrain set types to have equality defined for its
members. But consider the following instance declaration that attempts to define an

algebraic data type Set a to be an instance of Monad:
inst Set :: Monad where ...

Since only Set is being constrained. the equality constraint on a is not expressible

using the declaration above. Therefore. an interesting avenue for future work is to
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see whether we can apply our technique to parameterize constructor classes. For

example, the following declaration may introduce a “parametric” constructor class

Monad a b:

class m :: Monad a b where
unit : a ->ma
bind : ma->(a->mb) ->mb
map : (a->b) >fa->fb

join : m (m a)
Then we can specify the equality constraints in its instance declarations as follows:

inst (a::Eq, b::Eq) => Set :: Monad a b where ..

Whether the theory can be thus extended is vet to be investigated.
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Appendix A
Proofs

This appendix contains detailed proofs for many of the results stated in Chapter 6.
Most of these are direct extensions of the results described in Chapter 3 and Chapter
4, and the proofs for the latter may be obtained from the proofs given here by ignoring

the parts on dictionary-based translation.

In addition, we include here the proof of Lemma 3.2, which is referenced by many of

the proofs that follow.

Lemma 3.2 Let C and D be contexts and S a substitution such that D H SC.
Then for any A C dom(C), we have to(S C*(A)) © D*(tv SA).

Proof: We prove that if 3 € C*(A) then tv($3) C D(tv SA).

Let C be a context. Define C* as follows:

co(a)y = A
CHYA) = CHA)YU{tv(Ca)|a e CHA)}

By the definition of C*, if 8 € C*(A) then § € C'*(A) for some k > 0. Thus an

induction on k suffices.

125



126 APPENDIX A. PROOFS

k = 0 : In this case, 8 € A. Hence tv(55) C tv(SA).

k = n+ 1 : Suppose that 8 € tv(Ca) for some o € C"(A). By induction, tv(Sa) C
D*(tv SA). There are four possible cases, depending on the effects of S on « and 3:

e a ¢ dom(S) and 8 ¢ dom(S): Note that by D H SC, we know that D covers
SC. So, in this case, clearly 8 € tv(Da), since D H SC. Then, by induction,
a € D*(tv SA) and hence tv(SB) C D*(tv SA).

e o ¢ dom(S) and B € dom(S): In this case, we know that a € dom(D), since
D W SC. In particular, Da = S(Ca) and hence tv(S3) C tv(Da). By
induction, a € D*(tv SA). So tv(S58) C D*(tv SA).

e a € dom(S) and B ¢ dom(S): there are two possibilities depending on the

structure of Sa:

— Sa = p: Since D H SC, we have p € dom(D) and 8 € tv(Dp) By
induction, p € D*(tv SA). So tv(S3) € D*(tv SA).
— Sa = k7: Since D H SC, it follows from our requirements on instance

declarations that B € tv(r). Moreover, since tv(S«) = tv(r), by induction

we have tv(r) C D*(tv SA). So tv(58) € D*(tv SA).

e a € dom(S) and B € dom(S), there are four possibilities depending on the
structures of Sa and SB. Except for the following case, the others are similar

to the ones given above.

— Sa =«7 and SB = «'7'": In this case, tv(S5) = tv(r'). Again, it follows
from D H SC and our requirements on instance declarations that tv(r’) C
tv(r). Moreover, since tv(Sa) = tv(7), by induction we have tv(r) C

D*(tv SA). So tv(SB) € D*(tv SA).

Hence for all 3 € C*(A), tv(SB) C D*(tv SA). [
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Lemma 6.3 IfK' :0" <y.c o' and K : 0’ <y.c o, then (K'0 K) : 0" Zy.c 0.

Proof: Suppose that
o =V(ail).r, o =V¥(d=T)). 7" and o” = V(ej:T}). 7"

where the variables o/ appear only in I'; and 7', and the variables o appear only in

I'} and 7". By definition of conversions:
= [r/ai]T, viC @u(ejnly) e d o [ri/ai] (einl),

for some 7;, d and u (disjoint from v) such that v:(" = A = Az.Au.zd. In a similar
way,

™ =[r/ag]7, viC P wiafal) - d [/ /] (D)),

for some 7/, d’ and w (disjoint from v) such that v:C' + K’ = Az.Aw.zd’. Since

none of the o appear free in 7. we have
= [rf /] 7" = [/ ej] (/e 7) = [ ai]

where 7/ = [r//a/]ri. Now, in order to apply [7//a;]] to the first of the two augmented

instance entailments above, we note that:
v:C @ wiaf:Ty) e vd' 7] /)] (C B (af:7)),

since none of the o} appear free in C'. Thus. by the transitivity under substitution of

H-, we obtain:

v:C @ w:{of =Ty i [d'/uld : [r//a}] ([7:/ai] (ai:T3)).
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To complete the proof, notice that

v:C F K" = Xz dw.z([d'/u]d)
= Az w.(Qu.zd)d”  (Ba)
= Az \w.(Kz)d’ (property of K)
= Mz w.K'(Kz)w  (property of K’)
= Az K'(Kz) (74)

which is the required conversion. ]

Lemma 6.6 Let C be a context that covers both type T and type assumption
set A. If gen (1, A,v:C,€) = (o/,v:C",w). then o' = (a;:Ca;)t. T for some
n >0 such that v:C = w:i{a;:Ca;) T v:C" and dom((") = C*(tv A).

Proof: For ease of reference, we include the definition of gen below:

gen (o, A, v:C,w) = if I(v:(aul)) € v:C and a & (tv(A) U reg(C))
then gen (Va:T.o. A, (V:C)\yi(aury, ¥W)
else (o, v:(', W)
The lemma is a direct corollary of the following stronger version:

If gen (0, A,v:C,w) = (o/,v:C'.W'), then ¢’ = (a;:Ca;)].c for some
n >0 such that dom(C) = {a;} ¥ C*(tv 4) and vE w =V & w'.

Without loss of generality we can assume that, initially, dom(C) N btv(o) = ¢ and
w is disjoint from v. The stronger version is a consequence of the following two

observations:

1. Both dom(C) W btv(c) and v & w are invariant during the recursion of gen.
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9. If @ € C*(tv A), then a € (tv(A) U reg(C)). Hence C*(tv A) is also invariant

during the recursion of gen.

Now suppose that gen (o, 4,v:C,w) = (o, V": C',w'), then an immediate consequence
of (1) is that dom(C) W btv(o) = dom(C’) ¥ btv(c’) and v & W=V & w'.In
other words, there exist some n > 0 such that o' = {a;:Ca;)}. o and dom(C) =
{a;} Udom(C").

By (2), C*(tv A) € dom(C’). In addition, we claim that dom(C’) = C*(tv A),
for if dom(C")\C*(tv A) # 0, then gen would not stop at (¢’,C',w'). To see this,
suppose that there exists a type variable a € dom(C")\C*(tv A). Then there will
also be some 3 € dom(C’)\reg(C"’) since C' is acyclic. This in turn implies that 3

would be generalized by gen. which contradicts the assumption that gen terminates

with (0!, C',w'). {ai}w C*(tv 4) = dom(C). [ ]

Lemma6.7 If A, v:C + e~ ¢ : 7 and gen(T, A.v:C,e) = (0,V:C',w), then

A, Vv:C' F e~ Aw. e 1o

Proof: By applying (V-I) to A. v:(' + e~ ¢ 7 repeatedly following the order

of discharging used in the implementation of gen. =

Lemma 6.8 Suppose that gen(7,A,v:C,€) = (0.v1:Cy,w) and w:D is disjoint
from v:C. Then gen(r,A.v:C T w:D.€) = (o/.v':C", W) for some o', v:C',
and w' such that '

C'=C, W =Zuw., (A dw.rw) 0 <o and Az Aw.zw') 10 <up 0'.

Proof: By Lemma 6.6,

o =V{a;:Ca;).7, v:C = wi{a;:Ca;) & vi:(y and G = C*(tv A).
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Let u:D' = v:C @ u:D. Since u:D is disjoint from v:C, we know that (D')*(tv A) =
C*(tv A). Hence by Lemma 6.6, 0’ = V(c;::D'(a)).7 and

u:D' = wi(d:D'(df)) @ v:C" and C'= (.

It then follows from the definition of u’:D’ that w’' = uw.
Next, to show that the given conversions are correct, note that clearly none of the a;
appears free in ¢ and (a;:Ca;) E (o)::D'(a;)). So

w'i (o)D" (o)) = wi{a;:Cay)

and hence

Az Iw'.rw) 0 <0,

The other conversion can be similarly derived. [

Theorem 6.9 If A, viC ' e~ ¢ :7, then A, v:iC F e~ e iT.

Proof: By induction on the structure of A, v:C" F' e~ ¢’ :7. The only interesting

case is (let’):

We have a derivation of the form

A, v:C'F e~ e 1T Az:io. viC F e~ e 11

A, C F (letz=¢ ine)~ (letz = Aw.¢; ing) : 7
where (o, v":C", W) = gen(7, A, v:(".€) and v’f:C”l_:_v:C,
Without loss of generality, we can assume that dom(C”)Ndom( C) = dom(C"), which

can be achieved by a suitable renaming of variables in dom(C). Hence, dom(C) N

btv(c) = @ and we can thus construct the following derivation:
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AC' FH e~ e 11y

A CF P
ara’n (Lemma 6.7)
Az:0,C F e~ e:

AC" F e~ Aw. e : 0 1T, .
(Lemma 3.3) (induction)
ACF e~ Aw.e t 0 Az:0,C F g~ ey 17y (let)
e

A, C + (letz = ¢ ine)~ (let z = Aw. e iney) 1 T2

(induction)

This completes the proof. [

Lemma 6.10 Let (o,C’,w) = gen(r. A, v:C€) and o = V{a;z:T;). 7. Sup-
pose that there exist dictionary expressions d such that w:D W d: SC. If
gen(St,SA,w:D,€) = (o', u:D". w'). then

(Ae w'.xd") : 0’ Zunpr So.

where d’ is a sublist of d such that w:DH d": S{a;:T).

