Abstract

The convergence of a typical example from the class of highly successful decoupling algo-
rithms for semiconductor simulation, collectively known as Gummel’s method, is consid-
ered for one, two and three dimensional models. Because a nonlinear equation is solved for
the potential u at every step, the considered version corresponds closely to the algorithms
used for numerical computation in practice. As opposed to most earlier publications, the
dependence of the regularity of the solution on the device geometry and the nature of the
boundary conditions for the system of mixed boundary value problems is considered.

From a detailed analysis of the boundary conditions for a typical two dimensional
model we conclude that for a physically realistic device geometry the solution may be
expected to be sufficiently regular for the algorithm to converge.
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1. Introduction

We consider the convergence of a decoupling algorithm for the solution of the steady-state semi-
conductor simulation problem for the case of constant mobility, zero generation-recombination and
under the assumption of Einstein’s relations in three or lower dimensions. This algorithm belongs
to the class of highly effective decoupling algorithms which are collectively known as Gummel’s
algorithm [7].
With k; being the doping profile in units of the intrinsic density of the semiconductor, the
problem above can be stated in dimensionless form as the following system of partial differential
equations (pdes)
hi(u,v,w) = =Viu+ e — e %w — ky =0,
ha(u,v,w) = =V.(e"Vv) =0, (1.1)
h3(u,v,w) = =V.(e7*Vw) = 0,

subject to the appropriate boundary conditions as described in a subsequent section.

Following Jerome in [9] we define an iterative decoupling algorithm for the solution of this
system by introducing the mapping T : (v,w) — (¥,®) in which first the potential equation is
solved for an intermediate solution u(v,w) and subsequently the two current continuity equations

are solved for new 'a,pproxima,te solutions & and & employing this new estimate u to the potential.

Thus T is defined by
~VZiu+e'v —e%w—k; =0,
V.(e*VD) =0, (1.2)
V.(e7*V&) =0.
Jerome has proven in [9] that the mapping T is well-defined on appropriate function spaces and
that it leaves suitable convex subsets invariant. Hence for appropriate boundary data, we can prove
global convergence of the mapping T to a unique fixed point, which corresponds to a solution of
the equations (1.1) by proving that the mapping T is a contraction [6].
In [11] Mock has dealt with an algorithm which is similar to algorithm (1.2) in the sense that
the equations are decoupled. Nevertheless, both the algorithm and the analysis presented in [11]
are essentially different from algorithm (1.2) which we consider here, and the analysis thereof. The
most important differences between the algorithm in [11] and algorithm (1.2) are the following: In

Mock’s version of the decoupling algorithm the linear equation

V2 + ™ pln=1) ef“(")w("'l) -k1=0
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is solved for ¢ at each iteration of the algorithm and hence only the Laplacean —V? is inverted,
while subsequently the next estimate u("*1) for the potential u is obtained by a relaxation in which
u(tl) = (1 - w)u® + wé for sufficiently small w € (0,1). In algorithm (1.2), on the other hand,

we solve the nonlinear equation
V20 4 g™ (n) _ gmu® y(n) _ ki=0

for u(®) at each iteration of the algorithm. Hence the algorithm considered here coincides more
closely with the algorithms actually used for numerical computation as in [2, 16, 3]. Moreover,
the convergence analysis in [11] differs essentially from the presented contraction mapping result
in that it requires the provision that w is sufficiently small.

Another major difference between the analysis in [11] and the one presented here is in the
regularity assumptions on the solution. Whereas it is assumed in [11] that the maximum norm of
the gradient || Vv||z, and ||Vw||L, (notation as in this report) are finite, we replace these regularity
assumptions by weaker ones because of evidence that the Lo, norms on the gradients are not finite
for typical two and three dimensional MOSFET models. See however, [12] where a monotonicity
assumption replaces the Lo, bound on the gradients.

In Section 2 we will introduce the necessary formalism and theorems, in Section 3 we specify
the boundary conditions for the typical two dimensional case as we consider in most detail, in
Section 4 we discuss the regularity properties of the components of the solution and in Section 5

we finally present a convergence proof.

2. Definitions, Notation and Formalism

By |z| we denote the Euclidian norm of a vector z € RN. As usual the L, norm of a function

% on a region {2 in IV dimensions, is defined for 0 < ¢ < co by

1
||u||Lq = [/ |u|qug;] q ,
Q
and hence the Ly norm of the gradient of a function u on such a region is defined for 0 < ¢ < oo by
1
IVl = [ [ 1Vufra¥a] .
Q

By L we indicate the maximum norm.

