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Abstract

\

To solve the system of linear equations Aw = r that arises from the
discretization of a two—dimensional self-adjoint elliptic differential
equation, iterative methods employing easily computed incomplete
factorizations, LU = A+B, are frequently used. Dupont, Kendall, and
Rachford [5] showed that, for the DKR factorization, the number of
iterations {arithmetic operations} required to reduce the A—norm of the

1
1/zlogi-) {o(n 2'ilog%)}, where h is the

error by a factor of & is O(h
stepsize used in the discretization. We present some error estimates which
suggest that, if a pair of Alternating-Direction DKR Factorizations are
used, then the number of iterations {arithmetic operations} may be

/3

1
decreased to O(h 1 log%) {0(h 25103%)}. Numerical results supporting this

estimate are included.



1. Introduction.
Iterative methods are frequently used to solve the system of linear

equations

Aw = r (1.1)

that arises from the usual five—point discretization of the Dirichlet

problem for the two—dimensional self-adjoint elliptic differential equation

where, throughout this paper, we assume

1. @ is an open bounded region in R2,
2. a,, a, are Lipschitz continuous in Q,
3. 2,5 2, 2n > 0 in Q for some constant 1, and

4. q £ 0 is bounded in Q.
The efficiency of many iterative methods depends upon the selection of an
easily—inverted approximation A to A. Several
authors [2, 4, 5, 7, 9, 10, 11, 12, 13] have suggested taking X to be an

incomplete factorization of A,

~

A = LU = A+B, (1.3)
where B is chosen so that L and U are sparse.

For several of these factorizations, there are two directionally

dependent forms of B: B1 and BZ' Stone [13] found that, for his method,
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experimental results indicated that using the pair of incomplete

factorizations alternately,

(A+B1)wn+l

: (A+B1)wn - m(Awn - r) (1.4)

(A+B))w ., = (A+B))w 1 - o(Aw .1 - 1),
2 2
gave a faster rate of convergence than using either A = A+B, or A = A+B

1 2

alone in the stationary iteration
Aw ., = Aw_ - w(Awn - ). (1.5)

Of course, eliminating wn+l, we can rewrite the pair of equations (1.4) in

the form (1.5) using
YoM = _ -1
A=M = [A+B,1[(2 w)A+B, +B, ] [A+B,] (1.6)

provided that [(2-w)A+B1+B2] is nonsingular.1 We refer to the right side of
(1.6) as an Alternating-Direction Incomplete Factorization. Although Mw
itself may be costly to compute, it is relatively inexpensive to solve

me = b, and it is the solution of such systems that is required in the

1 Note that the formal inverse of M , [A+B ]—1[(2—m)A+B +B.1[A+B ]_1, is
. o 2 1 72 12
always well—-defined.
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iteration (1.5) and its Chebyshev or conjugate gradient accelerations.2

In general, Mm is nonsymmetric. Since, in many applicatiomns, it is

advantageous for A to be symmetric, we also consider

st - Ittty (1.7)
) 2" 0 o
the symmetric part of M;l. Again, although Sw itself may be costly to

compute, it is relatively inexpensive to solve wa = b.

For the DKR factorization (an incomplete factorization similar to
Stone's), Dupont, Kendall, and Rachford [5] showed that the number of
iterations of (1.5) required to reduce the A-norm of the error by a factor
of ¢ is O(h_llog%) and the associated number of arithmetic operations is
O(h_slog%). Moreover, the iteration can be accelerated by Chebyshev or
conjugate gradient methods, decreasing the the number of iterations

required to O(h.ml/2

1
to O(h 2210g%). In this paper, we investigate whether these work estimates

log%) and the associated number of arithmetic operations

can be improved by using either the Alternating-Direction form (1.6) of the
DKR factorization (AD-DKR) or the Symmetric Alternating-Direction form

(1.7) of the DKR factorization (SAD-DKR).

M can be viewed as a one parameter family of preconditionings for
A. From this point of view, it follows that, when (1.5) is accelerated by
the Chebyshev or conjugate gradient technique, the parameter o internal to
Mw should be held fixed, while the external parameter o in (1.5) is varied.
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In Section 2, we review the DKR factorization and present a
modification. In Section 3, we review some’general results concerning the
rate of convergence of the stationary iteration (1.5) and its Chebyshev or
conjugate gradient acceleration. Since these results are dependent upon
the spectrum of K-IA, we are led to an investigation of the eigenvalues of
M;IA and S;IA in the following two sections. More specifically, in

Section 4, using the additional restriction that a, = a,, we develop

1

eigenvalue estimates for a pair of factors of the iteration matrix I—wM;IA
associated with the modified AD-DKR factorization. In Section 5, we
explain why we believe that, for a large class of problems, these estimates

suggest that the number of iterations of (1.5) required to reduce the

-2/3

A-norm of the error by a factor of & may be O(h logl) with the

2

associated number of arithmetic operations being o(h §log§), and,

moreover, if (1.5) is accelerated by the Chebyshev or conjugate gradient
methods, then the number of iterations may be decreased to 0(11"1/3
1

with the associated number of arithmetic operations being O(hfzglog%).

log%)

Although these work estimates are not rigorous, numerical results presented
in Section 6 strongly support our conjecture that the estimates are
accurate., In addition, the numerical results indicate that the estimates
are valid for the unmodified as well as the modified forms of the DKR

factorization. g

2, The DKR Factorization.
In this section, following the notation of [5], we review the DKR

factorization and present a modification.



-5 -

Let §h be the set of points (jh,kh) e Q, where h is the stepsize

associated with the discretization and j, k are integers, and let ﬂh be the

such that ((j+1)h,kh), ((j-1)h,kh), (jh,(k+1)h),

set of points (jh,kh) & ﬂh

also. Then anh = Qh\ﬂh. Let wj,k denote the value of the

(jh,(k-1)h) e Qh

grid-function w at (jh,kh) ¢ ﬁh'

For each point (jh,kh) ¢ Qh’ we approximate the right side of (1.2)

by the usual five—point self-adjoint difference operator

(Aw)j,k = bj,kwj,k + cj,kwj+1,k + fj,kwj,k+1 (2.1)
e, "i-1,k Y 51"y, k1t

For definiteness, we take

_ 2 1
h “a ((j+3)h,kh),

cj,k =
2. 1
fj’k = -h aZ(Jh.(k+§)h).
b = 1 2[a ((j+1)h kh) + a ((j—l)h kh)
ik 1 ki 1 2%

. 1 . 1 .
+ aZ(Jho(k+§)h) + az(Jh’(k—i)h)] - q(jh,kh),
although our results hold for other similar sets of coefficients.