Proof: Suppose that o’ = V(c/::I';).57. Then none of the variables o} appears free

‘0 D' or So. To see this, first apply Lemma 6.6 to ¢’ and D":

dom(D) = {a}} ¥ dom(D’) = {a’} W D*(tv SA).

Hence none of o} appears in D'. Next. since D H SC. it follows from Lemma 3.2
that tv(S C*(tv A)) € D*(tv SA). Furthermore. by Lemma 6.6, dom(C) = {a;} ¥
C*(tv A). Now since tv(a) C C*(tv A). 1t then follows that tv(Sa) C tv(S C*(tv A)).
This in turn implies that tv(So) € D™(tv S4)). Therefore, none of a’ appears free

in So, either.

Let 3; be new type variables that are not involved in S. Then

So = V{(3:::S[3:/a:]Ts). S[Bif avilT.
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To show that ¢/ <p: So, we choose the substitution R = [Sa;/8;]. Then

R(S[Bi/ecs]T) = [Sei/Bi)(S[Bi/eilT)

= ([Sei/Bi)S)[Bi/exilT)

= (Slei/Bi))Bi/ eilr

= S,
and similarly R(S[8;/a;]li) = ST;.
The next thing to show is that there exist dictionaries d' £ d such that

u':D' @ w'i(a):T)) B dR(3::5[3:/ai]T).
But since
R(B::S[Bias]Ts) = (Sa;:STy)
= Sl

and D = D'W{a}:T}}, what we need to show is that u:D t d":.5{a;::T';). This follows
directly from the given facts that (a;::I';) C C and u:D H d:SC. Thus (Az.Aw'. z d') :

o' <u’:D So. |

Lemma6.11 Let (0, Go,w) = gen(r, A, v:C.,¢). If v::C" B d : SCy, then there
exist a substitution R, an augmented context u:D and dictionary ezpressions d’

such that
RA =S54, wDH d:RC and d' = wd.
Furthermore, if gen(Rt, RA,u:D,€) = (o', D'.w'), then

So=0, DCC" and W' =w.

Proof: Write 0 = V(a;:T';). 7. Let R = S[8;/a;] where ; are new type variables
and u:D = w:R({a;:T';) & v":C"” where v":(" i1s v': (" restricted to type variables in

SCy. We show that R and u:D satisfy the requirements.
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First, from Lemma 6.6, we know that none of «; appears in A, so RA = SA. Next,
also by Lemma 6.6, C = (i) & Co. Hence RC = R{a;:T;) & SCy. Now, since
v":.C" # d : SCp, it follows that u:D H d’: RC for some dictionaries d’' = wd.

Furthermore, since §; are new, it follows that So = V(B::RT;). Rr. Now suppose that
o' = Y(p;=T}). Rr, then So = o' when (Bi::RT;) = (p;=:T). Given the definition of
u:D and the fact that 3; are new, it suffices to show that D' = C". This we prove by
considering tv(Sea) for a € dom(C”).

We know from Lemma 6.6 that dom(Cy) = C*(tv A). Moreover, since D f- RC and
RA = SA, by Lemma 3.2 we have tv(Sa) C D*(tv SA) for all @ € dom((Cp) In other
words, none of the type variables in SCq can be generalized by gen(RT, RA,u:D,e).
Thus, D' = C” and hence we have So = o', D'C (" and w’ = w. This completes
the proof. [

Lemma 6.12 IfA, v: C ' e~ ¢ : 7. then dv(e') C dom(C).

Proof: By induction on the structure of the proof 4,v:C F' e~ e :7. The
proof for the cases where the last rule in the derivation is (A\-I') or (A-E’) are straight-
forward and the proof for (var’) follows directly from the property (dvars) given in

Section 3.2.2.

In the remaining case we have a derivation of the form:

A voCy F o eg~e T Az:o,v:iC F ey~ey 1T

A, v:C F (letz =6 ine)~ (let z=Aw.g ine) o7

where (o, v1:C1, W) = gen(T, A.vg:Cy.€) and vi: G T v:C.

By induction dv(e!) C vo and dv(e;) € v. Also, by Lemma 6.6, dv(Aw. e) C vy and
hence dv(Aw. ¢]) C v. It follows that

dv(let z = Aw.e; in¢;) C v,
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which completes the proof. m

Lemma6.14 IfA, v:C F e~ € :7 and v:C'Hd: SC, then SA, v:C' I
e~ [d/v]e': ST.

Proof: By induction on the structure of the proof A,v:C F' e~ €' : 7. The only

nontrivial cases are (var’) and (let’).

Case (var') : We have a derivation of the form:

A(z) = V(o). 7’ v:CH d [ /ai] {(ei:Ty)

A, v:CF o~ ad /o] T

Let o0 = V(o;::T;). 7. Without loss of generality, we can assume that S is safe
for o; in other words, when applying S to &, no name clashes occur. Hence
So = V{0;::ST;). S7". Let 7 = [r;/a;]7’. Our goal is to find a instantiation
substitution J such that

J(87') = St and v:C"H [d/v]d": J{a;::ST;).

Now define J = S o [r;/a;]. We first show that J(S7') = S([7;/a;]7'). This we
prove by showing that for each a occurring 7'. J(Sa) = S([ri/a;] a).

If o is bound in o, i.e., @ = a; for some j. then
J(Sa;) = Ja; = 5([ri/ai] o).
Otherwise a is free in o, so
J(Sa) = S([rs/as] (Sa)) = S(Sa) = Sa = S([r:/ai] @),

since S is safe for a; and « is not in {a;}. Hence J(S7') = ST follows from

T =[r/ai] T
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By a similar argument we can show that J(ST;) = S([r:/a:]T%). So
J{a;:8T3) = (S([ri/eil ai)::S([rifei] Ti)) = S([7i/exi] {eiziTs)-
Then from v:C # d' : [r;/as] (@i:T3) and v/:C' B d : SC, it follows that
VO W [d/v]d’ : J(ai:STs)
by transitivity under substitution. Hence we have
SAN:C' 'z~ 2(ld/v]d) : ST,
which is the derivation required since z([d/v]d’) = [d/v](zd’).
Case (let') : We have a derivation of the form:

A vg:Co H e~ €'y i T Az:o, viC F e~ ey 17

A, v:C F (let 7 = ¢ in e) ~» (let ¢ = Aw.ey ine'y) 7!
where (o,v1:C, W) = gen(7, A, vo: (o, €) and vi:Cy Cv:C.
The proof is mainly based on Lemma 6.11. Since v:C'H d : SC and C,C C,
it follows that there exist dictionaries d; Cd such that v':C’' H d; : SC;. Then

applying Lemma 6.11 to o, v:(" and S, we obtain a substitution R and a

context u:D and dictionary expressions do such that
RA=SA, w:DH do: RCy, So=0'. C"C (" do = wd; and w =w

where (o', C",w') = gen(R1,SA. u: D, €).

In addition, by Lemma 6.6. vo:Co = w:{a;:I;) @ vi:Cy. Then without loss of
generality, we can assume that vo = wv; and dg = wd;. Hence [do/Vve] =

[d1/v1] and the required derivation can be constructed:

A, vp:Co H e~ €'y iT () Azio,viC H ey~ €q 7 (b)
a
RA, w:D V' e ~ [do/vole'y : Rt SA.z:So, v:C' F ey~ [d/v]e/y : ST
c
SA, w:D ' e ~ [dy/vi]e's : RT SA.z:0', v:C' H ey~ [d/v]e'y + ST

SA, v':C' ' (let z = € in e3) ~ (let @ = Aw'.[d;/vi]€'; in [d/v]ey) : ST’
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where steps (a) and (b) are obtained by induction while (c) and (d) are justified
by the equalities SA = RA, So = ¢’ and [do/Vo] = [d1/V1]-
To complete the proof, note that by Lemma 6.12, dv(e;) € vo and hence

dv(Aw. ¢]) C vy. So:

[d/v](let z = Aw.€’y in €) let z = [d/v](Aw.¢}) in [d/V]e;

]

let z = [do/vo](Aw.€y) in [d/V]e;

il

let 7 = [dy/vi](Aw.¢;) in [d/V]e;

let z = Aw.[d;/vy]e in [d/v]e;

I

= letz = Aw'.[di/vi]e in [d/V]e;

This completes the proof. =

Lemma 6.15 If A, viC F e~ ¢ 1 and K : A’ 2y A, then A, v:C V'

e~ e 1 with A, v:iC F Ke' =¢":

-3

Proof: By induction on the structure of A'.v:C' ' ¢~ e/ : 7. The case for

(A-elim) is trivial and has been omitted.

case (var'): We have a derivation of the form

Al(z) = V(ajuI%). v/ viC i d' : [r]/a)] (afTY)

A, v:C F oz~ zd :[r]/ai]V
Suppose A(z) = V(a;:T;).v. Given that A : A" <y.c A, we have
Az, K(z) : V(ej=L}). v Zvie Y{ainli). v.
Moreover, by hypothesis and definition of conversions we have:

(Az.zd’) : [r]/a}] V' Zv.c V(e;uI]). v



Then we can compose these two conversion using Lemma 6.3:
(Az. (Kz)d') : [7]/c;] V" Zv.o V(D). v.

So there are types 7; and dictionary expressions d such that
[ri/ei]v = [r]/a}]V, viCH d:[ri/ai] (@),
and v:C F (Kz)d' = zd.

Then using (var'), we can construct the derivation:

A v:iC FH or~oad /o] V.