The inner product of the functions « and v on a region 2 is likewise defined by

(u,v)=/ w dVz,
Q
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and we will bound such inner products several times by employing Hélder’s inequality:
1 1
(u,v) < ||ullz,||vl|lz, where ;—{- p = 1.

H? denotes the space of functions f which are bounded in the Ly norm and for which the first
derivatives ;%f': fori=1,---N in RN are bounded in the Ly sense as well.

In the sequel we will repeatedly need bounds on L, norms of functions « in terms of L, norms
of their gradients. These bounds are stated in Sobolev’s inequalities as given, for instance, in

Theorem 7.10 in [5] and which we rephrase here as the following

Theorem 2.1. For functions u on a space of dimension N with compact support in |z| < R and

having first order derivatives in L, for p > 1

lulle, < const+ [Vulls, i p< N, =L,

l[ullLee < const* RN 75|V, i p> N.

Note that the theorem is more restrictive for higher dimesions in the sense that for higher N
a certain L, bound on the gradient implies a weaker (lower ¢) L, bound on the function itself.
The proof of convergence will be given with respect to the norm p((v1,w1), (v2,w2)) which is

defined by the sum of the the Ly norms of the gradients of v and w. Thus

p((v1,w1), (v2,w2)) = ||V(v2 — 1)L, + ||V (w2 — w1)]|L,.

This p defines a norm because we require the v; and the w; for ¢ = 1,2 to satisfy mixed boundary
conditions which include a Dirichlet condition on a non-zero part of the boundary. Thus p defines
a metric on the space of equivalence classes of functions with respect to p. Following Rudin ([13]
remark 3.10,) these equivalence classes will be called functions.

Because Sobolev’s Theorem states that for one dimension the Lo, norm of a function u is
bounded by a constant times the Ly norm of Vu for ¢ > 1, the convergence result with respect to
the metric defined by p implies convergence in the Lo, norm of v and w for one dimension. This is
probably comparable with a one dimensional convergence result in the Ly norm of an alternative
decoupling algorithm, presented by Thomas I. Seidman in [14]. For a two dimensional model the
convergence with respect to p implies convergence of v and w in the Ly norm for any ¢ < oo. For
the three dimensional model it just implies convergence of v and w in the Lg sense.

Apart from the several norms mentioned above and the relations between them we will employ

the weak formulation of the system of pde’s, which is defined because each of the three pdes above
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is in divergence form ([5], chapter 8). Thus we seek a solution (u,v,w) to the problem

/ Vu-Vé+e'vg — e bwd — ki1¢ d'z =0,
QI
/ e'Vv-Vé diz =0,

Q

/ e ¥Vuw- V¢ d'z =0,
Q2

where ¢ is a any function on Q or ' as defined in the next section, for which V¢ is square integrable
and which satisfies homogeneous Dirichlet conditions at the contacts. Here ¢ = 1,2 or 3 because
we will consider 1,2 and 3 dimensions.

For the proof of the convergence result we finally introduce from [6] the following

Definition 2.1. A mapping T : X — X, where X is a subset of a normed space N, is called a

contraction mapping, or simply a contraction, if there is a positive number C < 1 such that
[Tz - Ty|| < Cllz-y|| Vz,y € X.

By demonstrating that T is a contraction, the existence of a unique fixed point of T follows

by Theorem 5.15 from [6] as stated in the following

Theorem 2.2. (Contraction Mapping Theorem) If T : X — X is a contraction mapping of a closed
subset X of a Banach space, then there is exactly one z(*) € X such that T2®*) = z(*). For any
2(©) € X, the sequence {z(™} defined by z("+1) = Tz converges to z(*).

Taking the norm defined by p in the Contraction Mapping Theorem, we thus can show con-

vergence with respect to this norm.

3. Boundary Conditions

The device geometry for a typical two dimensional model of an n-channel MOSFET is shown
in figure 1. The actual semiconductor region of the device in which the charge transport occurs, is
given by the major quadrangle Q with boundary A-B-C-F-G-H. Electric potentials are applied at the
source, gate, drain and backgate contacts. As is indicated in the figure, the so-called gate contact
is separated from the semiconductor medium by a thin oxide layer. The region with boundary
A-B-C-D-E-F-G-H which includes the thin oxide layer on top, is called £2'.

