Yale University
Department of Computer Science

Footprints of Dependency: A
Towards Dynamic Memory Management For
Massively Parallel Architectures

Marina’ C. Chen, Michel Jacquemin

YALEU/DCS/TR-593
January 1988

This work has been supported in part by the Office of Naval Research under

Contract N00014-86-K-0564. Approved for public release: distribution is un-
limited.

Footprints of Dependency:
Towards Dynamic Memory Management for
Massively Parallel Architectures

Marina C. Chen

Michel Jacquemin

Computer Science Department, Yale University

Abstract

Dynamic management of memory hierarchy is a
cost-effective means to achieve performance on con-
ventional machines as well as vector processors. On
parallel machines, fragmentation of memory among
processors is a new issue which must be addressed
together with the issue of memory hierarchy.

In this paper, we present a dynamic memory
management scheme for massively parallel archi-
tectures. “Footprints” of dependency among data
elements are recorded and on-the-fly partial sort-
ing of data elements according to the footprints are
performed. As a result of reorganization of data,
there is a significant increase in speedup over un-
managed data. The scheme has been implemented
on the Connection Machine.

1 Introduction

It is generally the case that there will never be enough
processors to allow data elements of very big problems to
be allocated one per processor; even with massively paral-
lel architectures that have as many processors as 10% and
up. Processors will have to be shared in some way between
several “tasks”. In other words, a virtual processor sys-
tem must be in place. This raises an important question
that will be the subject of the text to follow: how shall
the data associated with these tasks be arranged among
different processors and memories in order to optimize per-
formance of execution? First, we must take a look at why
performance needs to be optimized.

Due to dependencies within the algorithm’s computa-
tions and the possibility of unpredictable, irregular distri-
bution of data; un-managed data may cause load imbal-
ance, extra cache or page misses, and/or extra communica-
tions between processors. Amount of dependencies means
the number of intermediate computations that are strictly
necessary to be able to compute the result of the algorithm.

The amount of dependencies can be thought of as an inverse
measure of intrinsic parallelism of the algorithm.

How does dependency affect parallel program execution?
Suppose a computation has a data-dependency graph as
shown in Figure 1(a). If nodes are distributed to proces-
sors’ local memory as described in 1(b), then there is a se-
rious imbalance between the two processors. Nodes 2 and 3
of the graph can be executed at the same time, but they re-
side in the same processor. The same goes for nodes 4 and
5. However, if the nodes are distributed as showed in 1(c),
parallelism of the graph will be fully exploited. Another ex-
ample is when a computation has a data-dependency graph
that is much larger than the number of processors. Good
organization of the data for each processor should allow
nodes that are close together in the graph to be in contigu-
ous locations in memory (or on disk) so that they can be
paged-in to the cache (or main memory) together.

Memory hierarchy is a cost-effective means to providing
sequential machines with very large memory spaces [12].
Trying to achieve this involves keeping the effective mem-
ory access time close to the time provided by the fastest
(and smallest) memory level of the system. Some usual
levels encountered, (which are ordered by increasing access
time) are: registers; one or two level caches; physical mem-
ory; and virtual memory disk system. Achievement of this
relies on some assumptions on the way processes execute
and access data. The main assumption is locality, which
actually can be broken down into two types: locality in
code (of control), and locality in data. At times, locality
in code says that the proportion of jump instructions in
the program are reasonably small, and most instructions
are executed in sequence. At other times, it assumes the
programs are mostly built of loops that repeatedly execute
the same code. Locality in data says, that at any given in-
stant, the probability of the program accessing data close
in memory to the data it has accessed in the last few steps
is much higher than data that is far in memory. Thus, lo-
cality plays a central role in making an efficient use of the
memory hierarchy of sequential machines.

Parallel machines also have memory hierarchy. Shared

Proc 1

(a) (b)

Proc 2 Proc 1 Proc 2
4 1
3
6 5

(c)

Figure 1: Example of a data-dependency graph and allocation of nodes to processors

memory machines have caches and/or local memories in
each processor; and message-passing machines make the
distinction between the processor’s own memory and the
memory of the other processors. Massively parallel ma-
chines need to have parallel disk systems in order to be
used efficiently without suffering from the I/O bottleneck
at the host. Furthermore, memory in a parallel machine is
fragmented among all processors.