When the linear difference operator A is written in matrix form, the

terms in (2.1) that involve wj x

the right side of (1.1), Therefore, we adopt the convention that wj = 0

for (jh,kh) e anh are incorporated into

if (jh,kh) ¢ Qh. For consistency of notation, we also adopt the

alternative convention used in [5] that
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o
[

ik 0 if (jh,kh) ¢ Qh or ((j+1)h,kh) ¢ Qh, and

f.
ik

0 if (jh,kh) ¢ Qh or (jh,(k+1)h) £ Qh.

With the latter convention, it is useful to define

~ _ =2 1
cj,k = -h al((3+2)h,kh).
~ - _ —2 . l
fj,k = -h az(Jh.(k+2)h).
4G g = q(jh,kh),

for (jh,kh) & Q.

N
In [5], Dupont, Kendall, and Rachford introduced the DEKR

factorization
t . 5
LlLi = A+B1 with B1 = B1+D1, (2.2)
where
_ (1) (1) (1)
T e = Vit b0 -1,k 85, e1"), e (2.3)
~ _ . (1) (1)
By ik = By 61,00 ¥ Byi1, k141, k1 (2.4)
(1) (1)
(hj,k + j+1,k—1)wj,k’
_ (1)
R RS RATRA TR (2.5

with coefficients given by
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vgf; = [bj,k(1+a§f;) - h§fi - h;:i,k—l (2.6)
- (tEE;’k)z _ (ggfi—1)2 /2

5 - fj’k/v;.:}l){, (2.7)

t;:}])( = cj,k/v.(i:’l])(, (2.8)

LD @ D2 (2.9)

i+, - Y8,k T %Lk Yk

Since ¢,

d f,
ik an J

x are zero for (jh,kh) e anh, the coefficients of the
»

factorization can be computed recursively for j and k increasing. We

modify3 this formulation by taking

1) _ ~ =~ (1),2
biv,x = %58,/ ) (2.10)
and initializing
vin EACHNEE ) (2.11)

ik T rgley o v g

3 Note that the recurrence (2.10) differs from (2.9) only at the points

adjacent to anh, where cj,k or fj,k may be zero but cj,k and fj,k are not.
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if (jh,kh) e 8Q, and either ((j+1)h,kh) & @ or (jh,(k+1)h) ¢ @ Dupont,

4
h h h’
Kendall, and Rachford [5] showed that, for the unmodified factorizatiom,

the quantity under the square root on the right side of (2.6) is positive,

whence L1L1 is symmetric and positive—definite. Lemma 4.1 proves that the

modified DKR factorization possesses these properties also. However, for

(1)

Yj x { », the modification has the effect of making B negative—-definite

1
rather that simply negative—semidefinite, as is the case for the unmodified

factorization.5 This difference is critical to the eigenvalue estimates

developed in Section 4.

If the grid-points are renumbered with j decreasing and k increasing,

then an alternative form of the DKR factorization is given by

t _ . _ 5
LZL2 = A+Bz with B2 = B2+D2, (2.12)
where
_ _(2) (2) (2)
Lo e = V%, x * b1+, T 85,1, k-1 (2.13)
4 The coefficients c and f used in (2.11) do not occur in the

matrix A. Moreover, fo} some do&a1ns Q and their discretizatioms, the
computation of these coefficients may require the evaluation of a, and a,,
respectively, outside of @. If this presents a problem, c and may
be replaced by nearby nonzero values. In most instances, {ﬁ1s a1tei£¥1
does not affect the factorization significantly.

A vector w with all components equal is a null-vector for the matrix §1
associated with the unmodified DKR factorization.



3 _ .(2) (2)
(BZW)J'.k T L E Lk * hj—1,k—1wj_1,k_1 (2.14)
(2) (2)
- (h ik + hj—l,k—l)wj,k’
_ (2)
D% 5k = 5,605, 6", ¢’ (2.15)
with coefficients for the unmodified factorization given by
(2) _ (2), _ . (2) _ .(2)
vj,k \'- [ (1"’0. ,k) hj,k hj"l,k—]. (2.16)
- (£$2) 2 (2) 2,1/2
(i)~ ey 15
(2) o (2)
8,k - 5,k (2.17)
(2) _ (2)
tik = %1,V (2.18)
(2 (2)_(2) _ (2).2
J"1 k- Yik85,k ¢5-1 ka k/“’ ). (2.19)
For the modified factorization, we replace (2.19) by
2) _ ~ (2) 2
hj—1,k T %51, k i» k/( ) (2.20)
and initialize
(2) (2) ~ ~ 1/2
Vik - Uy alCia e T LT (2.21)

if (jh,kh) e th and either ((j-1)h,kh) ¢ @ or (jh,(k+1)h) & Q . For

h h

either the modified or unmodified factorizations, the coefficients can be
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computed recursively with j decreasing and k increasing.

Again, IQL; is symmetric and positive—definite for both the modified
and unmodified factorizations. Furthermore, for 7;2; { @, the modification
has the effect of making §2 negative—definite rather that simply negative-

semidefinite, as is the case for the unmodified factorization.

We end this section with a remark about the directional dependence of
the factorizations (2.2) and (2.12). Not only are the coefficients
computed in a different order, but, also, §1 resembles a second—order
difference operator with differences taken along lines x+y=c, while §2

resembles a similar operator with differences taken along lines x—-y=c.

3. Error Estimates..
In this section, we review some general results concerning the rate
of convergence of the stationary iteration (1.5) and its Chebyshev or

conjugate gradient acceleration.