In (1.1) the coordinate u is the dimensionless electrostatic potential, v is related to the density

of conduction electrons n in units of the intrinsic density of the semiconductor by n = e*v and w is
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related to the density of holes p in units of the intrinsic density of the semiconductor by p=e %w.
For a concise discussion of the relevant physics confer [4], which provides further references as well.
The mixed boundary conditions for the three pde’s are described below in terms of the current

set of dimensionless coordinates, by

U = Ugpplied T+ In [?1 + (?1)2 + 1] )

at source, drain and backgate, where ugppiieq is a constant ugource at the source, and a different

e For the potential u

constant %grain at the drain or upgckgate at the backgate,
U = Ugate,

a constant, at the gate, Because there is no static space-charge in the oxide between the gate

and the semiconductor, the potential within the oxide satisfies Laplace’s equation:
-V (e0z€0Vu) =0,

where €, is the relative dielectric constant of the oxide. With n being the normal vector to the
boundary, we have at the sides of the oxide C-D, E-F the homogeneous Neumann condition
Vu-n = 0, corresponding to no perpendicular electric field. Across the oxide-semiconductor
interface we require continuity of the potential u and continuity of the normal electric field:

a 0
€s 7" Us = €op 7~ Uoz»

on on
where ¢, is the dielectric constant for the semiconductor, while

ou .
on =0

at the sides A-B, G-H (i.e. no electric field).

e For the variables v and w at source, drain and backgate, we have the constant Dirichlet condi-

tions
— U 1
v=ce applzed’
— plU 1
w=e apphed,
while
ov
— = 0,
on
Ow
— =0.
on
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on the rest of the boundary (i.e. no current through the boundary but at the contacts.)

4. Regularity of the solution

For the convergence of algorithm (1.2) the regularity of the components of the solution plays
a crucial role. While convergence follows more easily for more regular solutions, we do not want to
assume more regularity than is compatible with the physical boundary conditions for the device.

In [9] Jerome has presented a mathematical analysis of the semiconductor simulation problem
subject to mixed boundary conditions as are imposed in typical semiconductor models, in which the
regularity of the solution to the problem is considered as well. In Theorem 2.1 of this publication
the existence of a weak solution (confer [5], chapter 8) for which u,v and w € H' N L, is proven
for this system of coupled mixed boundary value problems by employing Schauder’s fixed point
Theorem. This regularity result is obtained by proving that the mapping T as we have introduced
in this report is continuous and leaves closed convex subsets of the appropriate function spaces
invariant so that a fixed point must exist.

Although Jerome proves Ly regularity for the gradient of the solution under assumptions
on device geometry and boundary regularity which are fulfilled for the boundary conditions as
described in the next section, he does not attempt to obtain the strongest regularity result possible.
In fact, it is unfortunately not altogether clear how much regularity for the solution to this system
of mixed boundary value problems can be inferred from the regularity of the boundary data. For a
single pde a number of regularity results are known even for the mixed problem (confer [17],) but
for systems with complicated mixed interface conditions as we have at hand, no rigorous analyses
appear to be available. A relatively up to date and complete account of the developments with
regard to regularity results of this type can be found in [1].

The regularity which is required in the context of a proof of convergence is therefore usually
assumed to follow from boundary conditions which are largely left unspecified. In in his earlier
publication [11] Mock assumes, for instance, that the boundary data are such that the gradients
of the components of the solution are bounded in the uniform Ly norm. More recently Seidman
examined the boundary conditions more closely in [15]; but still made an assumption which coincides
with an L bound on Vu. |

In this report we demonstrate that 7 is a contraction with respect to the norm as defined
by p, for bounded variation of the boundary data under the regularity assumption that ||Vv||L,
and |[Vwl|L, are appropriately bounded in the case of a 3 dimensional model and that |V,

and ||Vw||L, are appropriately bounded for ¢ > 2 in the case of a 2 dimensional model. Because
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Jerome shows in Lemma 4.2 of [9] that for a MOSFET geometry as assumed here the mapping T is
compact, T' defines a contraction mapping from a complete metric space into itself. Hence it follows
by the Contraction Mapping Theorem that the iterates defined by the successive application of the
mapping T converge to a fixed point in a closed subset K of H!N Ly X H'N Ly, as defined in [9], up to
equivalence with respect to the norm defined by p. Hence we still have to asssume more regularity
than the class of solutions for which exsistence was proven under physically realistic boundary
conditions in [9] possesses. We will argue below, however, that these milder regularity assumptions
are likely to be justified for typical physical models whereas assumptions of Lo, regularity of the
gradients, such as made in [11] are not.

The justification for the mentioned regularity assumption is derived from the results for a
single pde of Lehman in [10] and Wigley in [17]. In these publications the behaviour of the solution
near a corner or a transition from Dirichlet to Neumann boundary conditions is analyzed for the
simpler case of a single pde with analytic coefficients instead of a system. From these analyses by
Lehman and Wigley it follows that at corners and transitions singular behaviour of the solution
can occur, and the nature of the singularity can be accurately predicted.