Finally, note that

A v:(C F K(zd') = (Kr)d
= zd

which establish the required equality.
Case (A-intro’): We have a derivation of the form:

Ao viC F e~ o7

A v:C F dreg~ dre) : 17— T
By hypothesis, K : A" <y.c 4 and hence by Lemma 6.4(3):
K, (A.x:7) Svic (Ax: 7).
So, by induction, A.z: 7', vi(" F' & ~r e/ = K;¢; : 7 and hence
A, viC F Aroeg~ Azel i1’ — 71
with
Av:C F K(Az.e]) = Ae.(K,¢) (Lemma 6.4(1))

= Az.ef 17> 71 (F K¢ = ¢)

137
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Case (let'): We have a derivation of the form:

AL viCT H e~ T Alz:o, viC F e~ ey :T

A, v:C H (let = ¢ ine) ~ (let z = Aw.¢; ingy) 7
where (o/,v":C",w) = gen(t',A,v":C’,¢) and C" =X C.

Without loss of generality, we assume that dom(C) N dom(C") = dom(C"” ). By
Lemma 6.6, ¢’ = V(a;:I';). 7/ and C' = {a;:T;} w C". Hence

C'w(C\C")= CW{a;:I'y).
Now let u:D = v:C \ v":C". By Lemma 6.13, we obtain a derivation:
A ViC G wD F e~ T

Furthermore, since K : A’ <y.¢c A and v:CEV:(" B u:D, by Lemma 6.5 we

have K : A’ <,.cipp A- Thus by induction there is a derivation
A viC'@uD F o~ el 7
with 4, viC'@u:D + Kej =¢ 1 7',
Next, we consider the derivation:
Alz:o'. viC F ey~ ey i 7.

Let (o, Co,w') = gen(7/, A',v:C" & u:D.e). Tt follows from Lemma 6.8 and
C" < C that
Az Aw.zw'): 0’ Zypo, and Co =X C

But u:DC v:C, so by Lemma 6.2 we have
Az w.zw') 10’ Zyic o

and hence

K. [dw.aw'/z]: A x:0’ 2vic Axio.
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Therefore, by induction

Az:o, viC V' ey~ ef = (K [Aw.zw'/z])e; 7.

It then follows from (let’) that

A v:C F (letz = ¢ ine) ~ (let ¢ = Aw'.ef in €)1 T.

Finally, note that

A, v:C F  K(letz =Aw.ef in €)
= letr=Aw.Ke¢ in K, e (Lemma 6.4 (1))
= letz=Aw.¢ in N, ¢
= letz =Aw.(AwW.¢)W in K. e (Ba)
= letr = (Az. w.aw/)(AW'.ef) in Krep (B4)
= letz=[AW.e//r](Aw.cw’) in K;e;  (substitution)
= let s =Aw'e/ in Aw.aw'/z](K;e5)  (Lemma 6.1 (1))

"

= lets = w.¢ in (K,[Aw.rw'/z])e;  (Lemma 6.4 (4))

= letr=Aw'.¢f in¢)

which establish the required equality. [

Theorem 6.16 If A, v:C F e~ ¢ : 0. then there is a context v:C', a type 1’
and a term €' such that v:C T v:C" and A, v:C' V' e~se" . 7', Furthermore,
if gen(r',A,v:C' €)= (¢',C",W). then A, v:C F K(Qw.e") = ¢ : o where

K:o =vco.

Proof: By induction on the length of the derivation A, v:C F e~¢€ o0

Consider the last step of the derivation:
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Case (var): We have a derivation of the form:

Alz)=o0

AviCFz~z:0
Write o = V{a,:I';). 7. Define v':C” and 7' as follows:
viC = wS{ei:ly) @ viC, 7' =87

with S of the form [B;/a;] where 3; and u are new variables. Then by definition
v:CCv:C and v:C' H u: S{a;:T';). So by (var'),
A Vv:C'F z~ru T
Furthermore, suppose that gen(v'. 4.v':(".¢) = (o', C", W). Then by the def-
inition of gen, we can write o’ = V{a{:I'}).V(3;:5T).7', where (oY) EC.
This in turn is a-equivalent to ¥{(aj=:I'}).¥{a;:T;).7". Thus ¢’ = V{af=T}).o
and v:C @ u{eg:ly) B w i ((@f=I]) & (). So. Kt o 2vie o' where
K = Az.\u.zw. Finally, we have
A, v:C F  K{Aw.ru)

= Au.(Aw.ru)w (3), (84)

= Au.zu (B4)

= 1:0 (n4)

which establishes the required equality.

Case (V-E): we have a derivation of the form:

A, viC F e~ ¢ Vail.o v:C K d:(mT)

A, viC F e~ €-d :[t/alo
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By induction,

AV:C FH e~ e oo
with viCC v":C’ and
A v:C F K(Qw.e")=¢ :Vaul'.o

where (o', C",w) = gen(r', A,v':C’,¢) and K : Yo:T.0 Zy.c o'

Using the hypothesis v:C H d:(7::T"), we have
(Ax.xd) : [1/a]o Zv.c Ya:T.o,
which can be composed with A" by Lemma 6.3 to give
(Az.(Kz)d) : [t/a]o Zv.c o
This conversion yields the required equality:
A, v:C F (Az.(Kr)d)(Aw. e") = (K (Aw.€¢"))d = €'d :[r/a]o.
Case (V-I): we have a derivation of the form:

A upi:C F (el dupCy F e~e o

A, uu:CiCy F e~ dve :Vaulo

where a € tv A U reg(Cy (3).

Let u:C, = u;:Cy & vi(a:I') & u,:C,. By induction,
A VO H e~ oo
with u:C, Tv":C’ and
AuwC, F KQw.¢)=¢ :0

where K : 0 <u.c, 0' and (0’. C",w) = gen(7', A, v':(", €).
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Moreover, it is straightforward to show that
(Az.Av.Kz) : Vol .0 Zuyupci0, 0
Hence we can establish the required equality:

A, wu:C G, o (Az v Kz)(Aw. e”)
= Av. K{(Aw.e")

= Ar.¢e¢ Vail.o

using (G) and (Ba).

Case (M-E): we have a derivation of the form:

A VviC F eg~ e 17— 1 A viC b eg~oe T

!

A viC b ereg~orerey i T

By induction,

A, viiC F o ~oe i

with v:C C v,:C) and
A viC F Ki(Qwy.ef)=¢ 17— T

where K, : 7 — 7' =<y.c o1 and (oy,u;:C],w;) = gen(v, A, vi:Cy,€). Write
oy = Y{ei:Ty).ov. It follows from the definition of conversions that there are
types 7; to form a substitution R = [r;/a;] and dictionary expressions d, such

that
Rv=r1—1, viCH d;:(R{a;:T)) and v:C t K= Ar. rd;.

To apply R to the syntax-directed derivation above, according to Lemma 6.14,
we need to show that there exist dictionaries d such that v:C H-d: RC;.
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By Lemma 6.6,
vi:Cy = wyi{aaly) @ up:C) and dom(Cy) = (G)*(tv A4).
Thus v:C H d: RC, where d & dyu;. So by Lemma 6.14 we obtain:
RA, viC V' e~ [dy/wi]e) 17— 7.
Furthermore, since none of the a; appears free in A, this is equivalent to
A viC F e~ [dy/wile T — T
Note also that

A, v:C F e = Ky(Awy. ef) = (. zdy)(Awy. gf) = [do/wi]e) 17 — ',

By a similar argument. A, v:(" F' e~ [d2/w2]€e) : 7 for some some d,, S,
C, and wy such that

viOH dy:SC, and A viC b e) = [dy/waley : 7.
Hence we can construct the derivation:

A, viC F e~ [dy/wilel 17— T A, v:iC FH e~ [dy/woley o7

A, v:C H €1 €3 ™ [d]/wl]eil [dg/Wg]eg o7

Finally, if gen(7’,4,v:C,¢e) = (0.C’,w) then obviously (Az.zw) : 7' Zv.c 0,

and this conversion satisfies the required equality:
A, v:iC + (z.zw)(Aw. [di/wa]e) [do/wo]e)) = [di/wile) [da/waey = € &
using (8) and (B).

Case (A-I): we have a derivation of the form:

Ar: T, viCF e~ e i1

A v:C F dre~ Aze o7l —> T
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By induction,
Az:r viC' F e~e v
with viCC v':C’ and
Az:r',v:iC F KQw.e")=¢ :7

where K : 7 <v:c 0 and (o,u:C",w) = gen(v, A.z:7',v':C', €). Suppose that
o = Y{a;::[';). v, then there are types 7; to form a substitution § = [r;/a;] and

dictionary expressions d such that

Sy=r1—-71, v:iCH d:(S(e;:T;)) and v:C + K = Az.zd.
By Lemma 6.6,

v 2 wia:T) @ u:C” and dom(C”) = (C1)"(tv A U tv ).

Thus v:C K d’: SC’' where d’ = du. Now applving Lemma 6.14 to S and

the given derivation, we obtain:
S(A.z:7), viC + e~ [d/w]ef @ T.
Since none of the «; appears in A.z:7'. this is equivalent to
Az:m,viC F e~ [d/wle i 7

and hence
A, v:C F Aze~ drfd/wle” 7" — T
Note also that
Az:r viC H ¢ = K(w.e")
= Az.zd(Aw.€")

= [d/w]e" 17" =7
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and hence by (A-intro’),
A, v:C F dz.[d/wle" = Az. ¢ : 7' > 7.

Finally, Suppose that gen(r’ — 7,4,v:C,¢) = (0, Co,w). Then obviously

(Az.zw) : 7 — 7' Zy.c 0, and this conversion satisfies the required equality:
A, v:C F (Az.zw)(Aw. Az.[d/w]e") = Az.[d/w]e" = Az. €

using (8) and (54).

Case (let): we have a derivation of the form:

AviC b e~ to Azio,viC F e~ ep: 7T

A, viC F (letr =6 ine)~ (letr =e¢ ineg) : 7T

By induction,

;‘1, V]iCyl }'/ €1 ™ 6{, .1

with v:C Cvy:C; and

A v:C F Ki(Qwy.¢f) =€ : 0

where K : 0 <v.c 01 and (o7, uy:C], wy) = gen(ry, A, vi:Cy, €).

