Introduction to Linear Asynchronous Structures

R. J. Lipton,! R. E. Miller;2 and L. Snyder3

@

Research Report #101

1 Department of Computer Science, Yale University, 10 Hillhouse Ave.,
New Haven, Connecticut 06520. Supported in part by Office of Naval
Research Grant N00014-75-C-0752 and National Science Foundation

. Grant DCR-74-12870.

2 Mathematical Sciences Department, T. J. Watson Research Center,
P.0. Box 218, Yorktown Heights, New York 10598.

3 Department of Computer Science, Yale University, 10 Hillhouse Ave.,
New Haven, Connecticut 06520. Supported in part by Office of Naval
Research Grant N00014-75-C=0752.

y;'seqeréi-differene mddels of paralleiiam haye}been.discussed eo_faf at
this-cenfefence“;é»Petri:nete and‘Vector Addition SyStemé, to name.fwo.
These‘models have been ardund for some &ears‘and:we are ail familar

b'; withbthem (tnough they may not be fnlly understood as yet). By contraet,
we will present a new model that introddces the idea of bounded asynchronous
delay. This idea provids a useful tool for studying both synchronism and
purely event-drlven asynchronlsm by introducing a spectrum of approxxmatlng

.

models to fill the gap between these two extremes.

_Our goal is two-fold:
(1) to introduce our model of bounded delay, and
(2) to point out some of the subtletles of asynchronlsm that are

' eluc1dated by our model.

Thus, ‘we hope to 1nterest you in bounded asynchronlsm, generally, and our
model spec1f1callv as well as to poxnt out some of the dlfflcultles of

eventedrlven asynchronlsm.

1. Preliminaries

 Our model addreases questlons of'aaynchronlsm w1th bounded deiay -and
vthere do not seem to be any theoretlcal treatments of thlS phenomenon
in the 11terature. What we have done is‘pretty much to generalize-the
'cellular array characeerlzatlon of Smith and others [1], where we con51der

Ca linear array

of n finite state machines capable ef comﬁunicating with their neighborsf
uIn the c13581c treatment of these devices, time 1s measured in discrete
steps and the evaluatloﬁ rule is "all machlnes capable of f1r1ng at a

given step, do so." ” We introduce asynchronlsm by relax1ng thlq rule to
"some mechine(s) capable of firing at a given step do so." Thus, a device
,ean fire "at will," so to speak, and thus the concept of mactiines operating

at different rates can be characterized.

Ail of the usual\éﬁestions asked of the synchronous parallel arrays can

_be asked about these asynchroneus arrays, such as synchrouization, recdgnition‘
capabilities etc. But an immediate observation is that ip this asynchronous
model some device, capable of firing, may postpone doing so for en unbeunded'

or possible infinite number of steps.

Altheegh exact response times are not'always_khown, it is usually the_case
fhat some information is available about the relative response times. In
:sech cases we believe that the informatien sheuld be used. Hence Qe
‘introduce the concept of delay, an upper boend on theiresponse fime of any
deyice.A,As a consequence, we get sharpef andkmore quantitative results as
Qelleas providing a convenient means of compering sYﬁchroneus end event-driven

asynchronocus behavior.

'ﬁelay is a fixed, nonnegative ieteger upper bound on Ehe numbet‘of steps
o.a device capable of firing is aliowed‘to postpone that actien.‘vHence, when
D=0, no postéonesment is allowed and‘theAsystem operates synchronbusly.
Note the difference between delay and frequency of firing. In particular,
a device which is always capable of firing must fire, at worst every D + 1

steps. When D tends to infinity the system tends to act totally as an

event-driven asynchronous system. Thus, we have a whole spectrum of

_ execution disciplines between the extreme points.

.Before actually introducing the model, it may be useful to mention the
difference between bounded asynchronism and nondeterminism. The distinction

‘is, of course, between "what'" to do and "when" to do it. Hence, there are

- '

really four possible models involving these two concepts:

deterministic synchronous
nondeterministic synchronous
deterministic asynchronous
nondeterministic asynchronous

. To underscore the differences, consider the three element linear array

a |{& | b | &3] ¢

gnd two types of state diagrams:

rdetermiﬁistic: S : -
O—"———0
. .

- -nondeterministic:

 where means that the transition is legal regardless of the states of

the ngighbors. Then we can construct a table:

N

ﬁ"é§h¢hronoué'(bi= 0 asynch:bnoué @ = 2)

deterministic fcomputation seq: 1 fcomputation seq: 13

: #different outputs: 1 f#different cutputs: 1

" nondeterministic| fcomputation seq: 27 fcomputation seq: 351
f#different outputs: 27 #different outputs: 27

The computation sequences possible are compared with the nﬁmbef of
possible outputs and we see that for this simpleas§sfem, the asynchronism
influences how the output is arrived at (computation sequences) but not
the output itself. Note that the table is for some D 2 2 and that if

D = 0 were assumed, both columns would be the same.