To begin, we introduce some additional notation. If x = (xl,...,xn)
and y = (yl,...,y#) are two n—vectors, let the inner—-product of x and y be
(x,y) = x1§1+...+xn§n, where ;i is the complex conjugate of y;- Let the
norm of x be Izl = (x,x)ll2 and, for any n by n matrix C, let the norm of C
be lcll = max{ lczll : llxll =1 }. For any symmetric positive-definite matrix
P, let the P-norm of x be “x“P = (Px,x)ll2 and the P-norm of C be
“C"P = max{ “Cx“P : "x"P =1 3. Also, for any matrix C, let the spectral

radius of C be p(C) = max{ IAl : A and eigenvalue of C }.
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If w is the solution of (1.1), v is the nth iterate generated by the
stationary iteration (1.5), and e =W, ~Ww is the error in the nth

iterate, then

e = [T-ok YAle . = [T-0h *Al%., (3.1)
n n 0

-1
where e, is the error in the initial guess Vo Since A is symmetric and

0
s - se s . . 1/2
positive-definite, it is valid to multiply (3.1) by A to get

a2 o r1-aat 22000 2 o pr-aal/ 2K 210 2
n n—-1 0
whence
1/2~1,1/2.n
HenHA < MT-0A™ A A 717 “eOHA' (3.2)

The last inequality is the basis for the following lemma.

Lemma 3.,1: If p = p(I—wAUzX_lAl/2

) < 1, then the number of
iterations of (1.5) required to reduce the A-norm of the initial error by a

factor of ¢ is at most nt+l, where
1 n 1
(n—q) log = - 1lo ( ) = log = + log c, (3.3)
q g p g q g " g

¢ is a positive constant,6 and q+1 is the size of the largest Jordan block

*

6 The cgyiggftlyzis dependent upon the similarity transformation that
reduces A A TA to Jordan normal form (see Theorem 3.1 of [14]).
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of AI/ZK—lA;/2 1/2271A1/2 is

with an eigenvalue of magnitude p. If A

normal, then

- 1 1
n = log . / log 5 (3.4)

Proof: By Theorem 3.1 of [14],
Niz-ea/ 237 1aY 217 ¢ c(‘;)pn"q.

for constants ¢, q and p specified above. This inequality, together with

(3.2), proves the validity of (3.3). If Al/231,1/2

1/2K-1A1/2

is normal, then
I-wA can be diagonalized by a Hermitian similarity

transformation, whence
Ni1-oal/ 257141/ 2)2) = o2

and the well-known result (3.4) follows. Q.E.D.

If (1.5) is accelérated bj the Chebyshev technique, then the error at

the nth step satisfies

_ ~1
e, = Pn(A A)eo. (3.5)

where Pn(z) is the translated and normalized Chebyshpv polynomial of degree

/2

n. (See, for example, [1].) Multiplying (3.5) by A1 and taking norms, we

get that

e ll, < llp_(a'/ 25182yl lle i, . (3.6)
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The last inequality is the basis of the following lemma.

Lemma 3.2: If the eigenvalues of A:"/2K_1A1/2

lie in the ellipse

E={zeC:z=1-acos©+ ibsin9, 00 2n1}, (3.7)

where 0 { b { a { 1, then the number of iterations of the Chebyshev
acceleration of (1.5) required to reduce the A-norm of the initial error by

a factor of ¢ is at most n+l, where
1 1
n log Z-4qlogn = log P log ¢, (3.8)

¢ is a positive constant,7 g+l is the size of the largest Jordan block of

K—IA with an eigenvalue on the ellipse E, and

r=(a+b)/(1+J1-2a%+02). (3.9)
If X is symmetric, then
- 2 1 :
n = log S / log o (3.10)

and, moreover, b = 0 in the expression for r.

Proof: By inequality (2.22) of [8], Section 6.2 of [1], and an

7 The constafyzg_islfgpendent upon both the similarity transformation
that reduces A" “A A to Jordan normal form (see Theorem 3.1 of [14])
and the bound (2.22) of [8] on the Chebyshev polynomials,
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argument similar to the one leading to Theorem 3.1 of [14],

1/2K-1A1/2

“Pn(A " < cnr® (3.11)

for the constants c, q, and r specified above. This inequality, together
with (3.6), proves the validity of (3.8). If A is symmetric, then
A:l/ZX-.J'AI/2 has real eigenvalues and, moreover, it can be diagonalized by

an orthogonal similarity transformation. Hence, it follows from a

simplification of the argument used to prove (3.11) that

1/2371A1/2

lle_(a ¢ 22",

where b = 0 in the expression for r. This together with inequality (3.6)

proves the validity of (3.10). ‘ Q.E.D.

\
Although variants of the conjugate gradient algorithm have been
developed for nonsymmetric problemsf the analysis of these methods is not
well-developed. Consequently, we limit our discussion of the conjugate
gradient acceleration of (1.5) to the case that X is symmetric and
positive—definite. In this case, it is well-known that the approximate
solution LA generated by the conjugate gradient acceleration of (1.5)
minimizes the A-norm of the associated error, e, over all possible errors

of the form

1/2K-1A1/2)e

o
=]
|

=p (A 0’

where pn(z) is a polynomial of degree n satisfying pn(O) =1, (See, for

example, [1].) Since the translated and normalized Chebyshev polynomial,
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Pn(z), satisfies these conditions, the following lemma is an immediate

consequence of Lemma 3.2.

Lenma\3.3: If A is symmetric and the eigenvalues of A;/ZK—IAI/Z lie
in the interval [1-a,1+a], 0 { a < 1, then the number of iterations of the

conjugate gradient acceleration of (1.5) required to reduce the A-norm of

the initial error by a factor of & is at most n+l, where

=]
i

2 1 ’
log / log p (3.12)
and

a/ (1 + /1 - a2).

H
I

To use the results developed in this section to bound the number of
iterations of (1.5) or its acceleration, we require estimates of the

spectrum of KflA. We turn to this question next.