Similarly, we have

Az:io,veCy H e~ e) 11y

with v:C C v,:C; and
Azio,v:C F Ka(Awg. ef) =€) @ 7T

where K : 7 <v.c 02 and (049, u3:C), Wo) = gen(r2, A.x:0, va:(y, €).

Our first goal is to construct a derivation for the let -expression using A and

v,:Cy. Without loss of generality. we can assume that dom(Cy) N dom((y) =
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dom(C). Now note that by Lemma 6.6, dom(C]) = (Ci)*(tv 4). But ob-
viously (Cy)*(tv A) = C*(tv A4), so uy:C] C v:C and hence u;:C] C v,:C,.

Furthermore, by Lemma 6.2, K; : 0 =<y,.¢, 1. So, by definition,
(Kiz/2]) : Az:o =<y,.0, A.z:0y.

Thus, using the conversion [Kjz/z], we can construct the following derivation:

Arz:io,vyCy F e~ ef 17

A viiCi H e~ im Arion, vaG F e~ el i

A, vy:Cy F (letz = ¢ in ¢) ~ (let 2 = Awy. ¢/ in €)') : 7y

"

where, by Lemma 6.15, e3” is related to €)' by the equality
Az:oy, vy B [Kix/e]ey =€) @1,

which in turn, after applying rule (abs-d) repetitively, gives:
m

Azioy, viC F Awy [Kyo/e]e) = Awsy.e) @ oy

Next, we use 0, as an intermediate step to construct the required conversion.
Recall the definition of g,— (0,3, C3, W,) = gen(7y, A.x : 0,v5:Cy,€). Now let
(03, C)',w3) = gen(7e, A, v2:Cy, €). A straightforward comparison of these two
generalizations based on Lemma 6.6 gives: there exist u:{(a;::I'y) C v:C such

that
{ar} € dom(C)\tv(e) and (Az. wq.2w3): 0y uiag = Ty) 03-
Then composing with K, by Lemma 6.3. we obtain the required conversion:
(Az. K3 (Awq. aw3)) : 7 <y.c 03.
It remains to be shown that this conversion relates the translation of let z =

€1 in e; in the original derivation to that in the svntax-directed derivation given

above using (cong-let):
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A, v:C b (Az. Ky (Awy. 7 w3)) (Aws. let z = Awy. ¢/ in €))
(by (8)and (84))
= K,(Awj.let 7 = Awy.ef in €)
(using Lemma 6.1, parts (2) and (3))

= letz = Awy. ¢ in (Ko (Awz. &)

(using A.x:0y. v:C b Awg. [Kiz/z]e) = Aw,y. €)' : 02)
= letz = Awy. e/ in (R (Aws. [Kiz/z]ey))
(z & tv(hz))
= let r = Awy. e/ in [Kjz/2}(K2(Aws. €))
(using Lemma 6.1(1))
= let r = [Awy.e//z}(A12) in (K2(Aw,. €))
(substitution)
= letz = hi(Awy. ¢]) in (K2(Aws. €)))
(using A. v:( F Ki(Awy.¢') = ¢ 1 0)
= letr = ¢ in (N(Aws. €]))

(using A.x:o, v:C F Ky(Aws.ef) = €5 1 7)

— — g g
= letr=¢ 1n ¢

Lemma 6.19 For any augmented constrained substitution (S, C,0) and types

1, T2, the invocation mgu Ty Ty (S.C.O) either fails or terminates.
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Proof: As mentioned in the main body of the thesis, the augmented unification al-
gorithm maintains the same recursion structure as the original one. Thus, to simplify

the presentation, we will use the original version in our proof.

To begin with, we define some metric functions on sets and types. We write |s| for
the number of elements in set s, and, overloading the | | operation, define || to be

the number of symbols in 7:

la] =1
01=1
Wrl =1+

(r, 7)) =1+ [r i+ ]

lr =7 =1+|r|+ |7

We now proceed to prove that call to mgu will always terminate. We can think of
the four functions, mgu, mgu’, mgn, mgn', as mutually recursively defined over the
tuple T = (11,72, 73,7, L, (S, C)). In particular. In addition to (S, C), mgu and mgu’
operate on 7; and 75, mgn on 73 and T, and mgn’ on 73 and y. The termination of

them is proved by associating a degree with the parameter tuple:
deg(T) = (Jdom(C)], 73] [T, 72l [ma])-

In other words, the degree of T is a tuple of natural numbers. We order degrees

lexicographically and show that each recursive call reduces the degree.

We know from Lemma 4.2 that C' is never enla‘rge‘d by these functions and whenever
S is extended, C will be correspondingly diminished. This fact explains why we
put |dom(C)| as the first component of the degree and is crucial to the following

argument.

Calls to mgu are unfolded to calls to mgu’. In mgu’, the recursive call to mgn

diminishes |dom(C)| and the recursive calls to mgu are supplied with subcomponents
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of 71, 72 and a possibly diminished C. We consider mgu’ 7; 7, (S, C) and show a few

cases here to illustrate the ideas; the others are similar and have been omitted.

Case (71, 72) of:

o (a, 7): rewrites to mgn 7 Ca [r/a]C\s. The degree is reduced, since C is

diminished.

o (K7, K 7'): rewrites, after unfolding, to mgu’ 7 7' (S, C). The degree is reduced,

since the type arguments are reduced.

o ((11,72,) (7], 74)): rewrites to mgu 7 7| (mgu m, 75 (S,C)). The first call
mgu 7, 75 (S, C) terminates or fails. since the types are reduced. The interesting
case occurs when we obtain from mgu 7 75 (S, C) some (S, C’) such that
|S'71| > |(71,72)|- This seems to be a problem when unfolding mgu 7 7 (S', C')
to mgu’ S, St/ (S'. C"). But it is not: in that case, we would have |[dom(C")| <

|dom(C)| by Lemma 4.2, and hence the degree would still be reduced.

Function mgn recursively calls itself with a smaller class set and calls mgn’ only when
a singleton class set is reached. Note that in the composition of these calls to mgn, ||
may be enlarged as the substitution is extended. But in those situations, |dom(C')|
will be reduced, so the degree is still reduced. The analysis is similar to the one given

above for mgu'.

In mgn’, the calls to mgu are unfolded, and, from the preceding argument for mgu’,
we know that the degree will be reduced. Moreover, in recursively normalizing the
context of an instance declaration, the series of recursive calls to mgn are passed the
subcomponents of 73 and a possibly diminished C, thus the degree will be reduced as

the normalization process proceeds.

Since there is no infinite decreasing sequence of tuples of natural number, it follows

that mgu 7, 7, (S, C) either terminates or fails. n
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Lemma 6.17

1. If mgn 73T (S,v:C,0, d) = (§',v:C",0', dd), then v:C'H dy : §'(73::T)
and (§',v':C",0") < (S,v:C,0).

2. If mgu 7, 7 (S,v:C,0) = (§',v:(C",0), then §'7 = §'7, and
(§',v:C",0") <X (S,v:C,0).

Proof: These two assertions are mutually dependent. The proof is by induction on

73, [T, |72]s 7).

the degree of the parameters: (|dom((’)

)

If |dom(C)| = 0, there are no type variables involved and the lemma is vacuously

true. Now consider the case when [dom(C)| =n + 1.

1. mgn i ' (S,C,0,d):

Induction base (S73 = a),

(a) T' = {} : Obvious.
(b) ST = v:{c7} : Consider mgn' o (¢7) (5.C.0.d), « € 7. There are two
possibilities:
i Ju, 7 w(cr’) € Ca:
We unfold the call mgu 7 7' (S5, v:C,0) to mgu’ 7 7' (S,v:C,0). The
interesting cases are:
A. 7 = f : Suppose that v':(3:T') € (v:C).and B ¢ tv(7'). Let
(8,C",0",d") = mgn 7' (C3) ([7'/B]S, [7'/B]C\s,O,¢€). Then,

since |dom(C\3)| = n. by induction.
viC' K d S (7(C3)) and CTH @y (R'[T]B]) C\g,

where S’ = R'o([t'/3]0S5), ® = ®00 and v; = v\ v'. Also
note that (S, v':C’,[d’/+']O) is the result we obtain from the call
to mgu, and o € dom(S’) and w & dom(©").
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Now, since S8 = R't’ and S'(CB8) = R'(Cp), combining the

above two entailments gives:
C' H ([d'/v]@")v: (R'[r'/B])C.

Hence (S',v:C',[d'/v]0®") < (S,v:C,0).

It remains to be shown that v':C’' H- w : §'(a:: ¢ B). Sincew:(c7’) €
Caand S'a = a, wehave v:C' H w: §'(a:c7’). But '8 = S'r,
so V:C' - w: S (T3¢ B).

1= (r,m) and 77 = (7{,7y)

Let (Sg,v: (. ©3) = mgu 1 74 (S, v:C,0). Since || < |7, by

induction using (2), we obtain:
VIC‘Q H- (QQV) . RQC and 527'2 = 527-2,,

where S, = Ry 0 S and ©; = ®;, 0 ©. Now consider the second
recursive call mgu 7 7 (Sz,v2:Cy, ©3). There are two possibilities.
IfS, = S then C, = ' by Lemma 4.2. So we do induction on |ry|
since |r1] < |7]. Let (S, v1:C1.01) = mgu 71 7 (S,v:C,0). By

induction:
vi:Cy H (®,v): RC and Sty = Si7y

where S, = R0 S and ©; = ®;00. It is easy to see that the final
augmented constrained substitution returned by mgu satisfies the
requirement: (Sy,vi:C1, 01) <X (S,v:C,0),

On the other hand, if $; # S, by Lemma 4.2 we have |dom(C")| <

|dom(C)|. So we can do induction on |[dom(C)| and obtain:
v1:C'1 H (®1V2) : Rlcg and S]’T] = S]Tll

where S = Ry 05, and ©; = ®; 0 ©,. It then follows from
the transitivity under of substitution of H- that (S1,v1:C1,04) =
(S,v:C.0).
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In addition, by an argument similar to the one given in the pre-
vious case, we can easily show that for both cases: vi:C), F w:
Si(a:cT).
ii. If it is not the case that w:(c 7') € Ca, then obviously (5, C[Ca @
v:(c 7)/a),©, vd) satisfies the requirements.