Each of the three components of the solution to the system (1.1) satisfies mixed boundary
conditions. By analogy to the case for a single equation, singular behaviour of the solution may be
expected at the corners and the transitions from Neumann to Dirichlet conditions.

In order to describe the singular behaviour near to the discontinuities in boundary conditions
we introduce polar coordinates (r,6), where r is the radial coordinate and 6 the azimuthal one,
with the transition or the corner at the origin and the boundaries at § = 0 and 8 = 7o for some
a betweem 0 and 2. From Theorem 3.2 by Wigley in [17] it then follows that for the transitions
from source to gate and from gate to drain the most singular behaviour can be expected, because
the opening angle 7a with o = 1 is the largest for those transitions.

The cited theorem states for o = 1 that the solution can at worst behave like #Zz. Thus the
gradient can behave like r~% and is therefore not bounded in Lo, although it is bounded in L, for
¢ < 4 in two dimensions.

For the potential u the situation is more complicated because we do not only have a transition
from Dirichlet to Neumann conditions at a reentrant corner over an angle of %n, but we have an
interface as well. This case can be examined heuristically using techniques as presented in section

2.11 of [8]. Such an analysis which is less rigorous than those given in [10, 17] suggests that for this




case the asymptotic behaviour which is to be expected wil be like 8, where <pB< 2 We will
not consider this any further because we do not need higher regularity results for u.

Apart from at the corners and at the transitions no singular behaviour is to be anticipated.
Therefore we assume that the most singular behaviour occurring anywhere will not be worse than
it would be for a single equation at the transitions form source to gate and from gate to drain.

The assumption in the current proof that the Ls norms of Vv and Vw are bounded by bounded
functionals of u for three dimensions and the corresponding assumption for two dimensions do not
give rise to unphysical consequences. Because of Sobolev’s Theorem the implication of the L3 or
Ly with ¢ > 2 bounds on Vv and Vw is that v and w themselves are limited in Lo, which v and
w actually are as explained below. As mentioned above, the asymptotic O(r_%) bound for the
singularities in the gradients of v and w results in an L, bound on the gradients for ¢ < 4 which is
consistent with the assumed L3 behaviour as well.

The Lo, bounds for the components v and w mentioned above, follow because of weak maximum
principles as described in Theorem 8.1 of [5] by which v and w must assume their extrema at the
boundary. Likewise it follows by a standard maximum principle argument for u, like given in [9],

that

where «y and § are given by

¥= mm{ inf u ln[kl ymin \/(kl mm ]

}
6= max{sup u,ln[k;Z“”” \/(kl mazry2 4 , ]}
v v

a0p 2a,

respectively, where

a, = infv
v aﬂ bl
b, = supv,
a0
a, = infw
O To R
b, = supw,
[:19]

and dQp is the part of the boundary where Dirichlet conditions are prescribed for v and w.
Before proceeding it is important to note that the analysis of the algorithm is essentially more

complex in two and three dimensions than it is in one dimension. This is due to oversimplification in
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one dimensional models. In these models one of the most essential parts of the device, the interface
between the semiconductor and the oxide, is absent, (see figure.) The singularities as described in
[10, 17] for the higher dimensional models can therefore not occur in one dimension. The present
analysis of the algorithm reflects this sensitivity to dimensionality.

Resumating the discussion above, we can state that for the one dimensional case Ly regularity
of Vv and Vw can be proven and is sufficient for convergence, but that for the higher dimensional
cases we still need the following

Assumption: Vv and Vw are bounded in the L, norm by a bounded functional F(u) of u
whith

e g > 2 for two dimensional models,

e g = 3 for three dimensional models.

Because u can be bounded as a function of the boundary conditions only, F(u) is bounded.
The bounds on the Ly norms of Vv and Vw in terms of the boundary data as necessary for
the proof of convergence for the one dimensional model, as well as a Lo, bound, is given in the

following
Lemma 4.1. Let u be a bounded function on [0, L] and let v be a solution to the weak formulation
of the two-point boundary value problem

(e"vz)z =0,

v(0) = vy,

v(L) =y,

on [0, L]. Then v, can be bounded in the Ly, norm as given by

glmaz—Umin

L

g¥maz—Umin
e

Proof. From the differential equation it follows directly that the current I = ey, is a constant,

”V:c”Loo < lvr — wol,

and in the Ly norm by

as it should be in one dimension without generation or recombination of conduction electrons or

holes. Therefore ;
/ evpdr =L+ 1
0
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Moreover, from the differential equation it follows that we have a maximum principle for v.
Hence, by assuming without loss of generality, that v(L) > v(0) it follows that v, > 0 on [0, L].