Let us look at code and data distribution problems in
parallel machines. Code must be distributed among the
processors. We can distinguish two cases in code distribu-
tion. In the first case, there is a single identical program
for all processors (SPMD, etc., see [8]), residing in whole
in their memory. Processors execute a (perhaps different)
subset of the instructions through conditional control. This
situation being very similar to the uni-processor case, where
processors can use instruction buffers or caches. The SIMD
machines are a special case of this, where the program re-
sides in the “front-end” and is distributed to all the pro-
cessors. In the second case, each processor has a different
program to execute and the number of such programs is
large. The problem of their distribution among processors
is similar to the distribution of data among processors; de-
pendency of control replaces than dependency of data.

Thus, without loss of generality, we can focus on the
distribution of the data. The role of locality in the context
of the parallel machine is related to both dependency and
anti-dependency of data. Anti-dependency manifests itself
as the spread of the data to processors: if two data items are
not inter-dependent, they should be be put on two different
processors as much as possible to allow more parallelism.
Dependency manifests itself as the spread of data in time
within a given processor: data should be organized in such
a way that a processor would have to access data mostly
from what it has previously computed.

To take advantage of this dependency and anti-
dependency of data in dynamic memory management, a
stronger requirement is needed by the “operating system”.
The operating system must store the dependency informa-
tion. Namely, the “footprints” of dependency.

2 Description of the Problem

We can classify computational problems into five levels of
difficulty according to dependency and regularity. Regu-
larity is a useful property which can give rise to more effi-
cient algorithms and simpler data representations (e.g. sys-
tolic algorithms), rather than non-regular problems. The
first class of problems has few or no dependencies and high
regularity in its data structure i.e., the problem of matrix
multiplication. These are algorithms that have “embar-
rassingly high” parallelism. The second class of algorithms
consists of those with significant dependencies among in-
ner computations, but still a very high regularity, like the
computation of the LU-decomposition. The third class in-
cludes algorithms which have few dependencies and little or
no structure, like the sparse matrix-vector product. These
three classes can be qualified as relatively easy to parallelize
because there are few dependencies, and the organization of
data among the processors is greatly eased and not critical
(in terms of minimizing the communication traffic). Also,
regularity allows the ability to foresee communication pat-
terns and work loads at compile time.

The fourth class of problems are those that have signifi-
cant amount of dependencies and little or no known struc-
ture. This is the class of problems for which we are in-
terested in addressing memory management issues. We’ll
restrict ourselves to the static dependency graph that does
not change in the course of computation. There is a fifth
class of problems that is even more difficult. These prob-
lems have a lot of dependencies, whose dependency struc-
ture is dynamic, constantly changing with time. The sparse
LU-decomposition problem falls in this class. Here, the de-
pendency structure is being modified by the “fill-in” during
back-substitution. For this kind of problem, rearranging
the data statically will be of little help. On the other hand,
the cost of dynamic memory management will be too ex-
pensive to justify because there is no repetitive use of the
same dependency graph over which the cost can be amor-
tized. The usual solution for this class of problems is to
design the algorithm differently if possible (e.g. dissection)

or to use hashing to distribute data (universal hashing func-
tions).

2.1 Representing Computation by DAG

Any computation can be represented by its dependency
graph, whose nodes represent the computations performed
by the algorithm and whose edges represent the communi-
cations between nodes ([9,10]). By the computations be-
tween nodes we mean the dependencies of a node’s compu-
tations upon other nodes’ outputs. This dependency graph
is a directed acyclic graph (DAG). Such DAG has been
widely used in compiler flow analysis (see, for example,
(5])-

We assume here that the computation is described in
such a way that each node of its DAG represents computa-
tion of appropriate granularity with respect to the target
parallel machine. The issue of controlling the granularity of
a computation is an interesting one but beyond the scope
of this paper. (If you are interested in reading further in-
formation on this subject, see [4] for compile-time method
and [11] for run-time method of granularity control).