4, Eigenvalue Estimates.
For the AD-DKR factorization, the iteration matrix associated with

(1.5) is
~1 -1 -1
I-oM “A = [A+B.] "[(1-0)A+B,]1[A+B.] "[(1-w)A+B.]1,
® 1 1 2 2
which is similar to

-1 -1
[(1-0)A+B 1[A+B,] [(1-0)A+B,1[A+B,] ~.
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In this section, we develop some eigenvalue estimates for the pair of
factors [(1—«»)A+B1][A+B2]—1 and [(l—m)A+B2][A+Bll—1. These estimates
provide some guidance (which has proven to be very effective in practice)
for choosing the parameters {azf)} and w required by the AD-DKR and SAD-DKR
factorizations. Moreover, these estimates are the basis for the
conjectures developed in the next section concerning the work required to

solve (1,1) to a specified tolerance.

A number of preliminary lemmas are required before we can state and

prove the main result of this section.

Lemma 4.1: For either form of the modified DKR factorization (2.2)

or (2.12), if a("]): >0 and B, < ﬁil’: ¢ ®, i=1,2, where
B, = min { %[(1+ (i))(1+p(i)) + [{(1+a(1))(1+p(ii)} p§1)11/2] }
(1 _ %=1,k
pJ,k ~ + t4
ik i,k
(2) ] c. kff. k-1
j’k +~ ’
-1,k “j,k
then
(1.2, . -~ ~
CHALBIE NCRNEE SRR (4.1)
2),2 | _
(vj,k) 2 Byle. 4 4 J,k)’ (4.2)
AD 1 oy k.?' k
0¢h L <-5 —-’-'-—-J"—*_?. , (4.3)
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S, . L oF,
2 J-i.Xx  J.X
0 ¢ (- =Lk (4.4)
=2 By c. +f,
-1,k “j,k

at which vﬁfi and h;:;

if the user selected parameters {agl)} and {7§

at all points (jh,kh) & Q

h are required. Moreover,

1)} are uniformly bounded

above independently of the stepsize, h, then

0 < 1 2m < n'd)

K’ (4.5)

where H, although problem dependent, is independent of the stepsize, h.8

Proof: We prove this lemma for the factorization (2.2) only, as the

proof for (2.12) is similar,

Since the initial values of v(l) and h(l) for the modified DKR
ik jtl,k

factorization satisfy (4.1) and (4.3) and the basic recurrence relations
used to calculate the coefficients for both the original and modified DKR
factorizations are essentially the same, the induction argument used in

Lemma 1 of [5] also proves (4.1) and (4.3).

To prove (4.5), note that, if v{l)

ik is computed by the recurrence

8 Inequality (4.5) does not hold near aah for the unmodified DKR
factorization,
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(2.6), then

(1),2 (1) el (1) (1) ~
(vj’k) £ (1+aj’k)bj’k— (1+“j,k)(1+"j,k+"j,k)(°j,k+fj,k)’ (4.6)
where
q.
= —deX
uj,k ~ ‘E »
°3,k Lk
whence, by (2.10), (2.11), and (4.6),
(1) -1 zj,k'gj.k -1 ~ o~ B 2q
hj'"l k 2 'g_—"' - . 2 2§ min(cj kafj k) 2 2§ ’
’ s 3 ’ » :
j.k cj,k+fj,k j.k jsk
where §j,k is either (1+a§}))(1+p§T;+pj’k) or ygfi depending upon whether
v§1i is computed from (2.6) or (2.11), respectively. The proof is
’
completed by observing that the assumptions on aEIL, y§1;, 815 3y and q

ensure that Ej

k is bounded above independently of the stepsize, h. Q.E.D.

Lemma 4.2: For either form of the modified DKR factorization (2.2)
(i) . (i) _ D
k 2 0, then Bi > 1, Moreover, if aj,k = coh for

constants o > 0and 0 { p £ 2, then Bi 2 1+c1hp/2 for some constant

or (2.12), if a

Js
¢y > 0.

Proof: The bound Bl 2 1 follows directly from the definition of Bl in
(i)
ik

continuous in @, then Bl 2 1+¢:1hp/2 by an argument similar to the one used

Lemma 4.1. If, in addition, a = cohp and a,, a, 2 n > 0 are Lipschitz

to prove (4.15) in [5]. The corresponding inequalities for B2 are proved
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in a similar way. Q,E.D.

Lemma 4.3: For A, B., and B, defined by (2.1), (2.4), and (2.14),

1 2
respectively,
~ 2 . % 2
(Ax) == Y (6 flay pmxy 12+ Fy g gon o (4.7)
2
+ q.,klx ,kl }:

< R &) BT 2

(Byx,x) = Ehj+1,klxj+1,k xj,k+1l ’ (4.8)
~ N (2) _ 2

Byrox) = = Y nplxg x5 (4.9)

where we have used the convention that x, k =0 for x,

i, ik ¢ Qh and the sums

are taken over all nonzero terms.

Proof: The validity of equations (4.7)-(4.9) can be demonstrated
easily by summation by parts, as is the validity of the similar set of

equations (4.7)-(4.8) in [5]. Q.E.D.

Lemma 4.4: For either form of the modified DKR factorization (2.2)

or (2.12), if a(i) . £ Si) <
Js 1

k 2 0 and B, 73 X { @, then
~ 1
0 < -(Bix,x) < E‘ (Ax,x), (4.10)
i

(i) (i)

If, in addition, the user—selected parameters {aj k} and {Yj k} are
» »

uniformly bounded above independently of the stepsize, h, then

cz(x,x) < —(Bix,x) ‘ (4.11)
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for some constant c2 > 0.9

Proof: We prove this lemma for the factorization (2.2) only, as the

proof for (2.12) is similar,

To prove (4.10), we use an argument similar to the ome used to prove

(4.11) in [5]. First, observe that 0 £ —(ﬁlx,x) follows directly from

(1)
j+tl,k =

bound on —(ﬁlx,x), note that, by Lemma 3 of [5],

(4.8) of Lemma 4.3, since h, 2 0 by Lemma 4.1, To verify the upper

cfy .2 _12 _12
c+fla bl° < cla—el® + flo-el”,

for any positive ¢, f and any complex a, b, e. This inequality, together

with Lemmas 4.1 and 4.3, shows that

~ _ (1) _ 2
(le,x) = } hj+1,k|xj+1,k xj,k+1|
c. T,
{ - 2 "l‘—"l‘— Ix -x |2
<7 By 3 i1,k 5§,k
J:k J:
< B 2 {cj,klxj+1,k xj,kl fj,klxj,k+1 xj,kl }
< i (Ax,x).
By