And from this we can conclude
L L L
/ e'vydz < etmas / |vg|dz = e¥mas / vedz = e*me=|y(L) — v(0)].
0 0 0

But then we find that

I < gttmes —-—IVL I_J VOI,
and therefore that
lvL — o
1

The Ly result is obtained from the weak formulation of the current continuity equations because

L
||1/;E||%2 < e'“""'"/o e”uﬁdaz =

Ivzl S eumax “Umin

L L
. z .
g~ Umin / e'velv — (vp — Vo)f — 1)gdx + 7 ¥min / e'vg|(vr — Vo)% + vo|dz,
0 0

where the function v — (v — v0)% — 1o can be taken as the trial function ¢ because it is zero for

z =0 and x = L. Therefore the first term is zero and we are left with

L
— . x
[vall?, < e™min | evy[(vL — vo) = + vozdz =
0 L

L
(vL — v .
e " Umin (_L._o_)/ e"uzda: = ¢ Umin (VL — V())I-
L 0
Bounding the current I again we now obtain the result
L
”1/,,||%2 < e_“"”'"/ e“vids =
0

IIVL — V0|

e_umin (VL — I/O)I S eumaz_umin 'VL - L

And by taking the square root we find the stated Ly bound.
|
The Ly bound for the one dimensional case is somewhat stronger than the corresponding bound

which we can prove for the two-dimensional case as in the following

Lemma 4.2. Let u be a bounded function on Q = [0, L,] x [0, L,] and let v be a solution to the
weak formulation of the boundary value problem
V- (e"Vv) =0,
V = Veontact,
- for Veontact = Vsources Vdrain OT Vback;,ate at the source, drain and backgate respectively,

ili = 0 elsewhere on 91}.
on
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Then 3 By, By > 0 such that Vv can be bounded in the Ly norm as given by

”VU”L2 < g¥maz"Umin [Bl * |Vdrain - Vsourcel + B * |Vbaclcgatc - Vsourcel] .

Proof. By employing the weak formulation of the current continuity equation we see that

/e"]Vu|2d2x =

Q

/ﬂe"V;j- V[V - (Vdrain - Vsource)g(x) - (Vbaclcgate - Vsource)h(x) - Vsource]d2-'17
+ /r; e"Vu- V[(Vdrain - Vsaurce)g(x) + (Vbackgate - Vsource)h(z) + Vsourcc]d2x

where the functions g and h are smooth functions defined on Q and subject to

e the Dirichlet conditions g = 0,1 and 0 at source, drain and backgate respectively,

and

e the Dirichlet conditions ~ = 0,0 and 1 at source, drain and backgate respectively,

Hence the function v — (Vdrain — Vsource)9(%) — (Vbackgate — Vsource)R(%) — Vsource can be taken as

trial function ¢ because it is zero at source, drain and backgate. Thus
IVv|2, =/ |Vy|2d%z < e_"""'"/ e*|Vu|2dz =
Q Q
g Umin / Vv - Vod z+
Q
g~ tmin /ﬂ e*Vu- v[(Vdrain - Vsource)g(z) + (Vbaclcgate - Vsource)h(x) + Vsource]d2z =
g~ tmin (Vdrain - Vsource) A e'Vu- Vg(a:)d2x+
g~ thmin (Vbaclcgate - Vsource) L e"Vu- Vh(a:)d2x <
ghmas™Umin [l’/drain - Vsourcel * ||VI/||L2”V9”L2 + |Vbackgate - Vsourcel * ”VV”L2”Vh“L2] .

By dividing out the common ||Vv/||L, factor on both sides of the inequality we finally obtain
”VU”L2 < ghmaz"Umin [IVdrain - Vsourcel * ”Vg”Lz + |Vbackgate - Vsourcel * ”Vh”Lz] .