2.2 Characteristics of DAG

What is the most economical, and the fastest way to exe-
cute this computation on a parallel machine, with as many
processors as we want? The model we assume will be de-
scribed precisely later. For now, let’s consider that commu-
nications are the dominating costs and the computations
performed inside the nodes are negligible compared with
the communications. It is easy to see that the fastest way
to achieve this is proportional to the depth of the graph, in
other words, the longest path from an initial node — one
whose computation doesn’t depend on other nodes’ com-
putation, to any other node. Each node in the graph can
perform its own computation only when all of its immediate
predecessors have finished computing their values. Notice
that this node won’t have to execute any time afterwards.

Thus, an “optimum” way to perform the computation
of the DAG is to execute all the nodes that have no pre-
decessors during the first step. Then, repeatedly execute
all the nodes that just had all their predecessors’ values
determined.

Some interesting characteristics of a dependency graph
are its depth and its width. The above-mentioned depth
of the graph measures the lower bound of time that can
be achieved on a parallel machine. The width of a partic-
ular graph is defined to be the number of nodes that are
at the same depth in the graph. We are interested in both
the maximum width and the average width. The maxi-
mum width tells us how many processors are necessary to
achieve this optimum time (regardless of allocation prob-

lems), and average width gives a rough measure of what
the average parallelism of the algorithm is, and what the
“cost-effective” number of processors to allocate is.

In general, with very large problem sizes, the situation
looks as follows: we have a very large set of data, far out-
numbering the processors of the parallel machine. At ev-
ery time step in the “optimal” execution, there might be
a limited portion of the nodes which are able to be exe-
cuted due to dependency. By limited, we mean something
significantly smaller than the number of nodes n, some-
thing that’s not O(n) but O(n®), with 0 < a < 1, for
example O(y/n). For a machine without proper memory
management, there can be a significant waste of processor
cycles since the active nodes are limited. For a fixed num-
ber of processors, computation will slow down linearly as
the problem size (total number of nodes) grows. What is
important here is that the goal of the memory management
system is to enable the parallel machine not to slow down
when the problem size grows, as long as the number of ac-
tive nodes — which is much smaller than the problem size,
are smaller than the number of processors.

2.3 DAG-based Memory Organization

The fact that there is much more data rather than pro-
cessors implies that a lot of data elements are packed into
each processor. If the structure of the dependency graph
is arbitrary and unknown at the beginning, we can do very
little else than looping through all the data at each step, in
order to find out which nodes in each processor are ready
to “fire”. This can’t be avoided the first time we perform
the computation, however, we can do much better the next
time we use this same dependency graph.

Suppose that the computation governed by the same de-
pendency graph is going to repeat a lot, then the cost of per-
forming the first iteration without dependency information
can be amortized over many iterations. This assumption is
often valid, such as in the case of solving a linear system
of equations where one wants to iteratively solve many sys-
tems with the same matrix — which determines the depen-
dency graph, and different right-hand sides. Thus, given
that the dependency graph is the same over time, nodes
in the graph will be able to fire at exactly the same step
in every iteration. Information about the structure of the
graph can be gathered during the first iteration with little
overhead. Computation can then be reorganized thanks to
this information before the second execution.

In summary, the problem we consider is one of repeated
execution of different computations that have the same de-
pendency graph. Since the amount of data (or the number
of nodes) are much larger than the number of available
processors, the data needs to be reorganized in a way that
enables fast execution despite the fragmentation and the hi-
erarchy of memory that is present in the parallel machine.

3 An Example

We choose sparse matrix forward solve as an example to
illustrate our data reorganization method. Even though
its data dependency graph is a special case of all possible
DAG’s but it has all the “richness” of DAG’s in terms of
possible structures: any directed acyclic graph can have
its adjacency matrix brought to a lower triangular form by
some permutation of the nodes. The sparse matrix for-
ward solve has the nice property that the computations
performed in it are all similar and quite simple: it enables
us to focus on the effects of rearrangements of the data on
performance.

Thus without loss of generality, we describe our imple-
mentation of the method in terms of the sparse matrix for-
ward solve. Given a sparse lower triangular matrix A and
a vector y, we want to solve the following system for z,

Az =y

where A is the n x n sparse matrix, whose zero-structure is
arbitrary and unknown at the beginning of the algorithm.