(¢) T =T UT; : By two straightforward inductions on IT'| and |dom(C')|. The

analysis is similar to the one given for the case of mgu' (11,72) (1, T2)-
Induction step (S73 =« 7'),

(a) T = {} : Obvious.

(b) ST = v:{(c7)}: Consider mgn' (k7') (cT) (S,v:C,0). By our restrictions
on instance declarations, we will find only one such (x,c) declaration.
Furthermore, the substitution S’ returned by the match operation properly
instantiates the declaration. Now consider the call: mgu 7 (S'7) (S5, C,©).
Unfolding the call and using an argument similar to the one given above,

we obtain:
(§",C",0") <(5,C.0) and 't = S"(S'T).

Also, by Lemma 4.2, |[dom(C")| < {dom(C')].

Then we proceed to the series of recursive calls to mgn on the list of
instance predicates (r;:[';)[ derived from the instance declaration. The
induction is based on the following observations: First, for all i, || <
| 7']. Second, |dom(C)| may be reduced in the process.

To begin with, suppose that mgn 7, I's (8", C",0",d) = (Sa, Coy On, d,d).

Since |dom(C")| < |dom(C)| when {$"7,| > |« 7’|, by induction we have

(S, Cn,©,) < (S".C".0") and C, 1 d,: S (8", :Ty).
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In fact, the same argument applies to all other instance predicates: for all
1<i<(n—1):

(S,', C,‘,@,‘) j (S,j.H, Ci+1,@,’+1) and C,' H- d,' . S{(S{.{,lT,' :ZP,').

So, by the transitivity under substitution of H-, (S;, C1,0;) = (S, C,0).
Finally, let d; = d;...d,, it then follows from rule (7) of H- that Ci H-
(x d1): Si(e7'ieT).

(c) T =T;UT; : By a straightforward induction on |TI'| and possibly |dom(C)|.

2. mgu 1 75 (S, C) : By a similar inductive argument using (1).

Lemma 6.18

1. Suppose that (5,C,0) =< (S,C.0) and ST = 8. Then
mgu 71 T2 (S,C,0) succeeds with (S'.(C",0") such that S'ny = S'7;, and
(5,C,0") = (5,C",0) <(S,C.,0).

2. Suppose that (S, C,0) < (S.(.0O) and there exist dictionary ezpressions
d such that C W d' : S(7:I). Then mgn 75 T (S.C,0,d) succeeds with
(8, C", 0, dyd) such that C' W dy : S'(7:T), (§,C,0) < (§8,C",0") =<
(S,C,0) and d' = ®d; for some dictionary substitution ® on variables of d;.

Proof: These two assertions are mutually dependent. The proof is by induction on

the degree of the parameters: (|dom(C")|. |7]. [T, |72, |71])-

If |dom(C)| = 0, there are no type variables involved and the lemma is vacuously

true. Now consider the case when |dom(C')| = n + 1.

1. mgu 71 72 (S, C,0) : Depending on |S71| and |S72|, we unfold it to:
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(a) mgu' a7 (S,C,0):

Suppose that v:(a::T') € (v:C). By hypothesis, (5,C,0)=<(S,C,0) and
S unifies @ and 7, we know that a € tv(r), S = Ro([r/a]o S) and

CH d,: R(r:Ca) and CH d,: R([r/a]C\a),

where d,d, = Ov.
Now let (S, v":C", @', d;) = mgn 7 (Ca) ([7/a]S, [1/a]C\a, ©,¢€). Since

ldom(C\,.)| = n, by induction using (2). we have
(S,C,0) =< (5.C",0") <X([r/a]S,[r/a]C\a, ©)

and d, = ®d; for some dictionary substitution ® on variables of d;. Also
note that v € dom(@’).

Suppose that S’ = R’ o ([r/a]S). To complete the proof in this case, we
need to show that v:C’ H dy : R'(r::Ca) and © = &'([d,/v]®’). The
former is true by part (1) of Lemma 6.17, and the latter follows from the

facts that ©v = d, and d, = ®d;.

So, we have
(§,C,0) = (5. C" [d/v]0) = (5,C,0),

as required by the Lemma.

(b) mgu' (k 71) (k 72) (S, C,0) : By a straightforward induction.

(¢) mgu' (11,72) (71,73) (S, C,O) : By two straightforward inductions on |71],

|72] and possibly |dom(C)|.

2. mgn ;3T (S,C,0):

Induction base (573 = «): Consider mgn a T' (5. () :

(a) T'= {} : Obvious.
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(b) ST = wv:{ct} : In this case d’ is just a single dictionary. Consider
mgn' « (¢ 1) (S, C,0). There are two possibilities:
i. Ju, " w(c7’) € Ca:
We unfold the call mgu 7 7/ (S, C, ©). The interesting cases are:
e 7 = f: Assume that v:(8::s) € C.
To induction on the subsequent call to mgn, we need to verify

that:
(5.C,0) = ([7'/3)S. [7'/3]C\s,©) and CH d": S(7'::Tp)

for some dictionaries d”. Suppose that S = R o S, then by hy-

pothesis
CHW d': Rla:cB) and CH RC.

In particular, since (¢ 7') € Ca, we have C W R(a:ct'). Then,
by the at-most-one restriction on instance declarations, RB = RT'.
Moreover, sinces 3 € dom(C'), we have C W dy : R(B::T3) for some
dictionaries d,. It then follows that C H dy : S(r'::T'5) and d; is

the required dictionaries.

Now let B = R o[7'/3]. Then the preceding arguments give:
S =Ro([r'/3]S) and C W R([7"/B]C\p).
In other words,
(5.C.0) = ([7'/8]S. [r'/B1C\s, ©).

Next, let (S, C",0".d) = mgn 7' Tg ([7'/B]S, [7'/B]C\s, €) and
S = R’ o([r'/B]S). Since |[dom(C\B)| = n, by induction we have

(§.C.0) < (5.C,0"), C"H (R['/B])C\s,

and

C'H-dy : S'(Tg).
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such that d, = ®'d; for some ®. In addition, (S', C',[d;/v]©’) is
the final result we obtain from the call to mgu.

But §’3 = §'7', so using [d;/v]©’ we obtain C'H- (R'o[r'/B])C.
Hence (5, C',[d,/v]®") < (S,C,0). Furthermore, since dy, =
®'dy, we have (S, C,0) < (5, C",[d/v]O").

It remains to be shown that C' H w : S'(a::¢f) and d' = Pw.
Since w:(c7') € Ca and S'a = a, we have (' H w: S'(a:ct).
But S8 = S§'’, so v':C' - w: §'(f3::c B). Finally, ® = [d'/v] is
the required dictionary substitution.

7 = (n,7) and 7" = (7{.7;) : Suppose that S = RoS. Since
C W R(ax:(cT))and (¢7’) € Ca. we must have Rt = R7', Hence

the result follows from two straightforward inductions using (1).

ii. Tf it is not the case that w:(c7') € Ca, then obviously (S, C[Ca &
v:(c 7)/al],©, vd) satisfies the requirements.
(¢) T = I UT; : By two straightforward inductions on IT'| and possibly
|dom(C)|.

Induction step (S75 = & 7'): Consider mgn' (x 7') T' (S, C').

(a) T = {} : Obvious.

(b) T = {(c7)}: Consider mgn' (s ') (¢ 7) (5, C).
By hypothesis, C H d' : S((x 7')::(¢7)). But because of the at-most-one
restriction, we know that there is a unique instance declaration for (x, ¢):
i.e., "inst C' = k#::c7 . Furthermore, since our instance declarations
are only templates, the standard match operation works. Suppose that
S' = match 7' 7', then ST = S(S'7).
Therefore, we can do induction on the call to mgu, that is, the invocation

mgu 7 (S'%) (S, C,©) succeeds with (5. C",0") such that

(§,C,0) < (§".C".0") < (5.C.0)
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and S"t = S§"(5'7).

Finally, we need to consider the list of instance predicates, (7;::I';), de-
rived from the instance declaration. Since for all i, |r{] < |x7'| and
|dom(C")| < |dom(C)|, we can obtain the result by a series of straightfor-

ward inductions.

()T =T,UT; : By two straightforward inductions on |I'| and possibly
|dom(C)|. .

Lemma 6.21 Let ¢ be an expression, and let (S,v:C,0) be an augmented
constrained substitution and A a type assumption set such that C covers SA.
If tp(e, A, S,v:C,0) = (T, S V(. 0, then (S, C',0") is an augmented con-
strained substitution and (S',v':C'. @) < (S.v:C.0).

Proof: The proof is by induction on the structure of e. For the first part that
(§',v':C",©') is an augmented constrained substitution, the proof is pretty straight-
forward and has been omitted. The second part is more involved; we need a stronger
induction hypothesis. Suppose that S" = Ro S and O = ® 0 O, then the induction

hypothesis is the following set of mutually dependent assertions:

1. tv(r) € dom(C") and hence ((")*(tv 7) C dom(C").
2. tv(S’A) C dom(C’) and hence ()" (tv 5'A) C dom(C").
3. RC is covered by C'.

4. (§',v":0",0") = (S,v:C,0).

Case (e = z) : Suppose that A(z) = V(a;:[;).7" and S is safe for A(z). Now let Bi

and u be new variables. Then
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tp(z, A, 8,v:C,0) = inst(S(Az),S.v:C,0)
= inst (Vo;:8T;.S7',8,v:C,0)
= (J(§7),8,v:C @ u:D,0)
where J = [Bi/a;] and D = {8;::J(ST)}.
In other words, 7 = J(S7), §' = S, v:C' = v:C @ u:D, and @' = ©. So,

R = id and ® = id. We can now proceed to prove the assertions:

tv(t) C tv(So)U{B:}
1 C tv(SA) U {5}
C dom(C").