Here ||Vy||L, and ||Vh]|z, are constants independent of both u and v and hence the desired bound

follows.
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In order to demonstrate that the mapping T is a contraction for sufficiently bounded variation
of the boundary data, the linear dependence of the size of the norms on the boundary data as we
have seen in the preceding lemmas will be needed for the case ¢ > 2 as well. We will show that
this linear dependence follows automatically if the L, norms are finite. To this end we consider the

function v, defined on Q and satisfying the current continuity equation in the weak formulation
/e“VU- Vé d?z =0, (4.1)

subject to

e the constant Dirichlet conditions v = vgouree, Varain and Vbackgate at source, drain and backgate
respectively,
e the homogeneous Neumann condition aa_n’/ = 0, on the rest of the boundary.
Thus the function ¢ on  is such that V¢ is square integrable and that it satisfies homogeneous

Dirichlet conditions at the contacts. Then we have the bound as stated in the following

Lemma 4.3. If¢ > O be such that the gradient Vv is finite in the Ly-norm, then ||Vv/||., is bounded

in the sense that

IVV|lLg = |Varain — Vsource| * F(4) + |Vsackgate — Vsource| * G(u),

where F(u) and G(u) are bounded functionals of u.

Proof. Let n be a function defined on 2 which satisfies the weak formulation of the pde (4.1) subject
to

e the Dirichlet conditions # = 0,1 and 0 at source, drain and backgate respectively,

e the homogeneous Neumann condition (—9‘9;77 =0, on the rest of the boundary,
and let u be a function defined on 2 which satisfies the weak formulation of the pde (4.1) subject
to

e the Dirichlet conditions p = 0,0 and 1 at source, drain and backgate respectively,

e the homogeneous Neumann condition 5‘9;,11 = 0, on the rest of the boundary.

Define the function 7 by

T = Vsource + (Vdraa'n - Vsource)n + (Vbackgate - Vsource)ﬂ-
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Then 7 satisfies the same boundary conditions as v and by linearity it satisfies the weak formulation

of the pde (41) as well because
/eu[vusource + (Vdrain - Vsource)vn + (Vbaclcgatc - Vsource)vll']‘ V¢ d?z =
(Vdrain - Vsource) / euvn_ v¢ d237 + (Vbackyate - Vsource) / euvﬂ‘ V¢ dzx =0.

Hence by uniqueness of the solution to a boundary value problem defined by the pde (4.1) we must
have 7 = v.
But by the triangle inequality for the Ly norm and because the gradient of a constant is 0 we

have that

”v’/”Lq = ||V7T“Lq < |Vdrain - Vsource”lVW“Lq + lVbaclcgate - Vsource”lvll'”Lq-

And in this equation ||V9||z, and ||Vpu||z, depend only on « and not on the boundary conditions

for v. Therefore

IVallz, = F(u),
IVallz, = G(u),

where F'(u) and G(u) are bounded functionals by assumption.

The bounded functionals of u above are understood to be bounded functionals which depend
on the function values of u only. Because we have a priori bounds on the function values of u, we
hence obtain a priori bounds on these functionals.

Thus for the one dimensional case we can prove Lo, bounds on Vv and Vw which are stronger
than is necessary for convergence of the algorithm. For the two dimensional case we can prove an
Ly bound which is just not strong enough, but we can argue that for a physically realistic device
the stronger Ly bounds may be expected to hold. For three dimensions we will just show that L3
bounds are sufficient, but we do not relate this to device geometry because we do not dispose over

geometry specifications which are as detailed as necessary.

5. The mapping T as a contraction

We discussed in the section on regularity that Gummel’s algorithm defines a mapping T from a
closed subset K of H1(Q)N Lo X H(Q) N Ly, into itself. In this section we show that this mapping

T is a contraction with respect to the norm defined by p, if the variation of the boundary data
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is sufficiently bounded. Hence it follows by the Contraction Mapping Theorem that the iterative
algorithm defined by T' converges to a unique fixed point (V(*),w(*)) under those conditions. With
ul*) = u(*)(u(*),w(*)), the full solution to the problem which coincides with the fixed point for the
map T is thus given by (u(*),0(*) ,(*)).

Following algorithm (1.2) we first need a bound on us — u; in terms of in vy —v; and wy — wy.

The situation is as described in the following

Lemma 5.1. Fori = 1,2, let u; satisfy the weak boundary value problem as posed by
/V’Ux“ Vo +ehivid — e %wigp — k1¢ diz= 0,

subject to the boundary conditions for w as given above, where v; and w; be functions such that
IVvillz, and ||Vwi||z, are bounded. Then uy — uy is dominated by the differences vy — vy and

wg — w1 as stated in the following inequality:

IV (u2 = u1)|z, < Cille™ ||, IV (v2 — v1)|L, + Calle™ ||, ||V (w2 — w1)||L,,

where p = % for three dimensions, p > 1 for two dimensions and p = 1 for one dimension.