The execution of forward solve on a sequential computer
would often solve for the first variable «;, then using this
value, solve for z,, and so on. In a parallel implementation
we are interested in getting the highest speed-up. When
the matrix is not sparse, solving for any z; would require
to know the values of all the preceding values z; ...2;_1, so
we are forced to compute them in order and get very little
parallelism from this. In the sparse case, due to the zero
elements in the matrix, some “dependencies” disappear,
relaxing the constraint of sequentiality between the z;’s.
This gives rise to more parallelism. Unfortunately, when
the zero-structure of the matrix is unknown, we can’t pre-
dict how this parallelism is going to come out in a precise
way. And, of course, there are still a lot of dependencies.
The structure of this forward solve can be viewed as a de-
pendency graph, where the nodes represent the variables x;
and the edges representing the non-zero elements of A. The
zero-structure of the matrix gives us the adjacency matrix
of the dependency graph. In other words, A[¢,j] # 0 &
the value of x; is needed to compute the value of z;. Since
the matrix is lower triangular, it defines a directed acyclic
graph.

3.1 Representation of a Sparse Matrix on
the Connection Machine

We present the example with a Connection Machine [6,7]
implementation, where the effect of the memory fragmenta-
tion and hierarchy comes at the smallest scale: one matrix
element is assigned to each processor, and there is penalty
in the memory access time if all the memory references per-
formed by processors are not to the very same location in
their perspective local memory.

We allocate one processor per variable z; and one per
non-zero matrix element of row i. The processors for one
given row are allocated contiguously in a segment following
the processor containing the associated variable (to take
advantage of fast parallel prefix computation). This means
that the processors containing the A[i, j]’s will be set up
in a contiguous segment following the processor containing
A[i,14], y; and (when it is known) z; (figure 2). From now
on, we will refer to the processor allocated to x; as the node
processor ¢ and to the processors assigned to A[z, j] as the
edge processors (i, j), by analogy to the dependency graph.

We organize all the data elements this way, until we run
out of processors. Then we start back from the first pro-
cessor, creating a new layer of data, and so on. This initial
organization has the advantage of spreading data evenly
among the processors.

A typical computation step is (for a fixed 7):

e each of the edge processors (representing A[i, j]) gets
the value of x; (assuming it is already computed), and
multiplies it by its A[, j] value

e using parallel prefix on the segment we compute the
sum of the products, subtract y; (right-hand-side) from
it, and divide it by A[:, ¢] leaving the result in the node
processor.

3.2 Keeping Footprints of Dependency

At this initial state, there is no sufficient knowledge of the
dependencies between the data elements. Hence, proces-
sors have to pick out the active data elements from their
memory for processing. To find out whether a given pro-
cessor should be active at each time step, each processor
loops through all the layers of data in its memory. By
checking the availability of all the values necessary for the
computation of a particular variable z; for which it is re-
sponsible, the processor knows whether it should be active
at that time step or not. Each processor along the way
of the above computation records for every data element
(variable z;), the step at which it was active (i.e. when it
performed its computation). This information will be used
to perform the reorganization of the data. It is done by
using a counter to keep track of the step number in each
processor. A “time-stamp” (the depth of the data element
in the dependency graph) is attached to the data elements
when they are active. This extra record-keeping step is
an inexpensive operation on almost any machine. The col-
lection of time stamps now contain enough information to
derive both the dependency and anti-dependency relations
among the data elements.

Proc

O N
Gt W = O
O =0 O
-0 OO

Figure 2: How a row of the sparse matrix is represented

forall i in [1..n] do known[i] := false;
iteration := 1;
repeat

forall i in [1..n] do
if not(known[i])

then if AND(known[jl | j in indices(al[il))

then {
x[i]
known[i] := true;
timestamp[i] := iteration; }

iteration := iteration+i;
until AND(known[i] | i in [1..n]);
nb_iterations := iteration-1;

:= (y[il - suM(ali,jl*x[j] | j in indices(alil))) / ali,il;

Figure 3: algorithm used before data reorganization

3.3 Data Reorganization according to

Footprints

In any subsequent iteration of solving Az’ = y/, the foot-
prints of dependency (and anti-dependency) can be used to
reorganize the way data is stored, thus increasing the per-
formance. The idea of the reorganization is very simple:
just sort! the variables x;’s by their time stamps so that
those z;’s with the same step number will be in contigu-
ous places in the same layer, or in adjacent layers (to be
precise, actually the whole row of matrix elements A[i, j]
are moved together with z; as one block once the sorting
is done).