: This property, which we might call transpdbency, whe¥é fﬁe asynchronism
_influencés.only thg way ﬁhe'resulﬁ.is:obtained but not the feéult'itself,
;&oes not necéssarilyAélwﬁys hold. In péfﬁicuiar, thctéiére deterministic
maéhinesvwhicﬁ;.when.ruﬁ asyﬁchrénousiy; give severalvdifféreﬁt outputs.
This:ié becauseva device, capablg of changing from state a to state b, can
‘pgstbone that transition and. then, és abresuif of'é state chanée b§ one of
vi;s neighbors, itimaj be capable of a‘transition froﬁ a to c. Consequentiy,
‘nqndeﬁéfminism has apﬁaréntly been introdﬁcedvﬁy.the asynchronism! This
phenéménon, which ﬁight be called'surreptitioﬁs noﬁdeterminiém; ié po§r1y
understood and preliminafy,indicationé are that it ieads to a different
class'of'éysfems; Our interest here will be to achieve transpérehcy for
thé detefministic asynchronous cése, since this is a broad and more

manageable class of systems.

2. The Model BRI e o

Since working with finite state machines is cumbersome, we have developed
a rewriting syétem which generalizes the standard finite state machine |
model.

Definition: An asynchronous grammar G = (L, P) is a finite alphabet

£ and a finite set of productions of the form a —> B where

*

(1) a,B € I (symbols repre%ent7states)
(ii) le] = [8] (length preserving)
(iii) & 8 (no "1dling" productions)

A set of devices in various states and with various interconnections
is, thus,; represented by a word in ™. A syczbol capable of being
cnanged by a prcduction application is said to he'active.‘ A computation

" is described bj‘defining-{—s
‘ e o * . p— - = . ‘ .v 5 ‘ n b_
Def?éltlon. Let x LSRR SIS STRES A kherg x,? € L. Thep

SRR ,}— AN A

if x4y and if the ith position of x changes (i.é.‘xi #Vyi) then there

ex1§tsAa production al...uj.,.uk‘ > Bl.x.sj...sk ;uch tha;

(1) al...aj...ak matchgs some. context surrounding Xy

‘ '(i.eo :-{j 3xi“j+l eee Xi L) Xi_j+k= aleooujcooak)'
and
(ii) the changes implied by the productions obtain and are

consistent (i.e. o £ 8 =>
s

=1, 2, «o., k).

The first feQuirement guarantees that the transitions performed are
‘legal accordlng to the productlon set and the second requlrement makes
' certalﬂ that all change= take place and are not contradlctory.
As an example, let L é‘{a, b, c,‘d} and P =

{ab + ac
bc + bd
ab -+ dc}

then the legal transitions would be, for abec,

1. abec }— acc ’ ab + ac applied
2. abc | abd . v bc + bd applied
3. abc |— dcc . ab -+ dc applicd
4. abe |— acd ab > ac and bc =+ bd applied

5. abe }— ded either ab -+ dc. and bc - bd

'J-! . PN S SQNNS 4 2
PPaicl OT aai thvee appiijed

Note that in the fourth case the two productions’dvoverlap but the

'chénges are made cdnsistéﬁtly and so this is allowed by the defin*tion.

Also, in the final case (and 3 as well) it is awbxguous Just exactly

" what productlons applled since the productlon ab -+ dc subvu”es tue

- productlon ab - ac.‘ Another p01nt to note is that mulclple changes

are allowed (ab -+ dc). Clearly, very complex behav1or can be descrlbed

by ésynchronous grammars.

The reflexive transitive closure (F2) of I~ is defined in the usual
way, but, as the following definition indicates, some sequences may not

quallly as acceptable computations. - (Notationally, superscripts are used

- 7.
for elements of a sequence and subscripts are used for coordinates.)

'Definitiggz Let xo, xl,v.;.‘be in Xn, G = (£,P) be an asynch;onqus
| grammar and D=0 Se'an integer.:_A D—computation‘is.a sequence

xo, xl, ses

such that

| (i) \V/j 20, xJ]-—xj+1

and

J4k
i

is active for all k=1, 2, ..., p+1.

(ii) J} i,j such that xiJ = L. =X and coordinate i

Thus, a D-computation is a seqﬁencelof legal transitions defined by an
ésynchfonous grammar where no postion postpones firing longer than D
biepé. wWnen D= 0, (i.é. no postponement), the D-coxputation 1s said
to be synchroncus -— i.e. when a postion becomes active at the j step

it fires at the j+lSt step. A D-copputation
xc’ ..l’ xm
" halts when :b x € I" such that x™]—x, 1i.e. when no further changes

take place.

As an example, consider & =:{*,a;5,c}- and P = .