2. Obvious, since S'A = SA.
3. Obvious, since RC' = C.

4. Obvious, since v:C & v:C".

Case (e = Az.¢') : By a straightforward induction.

Case (e = ¢;¢3) : We have

tp (&1 €2,4,5,C) =
let (71,¢,5,.v1:(1.01) = tp(er, 4,5,v:C,0)
(T2, €5, 52, v2:(2,0,) = tp(ea. A, S1,v1:Ch, 01)
a be a new type variable
(S3,v3:C5,.03) = mgu 71 (12 = a) (S2. C2 B (a::()), O2)
in (Se, (e1€), 53, Cs,05)

In other words, 7 = S3a, §' = S3, v':C’ = v3:(5 and O = 0s;.

By the induction hypothesis (2), (Cy)*(tv S1A4) C dom((y). So we can do
induction on the second recursive call as well as the first one. In addition,

the proof relies on the properties of our unification algorithm. To use those
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lemmas for the unification algorithm, we need to show that tv(Semi )Utv(Sem2) €
dom(C;). Suppose that S; = Ry 0§ and S, = Ry 0 S;. By the induction
hypothesis (1), tv(r) € dom(C;) and tv(rz) € dom(C;). In addition, by the
first part of the lemma, $;Cy = Cy and $;C; = C,. Hence Sy = 7 and

S,7, = 75. Thus it suffices to look into tv(R,7), since S; = Ry 0 Si.

Consider any type variable 8 € tv(). Since tv(r;) C dom( C,), we have B €
dom(C;). But, by the induction hypothesis (3), tv(R2Ci) € dom((C3). So
tv(Ry3) C dom((%). Since this holds for any 8 € tv(m), we have tv(Ram) C

dom( () as required.

Now applying Lemma 4.1, 4.2 and 4.4 to the call of mgu, we obtain a substitu-

tion R3 such that

Sy = R305,,

dom(Rs) U reg(Rs) C dom((y.c:{}).
dom(Cy.a::{}) \ dom(Cs) = dom(Rs), and
Cy t Ra(Cr.a:{}).

These facts will be used frequently in the remainder of the proof for this case.

1. We need to show that tv(r) C dom(Cs), where 7 = Hac. If o € dom(R3)
then tv(Rsa) C dom((%). since in this case we have reg(R3) € dom((,).
Furthermore, since (3 H R3((Cs.a::{}), it follows from reg(R3;) C dom( ()
that dom(Cs)Ndom(Cy) # 0. Now. given that dom(Cy.c::{}) \ dom( Cs) =
dom(Rs), it is easy to see that tv(Rsa) € dom(C3). On the other hand, if
a ¢ dom(Rs), then since Cs = R3(Cy.c:{}), we must have o € dom(C3).
In both cases, we have tv( Rza) C dom((%). Therefore, tv(r) € dom(C3).

2. We need to show that tv(S;4) € dom(Cs). By induction, (C5)(tv S24) C

dom(C,). Since S34 = Rs(S5;A4) and reg(Rs) € dom(Cy.a::{}), we have
tv(S3A) C dom(Cy.a::{}). Moreover, since dom(R3) N reg(R3) = , none
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of the variable in dom(Rs) appears in tv(S3A4). But dom(C; a::{}) \
dom(R3) = dom(C3), so tv(S3A) C dom(Gs).

3. We show that tv(RC) C dom(C3), where R = R3RyR;. By induction,
tv(R;C) C dom(C,) and tv(R:Cy) C dom( C,).

So tv(RyR,C) C dom((,). Then it suffices to show that tv(Rsa) C
dom(C3) for any a € tv(R;R;C). This can be proved by an argument

similar to the one given in (1).

4. By a straightforward induction and Lemma 6.17.
Case ¢ = (let 7 = ¢; in e;) : we have

tp(letz =€ in ey, A4,5,v:(,0) =
let v:C'={Ca | a€ C*{fv SA))
w:D = (v:O)\(v: ()
(11, €0, 5,v1:C1.0,) = tp (e, A4,5,v:C",0)
(0,vo:Co,w) = gen (11,514, v1:(1,€)
(1o, €5,592,v3:C3,03) = tp (e, A0, Sy, vqe: (o, 01)
in (72, (let 2 = Mw.Oy¢] in €]), S, va: (3 @ u:D, 0,)

In other words, 7 = 75, §' = S, v:C’ = v3:C3 & u:D and ®' = O3. Also note

that u:D is left intact during the two recursive calls.

Obviously, the first recursive call admits induction. To do induction on the sec-
ond recursive call, we need to show that C covers Si(A.z:0), or, (Gy)*(tv S1(A.z:

o)) C dom(Cy). Suppose that o = V(e;:I';).m. Then by Lemma 6.6,
vi:0 = wi(a;:Ty) @ vy and dom(Cy) = (Gy)"(tv 514).

It follows that tv(c) C (C¥)(tv $1A4) and tv(S(A.z : 0)) = tv(5A4) and So
tv S,(A.z:0) C dom(C;) and hence {C)(tv Si1(A.zx:0)) C dom(Cy).
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Suppose that S, = Ry 0 S and S, = Ry 0 .5,. We can now proceed to prove the

assertions.

1. By a straightforward induction.
2. By a straightforward induction.

3. We only need to show that tv(R,R;C") dom((C3). By induction, we
have tv(R;C’') C dom(C;) and tv(R;C;) € dom(Cs). To complete the
proof, we show that tv(R;C’) C dom(C,), which is true if none of the «;

-
<

occurs in tv(R;C’). This in turn can be shown by Lemma 3.2: because
C, H R;C’ and dom(C’) = (C")*(tv SA), tv(Rya) C (Cy)*(tv S51A) for

all @ € dom(C”). Hence none of the a, appears in tv(R,a). Therefore,

tv(R;C) C dom((C;) and hence tv(R, R C’) C dom(C3).

4. We only need to show that (S,.v3:(3,0,) <X (S,v":C",0). By induction,
($1,v1:C1,0;) X (S, v':(".0) and (S;,v3:C3,05) = (51,v2:0,01).

By definition, vi:Cy H ©;v':(R; (”). To complete the proof, we need to
show (S1.v:(5,01) < (S.v:(".0).0r vo: ( H O,V:(R ().

By the (strengthen) property of H- given in Section 5.2.2, it suffices to show
that that none of the a; occurs in R; (. This is shown by an argument
similar to the one used in (3). So, (S1,ve:Cs, 01) <X (S,v":C’,0). 1t then
follows from the transitivity under substitution of H- that (S, v3:Cs, ©3) =
(S,v:C",0).

Theorem 6.22 If tp(e, A, S, v:C.0) = (1,¢',5,v:(",0), then S’A, v!:C' V'

e~ Qe 1.

Proof: By induction on the structure of e. The nontrivial cases are (app) and (let).
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Case ¢ = e;e; : We have
tp (e1 €2,A4,5,v:C,0) =
let (m,€],5,v1:C1,01) = tp (e, A,5,v:C,0)
(72, €}, S2,v9:Cs,0,) = tp (€2, A, 51,v1:C1,01)
a be a fresh type variable
(S3,v3:C3,03) = mgu 1y (12 = @) (52, Cr.0::(), O5)
in (S;a. e €5, 53, vs: (5. 03)
By induction,

SiA, vi:Cy F' e~ Oqel 1y and SpA. varCy ey~ Ozep 1 T

We will apply the substitution lemma (6.14) repetitively to combine these two

derivations.
Suppose that §; = Rj 05,5 = Ry0.5,. and S3 = Ry05,.
By Lemma 6.21,
vl:C'l H- ®1v : Rl ' and VgZC‘g H- Ogvl : RQCl.
Furthermore, by Lemma 6.17, S37; = S3(7; — @) and v3:C3 = O3V 1 R3(Co.cii()).
Hence by transitivity (Lemma 5.1), vs: (3 B O3v : Ra( Ry ().
Now we can construct the required derivation:
S]A, v1:C'1 [ €1 ™ 616{ T
SsA, v3:Cs F' e ~» Oze; 537y SoA, vo:Cy H' e~ Oge) 1Ty

S3A, v3:Cs F ep ~ Oze] 1 S3m0 — Sz S3A, vaiGs H e~ Os€) : 537,
S3A, v3:Cs F' erey ~ Oz(e€y) + S3a
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Case ¢ = (let z = ¢; in e) : We have:

tp(letz = ¢ in e, 4,5,v:C,0) =
let v:C'=(Ca | a € C*(fvSA))
vo:Co = (V:C)\(Vv':C')
(11, €,5,v1:C1,01) = tp (&1, 4,5,v:C",0)
(0,vy:Co,w) = gen (11,514, v1:Cr,€)
(T2. €}, S2,va: (5.02) = tp (€2, A.x:0,51,v2:C2,04)

in (7, (let z = Aw.O ¢ in es), S2,v3:C3 & vo:Co, O2)

By induction
SlA, V]ZC] H €] ~* @1 6{ T and SQA.‘IISQO’, V3103 [ €y ™A (")263 T2

We will apply Lemma 6.11 to combine these two derivations.

Suppose that S, = R20S5; and O, = ®,00;. By Lemma 6.21, v3:Cs H- d2 : Ry Cs,
where d; = ®,v,. Now, applying Lemma 6.11 to o, R,, v3:Cs and d., we obtain

a substitution R, a context u:D and dictionary expressions d’ such that
R(SlA) = Rz(SlA) u:D H dIIRC‘L RzO’ = O'I, D,_[:_ Cg, and d, = Wd2

where (o', D', w) = gen(R1y. By(S14),u:D.€).