? For_the unmodified DKR factorization, inequality (4.11) does not hold,
whence Bi is negative—semidefinite rather than negative—definite.
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To prove (4.11), observe that, by Lemmas 4.1 and 4.3,

~ _ (1) 2
(Bx,x) = } B, kb1, 1005, |
) 2
>2h"H 2 Ixj+1,k—xj,k+1|
-2 (4+1) ()2
2h HE } lyg, oy, 1

all L L

where each L is a diagonal in Qh satisfying x+y=c, for some constant c, and

(€)

{y } is the subset of {xj k} on L. For each L, let YL be the n—vector

L)

with components {y } on the diagonal L, and let CL be the n by n matrix

h 2diag(—1,2,—1). Then

-2 (+1)__() 2 _
where XL is the minimum eigenvalue of CL. Since the length of any diagonal

L in Qh is bounded, there exists a constant A, > O, independent of both h

and L, such that xL 2 A, > 0. Consequently, (4.11) holds for cy = HA, > O.

Q.E.D.

Lemma 4,5: If
(1)

1. a J = cohp for constants o > 0and 0 < p < 2, and
2. a; = a,,
then

0 ¢~ (Bxn - B0 ¢ (1-c,02%) (ax,x).

3
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for some constant c3 > 0.

Proof: By Lemmas 4.1 and 4.3,

0¢ - (§1x.x) - (sz.x)

c 5? c. -?
¢ - - } Si.k Ti.k Ix. — |2 + ek itk I - |2
- +F j+l,k 7j,k+1 T 4F 3+1,k+1 j.k
J,k jsk J,k j+l,k

where B, = min{Bl,BZ}. For some constant L,

~ ~

c. °f, c. .- f,
—J.K _jri,.XK J.XK J.X
~ k - +1,k < - = k — k (1+Lh) ,

cj,k+fj+1,k cj,k+fj,k

since a, 2n > 0 is Lipschitz continuous in Q. Also, for any complex

values a, b, ¢, d,
la-b1? + le=aI? < la—c1? + la-al® + lb-cl? + lb-al?.
Therefore,

0¢ - ('ﬁlx,x) - (ﬁzx,x)

~ .¥
1+Lh ®i.k i,k _ 2 _ 2
£ - } R (lx, j+1,K xj,k+1| + lxj+1,k+1 xJ’kl )
th jsk
1+Lh g],k'E], 2 2
R I Gl i L i R R
i,k "j,k
+ Iz |2 Ix |2).

§4L,E 5, e T R, e Lk
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Since a, = a, 2m > 0 are Lipschitz continuous in Q,

c.  °f
%,k M.k, 1+lm ~ ~
= — < > m1n{c e fJ %5,k fj+1,k}
c.,  +f,
ik "j,k

for L sufficiently large, whence
0<¢ - (le,x) - (Bzx,x)

2

_ (1+Ln) } ~ 2, ~ _ 2
TR togxlian, 15,5l * 05 %0 %5, |
* fj,klxj,k+1_xj,k| + fj+1,k|xj+1,k+1'xj+1,k' }
§1+Lh1 E 2 = _ 2
£ R TR UL TR TR

I~

(1—c3hp’2>(Ax,x),

where the last inequality follows from Lemmas 4.2 and 4.4.

Corollary 4.6: If

(i) _ P
1. aj,k = coh for constants c0 > 0and 0 < p < 2,

2. a1 = a2, and

3. 0< 01,

then the AD-DKR iteration matrix Mw is well-defined.

Q‘>E"D’
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Proof: From Lemma 4.5, if 0 < © < 1, then [(2—m)A+§1+§2] is positive-
definite, whence so is [(2—&)A+B1+B2]. Therefore, [(2—w)A+Bl+B2] is

nonsingular and Mw is well-defined by (1.6). Q.E.D.

Theorem 4.7: Assume that

o2

R
1. ik coh for constants o >0and 0 <(p 2,
2. Bi £ ygi; £ v, for some constant y, { @ independent of the stepsize,
»
h, and
3. a; = a,.

Then any eigenvalue A of either [(1—«.))A+Bl][A+B2]_1 or [(1—(9)A+B2][A+B1]—1

is real and satisfies

-1 + c4hP/2 - (w—l)cGh—p £A<1 - csh?-p, (4.12)
if o 2 1, and
1+ c4hp/2 A E1- ol (1rw)e i P, (4.13)

if o £ 1, where C4s Cg» Cc are positive constants,

Proof: We prove this result for [(l—m)A+B1][A+le_1 only, as the

proof for [(1—&)A+BZ][A+B1]_1 is similar.

Since A, B1, and B2 are symmetric and LZL; = A+B2 is positive-

definite, [(1--«:))A+B1][A+B2]—1 is similar to the symmetric matrix

/2[(1—m)A+B1][A+B2]—1/2. Consequently, the eigenvalues of

/2

-1
[A+B2]

[(1—w)A+B1][A+BZ]_1 are real. Moreover, for x = [A+132]'_1 vy, Y# O,
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/ g 1°1/2

LA 148,125, (L1-0)AB) 1x,0)

-1
([A+BZ]

L4

(y,y) ([A+B2]x,x)

whence any eigenvalue A of [(1—1»)A+B1][A+132]—1 satisfies

min ([(1—w)A+B1]x,x)
x#0

max ([(l—w)A+B1]x.x)
LAl

= x#0 ‘

([A+B2]x.x) ([A+B2]x,x)

In addition, since B1 = Bl+D1’ B2 = B2+D2, and, by Assumption 1,

([(1-0)A+B, 1x,x) (1-u) (Ax, x) +(B. x, x) +(Dx, x)
1 = 1 . (4.14)
([A+B,1x,x) (Ax,x)+(§2x,x)+(nx,x)

Thus, to verify that inequalities (4.12) and (4.13) hold, it is sufficient
to develop upper and lower bounds for the right side of (4.14), where,

throughout this proof, we assume x # O.

Since LQI; = A+B2 is positive—definite, (Ax,x)+(§2x,x)+(Dx,x) > 0.