{*a = %p
“a* —}c*
baa + bba

ac + cc}

then the O-computation on *aaaa* 1is

aaaa P— *baac* P—- *bbc**

< le- -

whi;etforﬂ'D 2 3, the D-computations‘afe

T
. %aaaa* {— *bbcc*
, , *
aaaa |— *bbbc*
%
aaaa |— *bceck

*
_kaaaa* |— *cccck

where each computation has been forced to a halting state. Now, clearly,
this particular grammar on *aaaa* 1is not transparent although it is
~deterministic in the sense of finite state machines. ‘Note where the

surreptitious nondeterminism crept iu.

00’0’ baa(‘. ¢ o]_- c-’. baCC e s e
A - o ' ",‘
~can go only can go only

to b .o c

(fote that in the degenerate case, the grarmar isn't even deterministic

sincé *ak f— *b* and *a* P—,*c# aréjlegal.)

. There are several ways to restrict asynchronous grarmmars to only those
"which lead to transparent D—conputations. One such mefnod'to avoid

'the interference lnherent in the previous example w111 now be con51uered.‘

Definition: An asynchronous grammar G = (I,P) is interférenée-j}ve

9..
T V’p;pi and t

p. = »alocoait.*-‘lov.ak»‘." Bi'..stfl.f.ak ,

. ' =) ' ' vo.LBY
B R CEHR O

4 % = 1,2,000, ﬁiﬁ(z, k-t) implies

g5
o
e

u
=}
o

‘= “ = = '
®org =% "By T8 -

Informally, an asynchronous grammar is interference-free if wherever
two productions overlap, the overlapping portion is unchanged in both

‘e

productions. Thus

P: a ... bxyz *‘é eos fxyz

ps. ,.,Xy«.zcg,_‘.d <> wwro h

- could be productions of an interference-free grammar. .

-

Now returning fo the gramﬁar that suggested this reétriction, we observe
Afhatfthere is an interference-free asynchronoué grarmar that is Lrans;
',pérent and equivalent to the°formerigrammarlfor O-cozputétions on

7 *ak* for all. k 2 2. Specifically,

I = {*) a, bs C; b',' C'_, -i;s ;}

and P = prta > *c!
cla > cb"

b'a + be!

cl% > %

b'* + b*

. ¢b =+ ©b

_¢cb =+ bel.

10.

" This grammar is clearly 1nterference free 51nce the ouly overlaps .

'lleave the overlapplng portions unchanged.v

c'%x o+ c*
*a <> *c'
and -
U b'% o b*
kg o k!

The grammar is also éubstantially nore complicared than the previous

one as can be seen in the following O-computation:

aaaa |— *c'aaa*
HF—— *cb'aa*
» — *cbc'a*
| «cBepx
= #beco*
}— #bcch
— *bebe*
“F— *bcbex
 b— *bbect

' Note that the strategv is to flrst 1nitlalize the string with b's
’}and ‘c's (half of each) and then 1nterchange adJacent pairs until they

propagate to their respective ends.

Rather than'trying to argue directly that this interference-free

grammar is in fact transparent, we appeal to the following theoremn.

Theorem (Transparency for interference-free grammars)

P e o 11.

-Let Gk= (Z;P) ﬁe an interfefence’free asynchronous g;émméf such that
XO: Q..,'xm is a héltiﬂg O;compﬁtation;lthen“\/l)> 0, for.evgry,“;
D*c;mﬁutation | L ‘
(i) an such that xo, ;.;, x! is a halting D-comﬁutation, and
i) =¥ ="
‘This can be proved in several ways. A direct proof would argue that

fbr each position i in xo, the sequence of O-computation state changes

that take place also occur, in the same order, for any D-computation.

Thus we havé a characterization of oﬁé class of asynchronous grammars
which is transparent. Note that the interference—free:gramma; just

: preseﬁted allowed multiple changes. Thi§ is not really féithful to
_6qr original'objective where the machines ére to fire individually. An
alternative characterization has been developed where the single cﬁange
' pfoperty aoes hold. This altgrnaﬁive modei and results cohcerning its
timipg characteri§Cics, récoghition capabilitieé and sfﬁchronizatién
capabilities is presented in the pcheedings of the JZFE éymposium on

the Foundations of Computer Science [2].

‘3. Decidability

Ne#t we consider some decidabili§§ questions.: Clearly,~since the pro—‘
_ ductions are length preserving.ahd thus thére is a boﬁnd on the number |
of states from any initial input xo, it follows that the halting
problem for any given input xo ié decidable, for a.éi?én delay D.

Moreover, because Smith [1] has embedded a Turing machine in his model

12.
(which is contained in ours as a special case),'it‘follows that it is not
; decidable whether, for a given 'D, _an asynchronous grammar halts for
. all inputs; Also, the reachability problem is decidable for a ziven
asyﬁchronous grammar G, delay D, input x0 and- reachability configu—

: r
ration x .