Having done that, the execution can now be greatly sped
up. At each time step of the computation, there is no need
to loop through all the layers. It is necessary to loop only
through those limited number of layers that are stamped
with that particular time step. Exactly how many layers
for each time step relates to the “width” of parallelism in
the algorithm, and the number of processors available. If
the number of processors used is significantly higher than
the average width, then a large majority of steps will need
data in one layer so the performance will be close to the op-
timum. Degradation in performance due to the sequential-

1The Connection Machine has a very fast sorting primitive. In
general, we don’t need to do a sort of the complete data set at once,
it is enough to perform a partial sort “on the fly”

ization starts to occur as the number of processors become
close to the order of the average width. Some experimen-
tal results of these cases on the Connection Machine are
presented in the next subsection.

The algorithms used before the reorganization is de-
scribed in figure 3 and the one used after the reorganization
is given in figure 4. The lower triangular, n x n, sparse ma-
trix a is given and stored as described earlier. The reader
can notice that the z’s will be computed in exactly the same
order in both algorithms.

The reorganization procedure is described in figure 5.

3.4 Experimental Results

We implemented the idea described in the previous section
on an 8K processors Connection Machine using the sparse
matrix forward solve problem for matrices with up to 10°
non-zero elements. we varied the problem sizes, the number
of processor used, the number of layers, and the amount of
parallelism in the problem (by acting on the “sparsity” of
the matrix).

Figure 6 represents the speedup of the parallel execution
with rearranged data over the parallel execution with the
initial un-organized data. Given a fixed problem size (with
fixed depth), we implemented our method with increasing
number of layers (by decreasing the number of processor

for iteration:=1 to nb_iterations do
forall i in [1..n] do
if timestamp[i]=iteration
then
x[i] := (y[il - suM(ali,jl1*x[j] | j in indices(alil))) / ali,il;

Figure 4: algorithm used after data reorganization

- rank[i] := index of timestamp[i] in the sorted sequence of timestamp’s
- allocate the processors as in section 3.1, but following the order defined by rank : first allocate processors for row i such

that rank[i]=1, and so on.
The next table shows what the organization of data elements will be after the reorganization procedure described above.
The numbers show the timestamp associated with each data element.

Time (ms)

Processor ! 1 2 3 4 5 6 7 8
Layer 11 1 1 1 1 2 2 2
212 2 3 3 3 4 4 4
3|5 5 5 5 6 6 6 7

Figure 5: reorganization according to timestamps

wé\vg time/wavefront. Depth="75 . Avg time/wavefront. Depth=50 WAvg time/wavefront. Depth=20
T T T ! T
) m
E £
60 [- 60 [~ - ~ 5o |- —
o)
£ £
&)
Number of layers Number of layers Number of layers
O: non—reorganized O: non-reorganized o: noﬁ—reorganized

¢: reorganized ¢: reorganized ¢: reorganized

Figure 6: Average time spent per wavefront, for non-reorganized and reorganized data, in three diﬁ'grent cases.

!

used). We measured the average time per wavefront (a
wavefront is the set of nodes that have to execute at the
same time, the number of wavefronts in a graph is equal to
its depth) taken by both the reorganized version and the
un-organized version. Measurements were made for three
sets of problems which have different depth in their per-
spective dependency graph, and some observations about
these results are mentioned below.

e The time spent per wavefront in the un-organized case
is, for all practical purposes, linear in the number of
layer, while in the reorganized case it is almost inde-
pendent of the number of layers.

e When the number of layers becomes close to the depth
of the graph (as in the third graph of figure 6) the time
of the reorganized version is growing.

o The overhead due to keeping track of the dependency
graph is very small. It only amounts to remember the
step at which the processor was active, a local and very
cheap operation.

e The overhead due to the reorganization of the data, is
more significant, but most of the time, it only occupies
a small fraction of the total execution time of each
iteration on the reorganized DAG. It is not a constant
fraction because the execution time for the reorganized
DAG is essentially proportional to its depth, while the
reorganization’s main operation is sorting on the node
processors. In all the experiments we have made, this
overhead is less than 10%.