By Lemma 6.6, v; = vo & w. So. using Lemma 6.14, we obtain the following

derivation:
S1A, vi:Cy F' oeg~ Og¢f 11

R(S]A), u:D H €1 ~ [d'/vl]@le{ : RTl

S A, w:D F e~ [dy/v;]O1e; - BTy

But clearly S0 = R,0, since tv(o) C dom((;). Hence we can construct the

required derivation:
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Sy A, w:D H e~ [dy/va]Bre) : Ry S$2A.2:50, v3:Cs H' ep~ Ogey 1 7
S;A,u:D F e ~ Oze; : Ry SoA.x:0', va:Cs H' eg~ Oge) 1 Ty
S,A, v3:Cs F (let z = ¢; in €;) ~ (let ¢ = Aw. Oz¢] in Oz¢)) : 7

S A, v3:C3 @ vo:Co H' (let = e in e3) ~ Oz(let z = Aw. Oq¢] ine3) : 72

Theorem 6.24 Suppose that S'A. v':(" +' e~ ¢ 7" and (5, v:(C',0) <
(So,vo:Co,©0). Then tp(e, A, So, Vo:Co. Qo) succeeds with (1,¢",5,v:C,0), and

there is a substitution R and dictionary expressions d such that
1. §' = RS, except possibly on new type variables of tp(e, A, So, Vo:Co, ©o),
2. 7' =Rt ,
3. v:C'Hd: RC,

4. STAV:C' F e =[d/v]Oe" i 7.

Proof: By induction on the structure of S'4. " +' ¢:7".

Case (var') : Assume A(z) = V(qa;:I';). v. We have a derivation of the form :

S'A(z) = V{a;:S'T;). S'v vi:C'H d ([ ail{a;:S'T))

S'A V:C'H r s ad 1) a](SY)

Note that here we assume that variables in o have been suitably renamed so

that no name clashes occur in the proof.

Let B; and u be new variables, we have

tp(z, A, So,vo:Co, Qo) = ([3:/ail(Sor). So, vo: Co F u:Cy, Oo)
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where G = (B:[Bi/i](ST:)). In other words, 7 = [Bi/ai](Sov), €’ = zu,
S = So, v:C = VolCo &5 u:C’1 and @ = @0.

Let Ry be the substitution such that S’ = Rgo S and C'H d" : Ry for some
dictionaries d”. Now let R = [r;/8;]Ro. Then, clearly $’ = RS except possibly
on the new type variables f3;, and

Rt = ([r:/Bi)Ro)[B:/ i) Sov
([r:/B:l1B: i)} (RoSo)v (Ro safe for ;)
= [ri/ai]S'v.

Furthermore, we have
RCl B {T,‘/B{]Ro( </3i::[/3i/ai]SOFi> )
= (7 :[ri/ai](RoSoT's))
= {1 :[r/eq](S'T)).

Thus, by the uniqueness of dictionary construction (Lemma 5.2), v:C'H d':
RC; In addition, given that RC' = RyCo @& RC; and v:C'H d' : Ry, it
follows that v':C' H d : RC where d = d"d’.

Finally, note that:
S'A, v:C' + [d/v](xu) =[d"/vo)[d/ul(zu) = zd’ :[r:/e](S'v),
which establishes the required equality.

Case ()-elim’) : We have a derivation of the form :

S'AV:C'H e~e 1T — T2 S'A, VO H eg~ €y 1T

S'A, V(T H ejeqg~ €1€y 1 Ty

By induction, tp(er, A4, S0, vo:Co. Qo) succeeds with (v1, €], S1,v1:C1,0;) and

there is a substitution R; and dictionary expressions dy such that
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1. S' = RS, except possibly on Ay,
2. R]V] =T — Tg,
3. vi:C'H d, : Ri(Cy, and

4. S'A, V:C' + e =[di/vilef 11— T

where A; is the set of new type variables of tp(er, A, So, Co)-
Besides, by Lemma 6.21, we have v;:Cy H d} : 5 C where d} = Ov.

Clearly, S’A = (R15)A and hence (R1S5)A. v:(" F' ey~ e, @ 1. So,
by induction , tp(e, A, S1,v1:C1, ©1) succeeds with (v, €5, S2,Ve: Gz, ©2) and

there exist a substitution R, and dictionary expressions dj such that

1. R1S; = R,S;, except possibly on A,

o

. Rovg = 1y,
3. VIZCI H- d2 : RQCQ, and

4. S'A, v:C' + €)= [dayfva]ey 1T

where A, is the set of new type variables of tp(ez, A, 51, Ch).
Again, by Lemma 6.21, we have v,:C; = d, : S, C; where dj = Oyv;.

Now let a be a new variable and R’ = [r2/a]R,5;. Then. clearly
§' = R' except possibly on A; U A, U {a}

and

Vv:C'H dy : [/ a]Ra( Cor.ii()).

In addition, we show that (R, v/:C".[dy/v3]) isa (S2,va: Cy.a::(), ©2)-preserving
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unifier of v; and v, — a:

R = (RuSo)m (a new)
= (RiS)m (RuS1 = RaSy except on Ay)
= R ($1C1 = C)
S

= Ryvy; — R'a
= Ry(Sry) = R'a (50 = ()
= R'v; - R'a (a new)
= R(v, — a)
Thus, from Lemma 4.5, mgu vy (va — a) (S2.v2:Ch.a::(), ©2) succeeds with

(S3,v3:C3) such that Szvy = S3(v2 — a). R’ = Ro S;3 and v:C' 1= d3 : RCs for
some substitution R and dictionary expressions ds.

Also, by Lemma 6.21, v3:C3 B d} : S3C; where dj = O3v,.

Since mgu does not introduce any new type variables, we know that A; U
A, U {a} is the set of new type variables of tp(e1€p, A, Sp, Co). Therefore,
tp(er ey, A, So, Co, ©g) succeeds with (Sza. /'€, S3, C3,03), and R and ds3 are

the required substitution and dictionary expressions respectively:
1. §' = RSs, except possibly on new type variables of tp(e; ez, A, So, Co),
2. 19 = R'a = R(S3).
3. vi:C'H ds : RCs.
We need to establish the appropriate relationship between d; and d’ to complete

the proof. This we do by using the transitivity under substitution (Lemma 5.1)

and the uniqueness of dictionary construction properties (Lemma 5.2) of H-.
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First, from v:C’ H ds : RCs and v3:C3 H d} : S3C,, we have v:C' -
[d3/vs]d} : R(S3C;). But,
R(S:Cy) = R'G
= (R:5,)C (a is new)
= R,C,.

So, by Lemma 5.2, d = [ds/vs]ds. This implies that we can rewrite [dz/v2]e)
to [ds/vs][ds/v2]e). Furthermore. from vo:Ch = dj : S2Ch, we have v':C' H
[[da/Va]dé/Vz]dlg Ry (S5 Gr).

Similarly, we have Ry(S,C;) = R;(; and hence d; = [[d3/v3]d}y/v2]d,. There-

fore, we can rewrite [d,/v1]e] as [da/v3]{d}/v2][ds/vi]e

Now we note that:
e = [di/vie = [ds/vs] [dé/Vz][dlz/Vllﬁil = [dB/Va](Gseil)

and
ey = [d2/va]ey = [ds/va][ds/v2]e; = [d3/va](Ozer).

Therefore, we have the required equality:
S'A,VC F ey = [da/v]Oslefey) 1 7
Case (A-intro’) : We have a derivation of the form :

S'Az:m, vV:(" F e~ e 11

S'A, v:C' F drie~ Xeoel i o Ty
Let a be a new type variable and S” = {7/a] 0 §’. Then,
S"(A.z:a),C' + e:1p and (5”.C".0") =X (S, Co-a::(), Og).

So, by induction, tp(e, A.z: ., So, vo: Co.a::(), Q) = (7, ¢, S,v:C, O) succeeds

and there exist a substitution R and dictionary expressions d such that
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1. S” = RS except on the new type variables of tp(e, A.z: a, So, Co.a::(}, Oo),
2. Rt =19,
3. v:C'"H- d: RC and
4. S'Az:m, v:C' + € =[d/v](O€") : .
Therefore, tp(Az.e, A, So, vo: Co, Op) succeeds with (Sa — 7,5,v:C,0), and R
and d are the required substitution and dictionary expressions, respectively :
1. §' = RS except possibly on new type variables of tp(Az.e, A, So, Co)
2. R(Sa — 1) =71 — 15 since S"a =1,
3. v:C'H# d: RC, and
4. S'A, v:C' + dz.e' =[d/v]O(Az.€¢") i1 = T2

Case (let’) : We have a derivation of the form:

S'A,u:D ' e~ e 17y S'Az:o’,vVC' F e~ e i1y

S'A, viC' H (letz=¢ ine)~ (letz = Aw. e ine)) : 7y
where (o', u’:D’',w) = gen(r;,5'4.u:D.,¢e) and D'C C".

Suppose that vg:Cy & v,:C, & v,:C, where dom(C,) = Cg(tv SA). To
apply the induction hypothesis on S’A, u:D +' ¢ : 11, we need to show that
D H S’C,. This we prove by showing that all type variables that appear in
S'C, also appear in D.

First, note that by hypothesis ¢’ H S'Cy and hence C’' # S'C,. Second, by
Lemma 3.2, U{tv(5'a) | « € dom(C,)} is contained in (C’)*(tv S’A). Further-
more, by Lemma 6.6, dom(D’) = D*(tv §'A). But since both D and C’ covers
S’A and D' C', we have (C')(tv S’A) = D*(tv §’A). It then follows from
Lemma 3.1 that D H S'C,

Thus, by induction, tp(er, 4,850, V.:Co,O0) = (11, €7,51,v1:C1,0;) succeeds

and there exist a substitution R; and dictionary expressions d; such that
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1. §' = R, S; except possibly on new type variables of tp(er, A, So, Ce, ©o),
2. iy, = 11,

3. wDH d;: R,C and

4. S’A,u:D + e =[d1/v1](O1¢]) : 7.

Hence S'A = (R151)A and (R1S1)A.z:0’, vi:iC' F' ey~ €y 1Ty

Before we can proceed to deal with the second recursive call of ¢p, we need to
establish a few things. First, we show that (5',v":C", 0" < (5,v2:C2,04), or
v:C'H d” : R, Cy. Let (0,vy:Co,wy) = gen(vy, S1A.v1: (1, €). By Lemma 6.6,
o =V{a;:I';). 11 and

vi:Cp = wir(a;nl) & v (o and dom(Cy) = (C1)"(tv 51 A4).