Proof. From the equations of the weak formulations for the u; as shown in the lemma, we obtain
by subtraction and taking ¢ = uz — u; (This is possible because (ug — u;)V(ug — u1) = 0 on the

boundary of the domain of definition of u.)

(V(uz — 1), V(ug = u1)) + (" — ")y + (e7 — €7%2)wy, ug — ug )+

(e (va —v1) — ™" (w2 — w1),u2 — ug) = 0.
Using i—Iiilder’s inequality, we see that

IV (uz = w)l13, + (va(e"2 — ™), (ug — w1)) + {wa(e™™ — €72),up — u1) <
lle“H lzp, 172 = v1llLg, lluz — wallz,, + lle™*|z,, llws — willLy, lluz — w1z,
s 1 1 1 _ 1.1 41 _
Wlth p—l+q—l+ﬁ—1and p_2+q2+r2—1'
In the expression above
(va(e¥? — e*1),ug — u1) > 0
and
(wa(e™™ —e7¥2),ug —uy) >0
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because v > 0 and (e*2 — ¢*)(uz — u1) > 0 while wy > 0 and (e™** — e7%2)(ug — u;) > O as well.
Thus we can drop these terms in the inequality above without changing its nature.

Because we want to obtain convergence in the Ly norm of the gradient, we want to bound
|luz — u1||z, by ||V(ug — u1)||L,. This is possible using Sobolev’s inequalities.

For the one dimensional problem it follows from Sobolev’s inequalities that ||uz —u;||1., can be
bounded by ||V (uz—u1)||L, for s > 1. Thus [luz—wu1]|L,, can certainly be bounded by ||V (ua—u1)||L,.

For the two dimensional problem we obtain from these inequalities that |lug — u||z, can
be bounded by ||V (uz — u1)||L, with p = 452, and therefore p < 2. Because the L, norm is
dominated by the Lz norm if p < 2 it follows that for the two dimensional problem ||ug — u,| L, <
const * ||V (uz — u1)||1, for any ¢ < co.

For the three dimensional problem the Ly bound on the gradient ||V (ug — u1)||z, implies by
Sobolev’s inequalities at most a bound on the Lg norm ||uz — u;||L,. Because the three dimensional
case is the most restricted one, we present the details of the proof only for that case.

We obtain for three dimensions
V(v — w)llL, < Clle" Iz, llv2 = willL,, +Clle™ L, llwz — willz,,,

141 _5 14135
where ;- + o= =g and ;- + - = 3.
But we can now use Sobolev’s Theorem again and thus we can bound this time |lv; — 1|z,

and |lwz — wi||z, by the Ly norms of their respective gradients if ¢ = 6. Thus
IV (uz = w)llz, < Clle g llve = vallee + Clle™ Iz llwz — willze
yields
IV (u2 = wi)llz, < Culle*llg IV (v2 = 14)llLs + Calle™ Iz g IV (w2 = w1)l|z,-

In the sequel we will write ; and &; for the respective components corresponding to v and w
of T'(vi,w;).- »

In the preceding lemma we have employed the potential equation for bounding V(ua — u;) by
V(vz — v1) and V(wg — wy). In the next two lemmas, the current continuity equations are used for
delimiting ||V (D2 — £1)||1, and ||V (@2 — @1))|lz, by ||V (u2 — u1)||z,. It turns out that we need a
bound on V& and V& in the L, norm, where g = 3 for 3D, ¢ > 2 for 2D and ¢ = 2 for 1D, in order
to be able to do this.

We obtain the bounds on |V(J, — #)||L, and ||V(©2 — &1)||z, by employing the second and

third pde as in the following lemma, which is a simplification of Lemma 4.4 by Jerome in [9).
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Lemma 5.2. Let i be the solution to the boundary value problem [ e“'Vin-V¢ d?z = 0 and iy
be the solution to the boundary value problem [ e“2Vi,y- V¢ d?x = 0, where ¢ is any function on

Q for which V¢ is square integrable, satisfying homogeneous Dirichlet conditions at the contacts.
Then

(¥ (5 — 1), V(5 - 71)) = ((e" - €%2) Vi, V(5 - 7).
Proof. By employing the integral identities in the lemma we see because we can take ¥y — ; = ¢

that

<e“‘V(172 — 51), V(g — ;71)> =
(e Vi, V(52— 1)) = (1 V51, V(5n — 31) ) =
(69195, V(52 = 1) ) = {2V, V(02— 31) ) =
<(e”‘ — €¥2) Vi, V(i — 1?1)>.