Therefore, if (1—m)(Ax,x)+(§1x,x)+(nx,x) < 0, then

(l-w)(Ax,x)+(§1x,x)+(Dx,x)

- <0¢1- csh?'P
(Ax,x)+(Bzx,x)+(Dx,x)

for cs sufficiently small, as h is bounded above in any discretization of

Q. On the other hand, if (l—w)(Ax,x)+(§1x,x)+(Dx,x) 2 0, then

(1-0) (Ax, x) +(B, x, x) +(Dx, x) (B, x,x)
1 1 _ (Ax,x)
{1+ ——(Dx,-—x)- + (1-0) (Dx,x)°’ (4.15)

(Ax,x)+(§2x,x)+(Dx,x)
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since, by Lemmas 4.2 and 4.4, (Ax,x)+(§2x,x) > 0. By Assumptions 1-2 and
the assumptions on a5, 8y, and q, there exist positive constants m and M

such that
mh—2+p(x.x) £ (Dx,x) £ Mh—2+p(x.x), (4.16)

whence, by Lemma 4.4,

(B, x,x)
1 { —-¢c

1 2-p
(DXQX) - 5h

for c. £ c2/M. Furthermore, from Lemma 4.3 and the definition of D,

5

(Ax,x) -p
(Dx,x) S c6h

for 6 2 2/c0. Hence, if w 2 1, then

(l—w)(Ax,x)+(§1x,x)+(Dx,x)

—~ <1- cshz”l’,
(Ax,x)+(B2x,x)+(Dx,x)
and, if ©w {1, then
(l—w)(Ax,x)+(§1x,x)+(Dx,x) g _
$1-c.h Py (1-w)e h L

(Ax,x)+(§2x,x)+(Dx,x)

showing that/the upper bounds for inequalities (4.12) and (4.13) are valid.

To verify the lower bounds, consider two cases depending upon whether

(Dx,x) > (Ax,x). If (Dx,x) > (Ax,x), then
(Bix,x) + (Dx,x) > O, i=1,2,

by Lemmas 4.2 and 4.4, whence

(1—m)(Ax,x)+(B1x,x)+(Dx,X) , (1-0) (Ax, x)

(Ax,x)+(§2x,x)+(Dx,x) - (Ax,x)+(§2x,x)+(Dx,x)
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Therefore, if w { 1, then

(l-w)(Ax,x)+(§1x,x)+(Dx,x)

20,
(Ax,x)+(Bzx,x)+(Dx,x)
and, if 0 2 1, then
(l—w)(Ax,x)+(§1x,x)+(Dx,x)
2 "(0)'1) .

(Ax,x)+(§2x;x)+(Dx,x)

Thus, the lower bounds in the theorem are satisfied in this case provided

that e is sufficiently large, since h is bounded above in any

discretization of Q.

On the other hand, if (Dx,x) ¢ (Ax,x), then

(Ax,x) N 1
(Ax,x)+(§2x,x)+(Dx,x) T2

Furthermore, by Lemma 4.5;

(ﬁlx,x) 2 =(1-c hplz)(Ax,x) - (ﬁzx,x),

3

whence

(1-w)(Ax,x)+(§1x,x)+(Dx,x)

(Ax,x)+(§2x,x)+(Dx,x)

—(Ax,x)-(ﬁzx,x)+(Dx,x)+(1—w+c hplz)(Ax,x)

3
(Ax,x)+(§2x,x)+(Dx.x)

2

(Ax,x)
(Ax.x)+(§2x,x)+(Dx.x)

2 -1 + (1—w+c3hp/2)

Consequently, by (4.17), if 0 { 1, then

(l—m)(Ax,x)+(§1x,x)+(Dx.x)

> -1 + c4hp/2

(Ax,x)+(§2x,x)+(nx.x)

(4.17)
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for 4 < 03/2, and, if o > 1, then

(l-m)(Ax,x)+(§1x,x)+(Dx,x)

> -1 + o 0?2 (w—1)c6h’1’,

(Ax,x)+(§2x,x)+(Dx,x) 4

showing that the lower bounds for inequalities (4.12) and (4.13) are valid.

Q.E.D.

If our objective is to minimize p([(l—w)A+Bll[A+B2]—1) and
p([(l—m)A+BZ][A+B1]_1) in the hope that this will minimize p(I—wM;IA) and
lead to an effecfive stationary iteration, then, based upon equations
(4.12) and (4.13), we should take w =1 and p = g. For future reference,

we restate Theorem 4.7 for these particular values of ®w and p.

Theorem 4.8: Assume that

l1.0=1,
(i) _ 4/3 .

2. aj,k = coh for some positive constant co’
(i) . .

3. Bi £ Yj £ 74 for some constant vy, { « independent of the stepsize,
L4

h, and
4. a, = a,.

Then any eigenvalue A of either 131[A+B:z]_1 or BZ[A+B1]-1 satisfies

2/3 2/3

-1+ c4h <A1 - csh ’
whence
-1 2/3
p(Bl[A+B2] ) 1 c7h

and
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2/3

p(B,[A+B, 1Y) ¢ 1 - ¢.12/3,
) [A+B)

7

where c, = min{c

7 ,cs} > 0.

4
5. Work Estimates: Conjectures and Discussion.

In this section, using the eigenvalue estimates from the previous
section, we develop conjectures that both p(I—MIlA) and p(I—SIlA) are

bounded by 1—ch2/3

, for some positive constant c. If the conjecture for the
SAD-DKR factorization is valid, then the number of iterations of (1.5)
required to reduce the A-norm of the initial error by a factor of ¢ is
o(n~2/3
2

O(hfzglog%). Moreover, if (1.5) is accelerated by the Chebyshev or

log%) with the associated number of arithmetic operations being

conjugate gradient techniques, then the number of iterations is decreased

to 0(1:.—1/3
1

O(hfzglog%). If additional conjectures concerning the spectral structure

log%) with the associated number of arithmetic operations being

of M;lA hold, then, for the AD-DKR factorization, similar work estimates
are valid for the stationary iteration (1.5) and its Chebyshev
acceleration. Although the work estimates in this section are not
rigorous, numerical results presented in the next section strongly support

our conjecture that they are accurate.