In all cases, data reorganization results in significant
speedup, almost linear in the number of layers used.

4 Memory Management on SIMD
Disk Systems

When the data sets we are considering become very large
and exceed the available memory in all the processors, we
have to have the data residing on a external storage device.
For parallel machines, especially with large number of pro-
cessors, a single disk system would create a bottleneck in
terms of data access. Newer machines like the Connection
Machine are associated to a parallel disk system. When the
machine is MIMD and each processor has its own disk, the
disk management problem for each processor is exactly the
same as for single processor machines: they just can have
their own virtual memory system working independently of
one another. On a machine with an SIMD disk system, the
problem is different since once a processor is accessing the
disk system, all the processors are penalized. Therefore it
is important to have an organization scheme that makes

all the processor access the disk at the same time. We be-
lieve the scheme described in this paper can be applied to
an SIMD disk system and improve the performance of the
whole system.

Considering a disk system with a very big data set, the
situation would be the following: all the layers of data ele-
ments reside on disk and some of them are loaded into the
processors’ memory. Our method of reorganization (assum-
ing there is an economical way to sort the data elements
on the disk) insures first that each layer brought into mem-
ory is exploited and won’t have to be brought back later.
Furthermore, there is locality of access across the layers,
insuring that when a block of layers is brought from disk
to memory, all the layers will be used one after another and
this block won’t have to be brought back again from disk.

5 Integration into a Parallel Pro-
gramming Environment

One of the main goals of a parallel programming envi-
ronment is to free the user from the burden of mapping
the computations to the processors. The parallel program-
ming language Crystal [1,2,3] enables the user to specify
the computations to perform without having to include the
mapping. The dependency graph of the computation can,
in most cases, easily be generated from the Crystal code.
In some cases, the dependency graph can be generated at
compile-time, otherwise it is generated at run-time. Crys-
tal is a very high level language, and is purely functional:
expressing a computation in Crystal does not introduce de-
pendencies that are not part of the problem (e.g. due to the
use of sequential program constructs such as lists, serial
loops, etc).

The reorganization of data can be performed automati-
cally by the underlying system since the same dependency
graph is obtained once the program has executed the first
iteration

Figure 7 shows a Crystal program expressing the com-
putation in sparse matrix forward solve. The equation ex-
actly defines the dependencies among the x’s. Hence, the
extraction of the dependency relation is easy to perform:
x(i) depends on all the x(j)’s such that j appears as col-
umn index in row number i (as defined by the function
indices(a(i))). This dependency can be automatically
transformed into code like in figures 3 and 4. The code in
figure 3 is an almost direct translation of the Crystal code,
except for those instructions added in order to (1) insure
the execution order according to dependencies (instructions
involving known[.]), and (2) keep track of the timestamps
(instructions involving timestamp and iteration). The
code in figure 4 is also a direct translation, assuming the
timestamps are known (from a previous execution).

!1! The input (sparse) matrix, a, represented as a sequence of rows,
11! each row consisting in a sequence of pairs [value,column_index],
'11 the first pair being associated with the corresponding diagonal

11! element of the matrix

!1! The right-hand side, y, is a sequence of values

a =
y = [1,4,-1,2],
n = |lyll,

x(i) over D =
(y(i) - inner_prod(off-diag(a(i)),

off-diag([x(j) | 0<=j<i :

/ a(i) (o)
where
(D= [0..n-1],

(Cf1,011, [[1,11,C2,011, [[1,21,[3,21]1, [[1,31,[4,0]1,[5,111],

j in indices(a(i))1)))

indices(tuple) = [tuple(i)(1) | 0<=i<||tuplell],
off-diag(tuple) = [tuple(i) | 1<=i<||tuplell],

inner_prod(tupleil,tuple2) =

\+ [tuplei(i)*tuple2(i) | 0<=i<||tupleil|]

),

Figure 7: sample Crystal program for sparse matrix forward solve; the input matrix is the same as in figure ??