Those are the usual questions one asks about parallel systems. But
because these are asynchronous systems too, we can ask questions about
delay. For example, since increasing the value of D often increases

the reachable states, we can ask the D-reachability question.

~Problem: (D-reachability) Given an asynchronous grammar G, initial

inbut xp and reachability configuration xr, "what is the least delay

0

D, “if ahy, such that x°, s x 1s a D-computation?

Thus, if G = {*a > *b
ax -+ c¢*
baa -+ bba
ac > cc}
- and xo = *aaaa* and x' = *cccc*, the D-reachability number is
2. That is, for D <1, this configuration cannot be reached fron
aaaa., Note that the D-reachability number for x' = *bbbb* {is o,

i.e. no matter how large D 1is this configuarion cannot be obtained

(due to the third production).
The D-reachability problem is decidable.

The argument here is based on an enumeration af all reachable states

13.

,f9r éuccessi§§1y larger D.‘ The énhmération étops when ‘D is lérgé

éﬁéﬁéh'sobthat no transition fifeg due: to the expirétion of the delay.
 1‘Th;§;yélue i$ ésseptia1l§ théblongeéﬁiacyglic éeﬁﬁenﬁe of éinglé pro—
dﬁctién aﬁpiicatioﬁs ihat éan také place independent of éome pendiné ‘

transition.

- Another variant on the reachability question suggested by delay is

based on the concept of duration.

. (4] .
Definition- Let x, xl, ««s be a D-conmputatiou for an asyncnronous

grammar G on input xo. The duration &§(i,j) of position j in

configuration i is

) a d{’O- if x;'.is,not active -
P I Y : - ’ '
A Nt P TS v R .
S L 4 Xy is active and k 4is the largest
B | , value,éuch that ex;fki='... =»x§ ~and
'>~x;fl "1s active for all values

’ ’l s 0, ee ey ko
‘,Bence, the duration 6(i,j) gives the number of consequtive'steps

T .th - ” '
- that the j— position has been waiting to fire as of the 1th step ia

By thé.D—computation.

Problem: (Duration'reachability) Given‘aﬁAasynchronous grﬁémar' G,
“initial configuration xo, :reachabilityrconfiguration x* and n
integers kl, ey kn, is it decidable whether or not there exists a

D such that

x’ ...,X

140)

'is'a D-computation with 8(r,3) = ky?

- Hence, we not only want to know if we can reach a particular configura—.

tion, but also do the positions have a particular duration value.

The duration-reachability problem is decidable. The arsument uses the
same enumeration as for the D-reachability problem but with the adced
constraint of a complex search to determine if the proper duration

values hold.

4. Timings

Finally, note should be made of the fact that although asynchronous
,grammaré operating asynchronously are weaker in certain respects than
‘bthéirvsynchronous cpunterpargs,’the reason is'noﬁ dﬁe’té their timinés.
(The reason is in fact_their»inabilityvto sblve.pfoblems.such as the
L "firiﬁg squad synchroniiation_problém," see [2}.) Indéed, one gets the
fiﬁpression frdm éur discussion thét as' D 'increaseé and thelleﬁgth

of.tﬁe computation sequences increase, the execution tine of the parallel.
 s§;tem degrades. Our experience, of course,.tells>us'that asynchrqnism,
~ should préBably improve rather than degrade the performancg.. Rec&ntiling
‘these two observations is eaéyf the quantity D + 1 aiwayskrepresents
,oné-hnit of ph&sicai.timé and‘conse@uentlycén increase in ‘D merely
 means that time isvbeingvpartitioned iﬁto finer and finer units. Héncé;
| givep'tipings for fhe various transitions, the synchionous case runs at
-a rate eqpal to the time of the longest transition. The asynchronous

transitions will vary in cost; each being chargéd_according to the

15.
actual usage. Hence even though the computation sequences are longer
" in terms of the number of transitions in the asynchronous case, the actual

cost need not be larger.

In conélusion, we emphasize that the important properéy of thié model is
that delay is treated parametrically. Thus, a single systemfhay be studied
~with a synchronous as well as an asynchronous exectuion behavior within
aksingle model merely b& changing the quantity of the delay. Comparison of
the two types of execution is, tberefore, quite convenient. It is hoped
that this introduction has presented sufficient motivation to interest

others in taking a similar approach with other models of ‘parallel computation.

o2

References

A. R. Smith. Real-time language recognition by one-dimensional

"“cellular automata. JCSS 6:233-253, 1972.

R. J. Lipton, R. E. Miller, and L. Snyder. Synchronlzatlon and
computing capabilities of linear asynchronous structures.
Proceedings of the IEEE Symposium on the Foundations of Computer.
Science, 1975, 19-28. :