Using the above we can prove the following

Lemma 5.3. Let i be the solution to the boundary value problem [ e“1Viy-Vé d*x = 0 and Dy
be the solution to the boundary value problem fe“2V172~V¢ d%z = 0, for ¢ as in the preceding

lemma. Then

V@2 = 50)lls < e o — eI, [Vl
1,1_1
Where 1—" + E =3
Proof. By the Mean Value Theorem for integrals we know that

1922 = )2, < emin (29 (2 = ), V(72 - ) ).

But we can rewrite the inner product on the right hand side using the preceding lemma and then

use Holder’s inequality:

IV (72 = 7)1}, < &™*min (e = €%2) Vg, V(7 = 1)) =

V(B2 — 21)|[7, < e7tmin|le®t — e¥2||L,||Via||L, ||V (P2 — P1)||Lss

where % + 211— = % And therefore we obtain the Ly bound on V(& — )

V(72 = 21|z, < e70min|e" — |1, |V 2llL,,

16




as is asserted in the lemma.

From Lemma 5.8 we see that
V(@2 — 1)||L, < e7¥2min[e¥2 — e*1||L, || VDe||L,,

where ’% + ql = % But by the Mean Value Theorem for derivatives we know that e%z — ¢¥1 =
etint (ug — uy) for some u;,; between u; and uy. Hence we have a bound on e¥2 — e¥! in terms of
ug —u; and e¥mez. We can obtain a more convenient bound in terms of the error of Vu and etmas by
using Sobolev’s inequalities again. Thus we have ||uz — u1||z, < const * ||V (uz — u1)||L, for p= oo
in one dimension, for any p < oo in the case of the two dimensional problem, and for p = 6 in
the case of the three dimensional problem. As we consider the 3 dimensional case again, we bound
|lug — u1]|Lg by const * ||V (ugz — u1)||z,. This way we can transform the preceding inequality so as

to obtain

IV(Z2 = 1), < Caetmes™0min ||V (ug — u)||L,[|V2lL,

where again ¢ = 2 in one, ¢ > 2 in two and ¢ = 3 in three dimensions.
Using the above lemmas and the equivalent results for w, while § and ~ are the bounds on u

from the preceding section, we can now prove the following

Theorem 5.1. The mapping T as defined by (1.2) is a contraction with respect to the norm p with

the constant C' bounded from above by the expression

Fl(‘sa '7) * lVdrain - Vaourcel + FZ(‘S, '7) * lVbackgatc - Vsourccl""

F3(6, '7) * lwdrain - wsourcel + Fy (6> '7) * ‘Wbaclcgate - Wsourccl’
where Fy, Fa, F3 and Fy are bounded functions of § and ~y. It therefore follows that C is smaller
than 1 if the boundary data are sufficiently bounded, so that T is a contraction, Hence the version
of Gummel’s algorithm as defined by the mapping T converges for both the one, two and three

dimensional problem in the norm defined by p to the unique solution (u(*), V(*),w(*)) for sufficiently

bounded variation of the boundary data.
Proof. We employ the bounds on ||V(¥2 — #1)||1, and ||V(©¥2 — &1)||L, from Lemma 5.3 and obtain
V(@2 = 21)llL, + IV (@2 — &1)llz, <
Caetmesimin |V |1, + | Vaslz, ] 1V (w2 = wr)|lLs,
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where ¢ =2,9> 2 or ¢ = 3.
We now apply Lemma 5.1 for eliminating V(ug — 41) on the right hand side. It thus follows

with p =1 for 1 dimension, p > 1 for 2 dimensions and p = % for 3 dimensions that

IV (@2 = 21)llL, + IV (@2 = &1)I2, <
Cyetimas=u1min [||V172||Lq + ||V<712“Lq]*

[l ey 19 v = 10 + Calle™™ 1, 19 2 — )z

But for one dimension we have proven in Lemma 4.1 and for two and three dimensions we have

subsequently argued that we can assume that

”VV”Lq <K (u)lydrain - Vsourcel + G (u)lVbackgatc - Vsourcel’

”VW”L., <k, (u)lwdrain - Wsourcel + G2 (u) Iwbackgate - wsourcel-

Employing these bounds we see that

P((ﬁl, (:jl)a (172’&2)) <
C1Caetmes=tumin [[le% 1, + [l |
[Fl (u) |Vdrain —Usource | +G1 (u) |Vbaclcyatc — Vsource I +F (u) derain —Wsource | +G2 (u) |(Ubaclcgate — Wsource |]

p((v1,w1), (ve,w2)).

By bounding all functions of u by the using the maximum 6 and the minimum v of u, the asserted

bound on the constant C of the mapping T follows.
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