We begin by stating the two fundamental conjectures about p(I—MIlA)

and p(I-S;IA) upon which the work estimates in this section are based.

Conjecture 5.1: If the assumptions of Theorem 4.8 hold, then

p(I—MIlA) < 1—c7h2/3. Moreover, the eigenvalues of MIIA lie in a very

eccentric ellipse, the major—axis of which is contained in the interval
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2/3 2/3

[c h ’2—0 h ]‘

Discussion: If C1 and C2 are normal matrices, then

p(C C)) & HcchH < Hcln'ﬂczﬂ = p(C)p(C)).
Hence, if Bl[A+B2]—1 and BZ[A+BI]-1 were normal, then

-1,, _ -1 -1

p(I-M,"A) = p([A+B 1 "B [A+B,]1 "B,)
_ -1 -1
= p(B1 [A+B2] B2 [A+B1] )

-1 -1
£ p(B, [A+B,] ") p(B,[A+B,] 7),

and the first statement of the conjecture would follow from Theorem 4.8.

Moreover, if M1 were symmetric, then the eigenvalues of M-lA would be real

1
13 5 o 42!3

7 1.

and would lie in the interval [c7h2

The conjecture is based upon the observation that, under the
assumptions of Theorem 4.8, each of Bl[A+B2]_1, BZ[A+B1]—1, and Ml is
'almost symmetric’ in the interior of the grid @, , by which we mean, for

example, that

-1 -1
(31[A+B2] W)j,k ~ ([A+BZ] B1W)j,k (5.1)

whenever the grid-point (jh,kh) is not 'too close' to anh. This follows

from a simple calculation that shows that the matrices B1B2, ABl’ ABZ’

and D32 'almost commute’ in the interior of the grid ﬂh. However, if

DBl’

(jh,kh) is ’'close’ to anh, then (5.1) is a very poor approximation.

Although it is possible to be more specific about what we mean by 'almost
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symmetric’, this has not lead us to a more convincing justification of the
conjecture, Therefore, we do not pursue this argument further at this

time.

Conjecture 5.2: If the assumptions of Theorem 4.8 hold, then

-1 2/3
p(I--S1 A) (1 c7h

2/3 ,_ .2/3
[c7h 22 c7h 1.

and the eigenvalues of SIlA lie in the interval

Discussion: If C1 and C2 are normal matrices, then

p(C,+C,) < llc +C Il ¢ Hcln + chn = p(C)) + p(C)).

In addition, if Conjecture 5.1 holds, then p(I—MElA) < 1—c7h2/3; the
conjecture that p(I-MItA) < 1-c7h2/3 can be defended in a similar manner,
Hence, if I—M;IA and I—MItA were normal, then
-1 1 -1 1 -t 2/3
p(I S1 A) < Ep(I—M1 A) + 2p(I M1 A) < 1—c7h . (5.2)

Furthermore, since S1 is symmetric, the eigenvalues of SIIA are real.
Hence, if (5.2) holds, then the eigenvalues of SIIA lie in the interval
2/3 2/3

[c.h°' 7 ,2-c h

7 7 1.

Although I—M;lA and I—MItA are not in general normal, they are
'almost symmetric’ in the interior of the grid ﬂh in the sense used in the

discussion following Conjecture 5.1.

Theorem 5.3: If the assumptions of Theorem 4.8 hold and

Conjecture 5.2 is valid, then, for the SAD-DKR factorization, the number of
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iterations of (1.5) required to reduce the A-norm of the initial error by a

factor of & is O(h_2/3
CA2

operations is O(hfzglog%). Moreover, if the iteration (1.5) is accelerated

log%) and the associated number of arithmetic

by the Chebyshev or conjugate gradient techniques, then the number of

-1/3

iterations is decreased to O(h 1o l) and the associated number of
- &g

1
g

arithmetic operations is O(hfzglog ).

Proof: If the assumptions of Theorem 4.8 hold and Conjecture 5.2 is

valid, then p = p(I-SIlA) < 1—c7h2/3. Moreover, A;/28;1A1/2

since SII is symmetric. Hence, by Lemma 3.1, the number of iterations of

is normal,

(1.5) required to reduce the A-norm of the initial error by a factor of e

is at most n+l, where

1

n = log % / log = = 0(11,-2/3 1

log;) .

©

Moreover, S1 is symmetric and the eigenvalues of S;IA lie in the interval
[c7h2/3,2-c7h2I3]. Hence, if the iteration (1.5) is accelerated by the
Chebyshev or conjugate gradient technique, then, by Lemmas 3.2 and 3.3, the

number of iterations of (1.5) required to reduce the A-norm of the inmitial

error by a factor of & is at most n+l, where

~ 1o 2 PO VA B
n = log . / log z = Oo(h loge),
since, in this case, a = 1--c,.,h2/3 and
{ 2
% . a1—a > 1+ch1/3

for some positive constant c.
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Since, for the SAD-DKR factorization, the number of multiplies needed
to perform one iteration of (1.5) or its Chebyshev or conjugate gradient
acceleration is proportional to the number of grid-points in the
discretization, the number of multiplies per iteration is O(hfz). Hence,
the work estimates follow immediately from the bounds on the number of

iterations. , Q.E.D.

For the AD-DKR factorization, the work estimates are complicated
slightly by the appearance of the constants ¢ and q in equations (3.3) and
(3.8) and the constant b in the expression for r (3.9). Clearly, these
constants depend upon the matrices M1 and A and, consequently, may grow as
h->0. However, if they do not grow 'too fast’ as h->0, a result similar to

Theorem 5.3 holds for the AD-DKR factorization as well.