In general a program will contain a large number of equa-
tions. Only some of these equations will be defined over
domains (using the over keyword in Crystal): these are
the equations defining the dependencies which the system
will use for this type of optimizations.

6 Concluding Remarks

We have described a method of reorganizing data in a paral-
lel machine so that maximum parallelism can be exploited.
The method applies to problems that make repeated use of
the same dependency graph. The improvement applies to
all executions except in the first iteration where the over-
head of the reorganization is incurred. In most cases, such
overhead is negligible.

The method presented in this paper can be applied to
problems for which the dependency graph changes little
over iterations. The footprints of dependency gathered in
the first execution are going to be updated at each iteration.
The question is then when to perform data re-organization.
If the dependency graph in the subsequent execution is a
sub-graph of the initial one, this data organization becomes
overconstraining and therefore sub-optimal. On the other
hand, if the number of edges in the dependency graph grow
with the computation, the data organization will be sub-
optimal due to idle processors. In the case where incremen-
tal reorganization of data is inexpensive, optimal execu-
tion can be maintained. Otherwise, a trade-off between us-

ing out-of-date organization and the cost of re-organization
must be made.

The performance behavior of our dependency method is
analogous to paging of virtual memory in uniprocessor sys-
tems in the following sense: there is a transient period in
which the dependency of the problem is “learned”, which
corresponds to the locality being learned by a conventional
virtual memory system. Then comes a “steady state” pe-
riod during which most memory references “hit” the work-
ing set. In our case, the steady state begins upon the
system knowing the DAG. From this point on, load bal-
ance and good performance in accessing distributed data
will be achieved. As soon as the program enters a new
dependency structure, a new cycle of transient learning is
triggered and a steady state period follows. Similar to vir-
tual memory management for conventional machines, our
method for massively parallel machines is effective, simple
and robust. Such are systems that have been proven to
work well in practice.

References

[1] Marina C. Chen. Crystal: a synthesis approach to
programming parallel machines. In The Proceedings of
the Hypercube Microprocessors Conf., Knozville, TN,
August 26-27 1985.

[2] Marina C. Chen. Transformations of parallel programs
in crystal. In The Proceedings of the IFIP 86, Dublin,

Ireland, September 1986.

[3] Marina C. Chen. Very-high-level parallel program-
ming in Crystal. In The Proceedings of the Hyper-
cube Microprocessors Conf., Knozville, TN, Septem-
ber 1986.

[4] Marina C. Chen, Erik DeBenedictis, Geoffrey Fox,
Jingke Li, and David Walker. Hypercubes are General-
Purpose Multiprocessors with High Speedup. Technical
Report 11354-880104-02TM, AT&T Laboratory, 1987.

[5] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. War-
ren. The program dependence graph and its use in op-

timization. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319-349, July 1987.

[6] W. Daniel Hillis. The Connection Machine. MIT
Press, 1985.

[7] W. Daniel Hillis and Guy L. Steele Jr. Data parallel al-
gorithms. Communications of the ACM, 29(12):1170—
1183, 1986.

[8] Alan H. Karp. Programming for parallelism. IEEE
Computer, 20(5):43-57, May 1987.

[9] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and
M.J. Wolfe. Dependence graphs and compiler opti-
mizations. In Proceedings of the 8th ACM Symposium
on Principles of Programming Languages, pages 207—
218, 1981.

[10] D.A. Padua and M.J. Wolfe. Advanced compiler opti-
mizations for supercomputers. Commaunications of the
ACM, 29(12), 1986.

[11] Joel H. Saltz and Marina C. Chen. Automated prob-
lem mapping: the crystal runtime system. In Hyper-
cube Multiprocessors, pages 130-140, STAM, 1987.

[12] Harold S. Stone. High-Performance Computer Archi-
tecture. Addison-Wesley, 1987.