Now consider any type variable 3 € dom((;). Now since w:D H dq : Ry Cy,
it follows from Lemma 3.2 that tv(Ry3) C D*(tv RS, A). But we know that
S'A = RS A, dom(D') = D*(tv §’4) and D'C C". So tv(R1C,) C dom(C").
Hence by the (strengthen) property given in Section 5.2.2 there exist some
dictionaries d”Cd; such that v:(C’" # d” : R;(,. Hence it follows that
(§',v:C",0") = (51,v2:(32,0,).

Second, we show that o' =<y.cr Rjo. The definitions of o and o' are related
through R,. Now, since u:D K d; : R, (. it follows from Lemma 6.10 that
(Aw.zd') : ¢’ <u.pr Rio for some dictionaries d’'Cd;. Hence (Aw.zd') :
o' <yr.cr Rio by Lemma 6.2.

Third, we consider the derivation S’'A.v:0o’. (” F' €, : 7, based on the results

just established. Clearly, we have
RiSiA.x:0" =yicr BiSiA.z:Rio

through the conversion substitution [Aw.rd’/z]. But S'4.z:0" = RiSAz:0o’
and R1S;A.z:Rioc = RS (A.z:0), so by Lemma 6.15,

RiSi(Ar:o). vi(" F e~ in
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with RS (A.x:0), v:C' F €’ = [Aw.zd'/z]e; : 72
Given these results, we can proceed to do induction on the second recursive call
of tp: that is, tp(ey, A.z: 0,51, V9: o, 01) = (va, €, 2, V3: (3, 03) succeeds and
there exist a substitution R, and dictionary expressions d, such that
1. RS, = R,S, except possibly on new type variables of ip(ez, 4, 51, C2,01),
2. 17 = Ryv,,
3. v:C'H d; : R,(5, and
4. S'A, v:C" F €' = [dy/v3](Oz€)) 1 T2

By the definition of tp, we get
(vo, (let z = Aw1. O in €;). Sz, va:C3 B v.:Cpy O3)

as the final result. In other words. 7 = vy, S = S5, v:C = v3:C3 @ v,:C; and
© = 0,. It remains to show that there exist some dictionaries d that, together

with R,, satisfy the requirements.

The first three requirements hold obviously. Note that R, satisfies the S’ = R,S,
except possibly on new type variables and m, = Ryvp. In addition, by the initial
hypothesis, v/:C’ H- d,:C,. for some dictionaries d,. Hence v:C' - d.d, :
Ry(Cs & (), since RyC, = C,. In other words, the required dictionaries d are
d.d.,.

We need some more results to establish the last equation required by the theo-

rem. By Lemma 6.21,
vi:C - d): S C, and va:Cz it d; : S C.

In addition, v':C’' H d; : R,Cs. Hence by Lemma 5.1, v:C' K- [d2/vs)d) :
Ra(5,Cy). But Ry(S (%) = R, and v:(" H d”:R, (3, so by Lemma 5.2,
d’ = [dg/V3]d’2
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Finally, since v, do not appear in the translation, it suffices to use the substi-

tution [d,/v3)] to establish the required equation:

S'A, v:C' + [dy/vs]@a(let z = Awy.Oy¢! in €f)
(wy & dv(ds) Ureg(0:))
= letz = (Awy. ([d2/vs]Oz€!) in [da/v3](Os€l)
(02 = [d3/va][d}/Va])
= letz = Awi. ([da/val[d}/val[di/v.]el) in e”
([d"/vs] = [d2/vs][d3/va])
— letz = Awy. ([d"/vy)[d}/v.]e)) in [Aw.2d']/z]e}
(using RiSi(A:o). viC' F ¢ = Dw.zd'/z]e} : 1)
= let s = [wy.[d"/v,)[d}/v.]el/x)(Aw. zd’) in €]
(Lemma 6.1 (1))
= lets = w.([d'/wi][d"/valld}/v.]el) in ¢}
([di/v1] = [d/wi][d"/va). ©1 = [di/va])
— let s = Aw.([d/v1]O:€!) in €]
(using S'A. v:C" + Aw. el = Aw.[d/v1)(O1¢€]) : 1)

= letz=Aw.¢ ine,
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Corollary 6.25 Suppose that S'A, v:C' F e~ ¢’ :0' and (§',Vv:C",0') X
(S0, vo:Co, @g). Then tp(e, A, So, vo:Co, Qo) succeeds with (r,¢",S,v:C,0), and

there is a substitution R, conversion K and dictionary expressions d such that
1. 8’ = RS, except possibly on new type variables of tp(e, A, So,Vo:Co, o),
2. K:o' <y.cr Ro
3. v:C'H d: RD and
4. S’A, v:C'"F K(Aw.[d/u]@¢") =€ : 0.

where (o,u:D,w) = gen(r, SA.v:( " €).

Proof: The proof is based on Theorems 6.16 and 6.24. First, by Theorem 6.16,
. S'A, vi:C, F e ~» ¢ :v for some augmented context v;:C, type v, and expression

e; such that v:DC v,:C; and

SA. V(" F Ky (Aw,. ) =¢ : 0,
®

where K : 0 <yi.¢r 07 and (o1, u1:C], wq) = gen(v, S'A, vi:Ch, €).

Next, it is clear that (S, v:Cy, 0") < (So,vo: (o, Og). Therefore, by Theorem 6.24,
tp(e, A, So,vo:Co, Q0) = (7,€"”,5,v:C.0) succeeds and there exist a substitution R

and dictionary expressions d’ such that

1. ' = RS, except possibly on new type variables of tp(e, A, So, Vo: Co, Oo),
2. vi:Cy = d":RC,
3. v=R7 and

. 4. S/A, vlzCl F € = [d//V](OGH) V.
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Now suppose that gen(r,SA,v:C,e) = (o,u:D,w). Then by Lemma 6.6, 0 =
V(a;=Ty). 7 and v:C & wi(e;:Iy) @ u:D. So by partitioning d’ into d;d; we can

rewrite the last equality to:
S'A, vi:C, F ¢ = [d;/w][d2/u](O€”) : v,
from which it follows by Lemma 6.7 that
S'A,up:Cl F Awy. e = Awy. ([dy/w][d2/u]@e”) : oy.

Note that oy and o are related through R. So applying Lemma 6.10 to them, we
obtain (Az.Awy.zdy) : 01 Zy,.c; Ro. But obviously u;:C] £ v:C". So by Lemma 6.2,
(Az.Aw;.zdy) : 01 =yncr Ro. Then by composing with K; using Lemma 6.3, we

obtain the required conversion:

AZE. Kl(/\wl. .I?dl) . O'I jv’:(" RO'.

It remains to be shown that d, are the required dictionaries and K satisfies the
required equation. We first show that v/:("" H- d, : RD. By the preceding arguments
and (2), vi:Ci H d; : RD. So it suffices to show that tv(RD) C dom(C’). Sglce
Ci * RD and dom(D) = C*(tv SA), by Lemma 3.2 we know that for all & € dom(D),
we have tv(Ra) C (C))*(tv S’A). Moreover, §'A = RSA, C' covers S'A and C'C (.
So (C)*(tv §'A) = (Cy)*(tv S’A), and hence tv(RD) C dom(C'). Therefore, v':C' I
Fd,: RD.

Finally, note that:

S/A, v:C'" (/\z.li'l(/\wl.xdl))(,\w‘ [dg/ll]@f”)

= Ki(Awy.[d)/w][d,/u]O¢") (Ba), (B)
= Ki(Aw,.[d'/v]O¢e") (VEw P u)
= Kl(/\wl. 61) (4)

= ¢ :0
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which establishes the required equality. [ ]

Corollary 6.26 Suppose  that  dom((Cyp) = (Go)*(tv  SpA)
and tp(e, A, So,vo:Co,00) = (1,€/,5,v:C,0). Then Aw.O¢":0 is a principal

translation for e under SA and v':C’ where (o,v":C',w) = gen(r,SA,v:C,¢).

Proof: First, by Lemma 6.23, SA, v:C + e~ O¢’ : 7. Since gen(r,SA,v:C,€) =

(0,v":C’,w), by Lemma 6.7 we have S4. v':C" F ¢~ Aw.O¢' : 0

Next, suppose that SA, v':C’ F e~»¢e” : o' for some type scheme o’. We apply
Lemma 6.25 to complete the proof. To do so, we need to show that (S,v":C’',0) <
(S(), V():C(), @0)

By Lemma 6.21, (S,v:C,0) < (So,Vo:Cy. Og). In other words, v:C' H- d, : SCp for
some dictionary expressions d; = Ovy. Then by Lemma 3.2, tv(Sa) C C*(tv SA)
for all a € dom((p). But by Lemma 6.6, dom(C’) = C*(tv SA). So it follows from
Lemma 5.2.2 that v':C’ H dy : SCy. Hence (S.v':(",0) < (Sp, vo: Co, Oo).

Therefore, by Lemma 6.25, there exist a substitution R and dictionary expressions d

such that

1. S = RS except possibly on new tvpe variables of tp(e, A, So, Co),
2. K :0' <yi.cr Ro
3. vV:C'"H d: RC' and
4. SA,v:C' b K(Aw.[d/V'|O¢) =€" : 0"
Furthermore, since dom(C’) = C*(tv S4) and tv(o) C C*(tv SA), it follows from (1)

that Ro = o, RC' = C’ and d = v'. Therefore, Aw.©¢’ : ¢ is a principal translation

for e under SA and v':C". ]
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