Theorem 5.4: If

1. the assumptions of Theorem 4.8 hold,
2. Conjecture 5.1 is valid, and

3. the constants ¢ and q that appear in the inequality (3.3) satisfy
c = O(S—k) and q { Q, for some constants k and Q independent of h,
then, for the AD-DKR factorization, the number of iteratioms of (1.5)
required to reduce the A-norm of the initial error by a factor of ¢ is
0(h—2/3
2

0(h72§log%). Moreover, if the iteration (1.5) is accelerated by the

log%) and the associated number of arithmetic operations is

Chebyshev technique and Assumption 3 is replaced by
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w2

the constants ¢ and q that appear in the inequality (3.8)
satisfy ¢ = O(S—k) and ¢ { Q, for some constants k and Q

independent of h, and

4. the constant b that appears in the expression for r (3.9)

/3

satisfies b = O(h1 ),

/3

then the number of iterations is decreased to O(h.—1 log%) with the

1
associated number of arithmetic operations being O(h 23103%).

Proof: If the assumptions of Theorem 4.8 hold and Conjecture 5.1 is

valid, then

p = p(I—MilA) < 1-¢ n2/3

7 (5.3)

for some positive constant ¢ By Lemma 3.1, the number of iteratioms of

7.
(1.5) required to reduce the A-norm of the initial error by a factor of e

is at most n+l, where

1 n 1
n-q) log = - 1o = log = +1
(n-q) log J s(q) g g tlogec

Therefore, by Assumption 3, and (5.3), n { m, where

(m-"Q)c.lhz/3 - Qlogm = (k+l) log g.

/3

for some constants Q, k, and C independent of h, whence n = O(h.—2 log%).

By Assumptions 1, 2, and 4, the eigenvalues of M;lA lie in the

ellipse

E={zeC:2=1~-acos9+ibsin®, 006 2n1},
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where a = 1-—c7h2/3 and b = 0(h1/3). whence
1 1 +11—a +b 1/3
z " 2 + b 2 l4ch

for some positive constant c¢. Therefore, by Assumption 5, Lemma 3.2, and an
argument similar to the one used above for the stationary iteration, if the
iteration (1.5) is accelerated by the Chebyshev technique then the number
of iterations required to reduce the initial error by a factor of € is

decreased to O(hfllslog%).

Since, for the AD-DKR factorization, the number of multiplies needed
to perform one iteration of (1.5) or its Chebyshev acceleration is
proportional to the number of grid—points in the discretization, the number
of multiplies per iteration is O(hfz). Hence, the work estimates follow

immediately from the bounds on the number of iterationms. Q.E.D.

We have not been able to establish the validity of Assumptions 3, §,
and 4 for the AD-DKR factorization, although we believe that the violation
of either Assumption 3 or 3 is very unlikely in practice. On the other
hand, the validity of Assumption 4 is questionable. For a few sample

problems with coarse discretizations, we computed the eigenvalues of M;lA
and found some of them to have small, but not insignificant, imaginary
parts. However, the numerical results presented in the next section do not

contradict the conclusion of Theorem 5.4, which lends support to our belief

that the assumptions on which the theorem is based may be valid as well,

Finally, we re—emphasize that the class of problems of the form (1.2)
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to which our convergence results for the AD-DKR and SAD-DKR factorizations
pertain is essentially the same as the class considered by Dupont, Kendall,
and Rachford [5] for the DKR factorization, except for the added

restriction that a, = a Experimental results show that, if this

1 2°

restriction is violated, then the Alternating-Direction technique may not

improve the rate of convergence of the iteration (1.5) or its acceleration.

Furthermore, note that the parameters v =1 and a, =c h4/3

ik 0
for use with the AD-DKR and SAD-DKR factorizations are substantially

different from the corresponding parameters w = O(h) and aj k- ch2

recommended by Dupont, Kendall, and Rachford [5] for the DKR factorization.

recommended

Moreover, experimental evidence suggests that the AD-DKR and SAD-DKR
factorizations do not achieve the substantially improved rates of
convergence that we have observed if the parameters recommended for the DKR
factorization are used. A more complete discussion of these observations

is given in [3].

6. Numerical Results.
In this section, we present some numerical results that support the

conjectures of the previous section.

For this experiment, we chose the Dirichlet problem with homogeneous
boundary conditions for the two—dimensional elliptic equation (1.2) with

coefficients
al(x,y) = az(x.y) = 9, a(x,y) = -1/(1+x+y)

on the L-shaped domain Q having vertices (0,0), (1,0), (1,%), (%,%), (%,1),
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(0,1). The domain was discretized with N+1 evenly spaced grid—lines in

each direction; h = %. For N = 10, 20, 30,...,90, we discretized (1.2)

using the standard five—point operator described in Section 2. We computed

r, the right side of the resulting system of linear equations (1.1), so

that the system has the solution

= ¢ (1o - 1 -
wj,k = xj(2 xj)(l xj)yk(2 yk)(l yk),

where

Starting from an initial guess of zero, we solved (1.1) by the iterative
methods discussed in the previous section., Also included for comparison is
the conjugate gradient acceleration of (1.5) based upon the DKR

factorization. In each case, we recorded the number of iterations required

to reduce the A-norm of the initial error by a factor of & = 10-5.

In Figure 6-1, the number of iterations required to solve (1.1) to
the specified accuracy are listed for the methods

1. SIN, the stationary iteration (1.5) based upon the nonsymmetric

AD-DKR factorization M, with o, = h4/3

1 j.k and iteration parameter

w=1,

2, SIS, the stationary iteration (1.5) based upon the symmetric SAD-DKR

factorization S, with a, = h4/3

1 ik and iteration parameter w =1,

3. CHN, the Chebyshev acceleration of the stationmary iteratiom (1.5)

based upon the nonsymmetric AD-DKR factorization M1 with aj k- h4/3
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and iteration parameters chosen to minimize Pn(z) on the interval

2/

n2/3,2-12/31,

4. CHS, the Chebyshev acceleration of the stationary iteration (1.5)

based upon the symmetric SAD-DKR factorization S1 with @ik - h4/3
and iteration parameters chosen to minimize Pn(z) on the interval
[h2/3,2—h2/3],

5. CGS, the conjugate gradient acceleration of the stationary iteration
(1.5) based upon the symmetric SAD-DKR factorization 81 with
4/3

aj,k =h , and

6. CGDKR, the conjugate gradient acceleration of the stationary

iteration (1.5) based upon the DKR factorization with a, , = hz.

ik
For each method, both the modified (M) and unmodified (UM) DKR
factorizations were used. Also listed in the last two lines of Figure 6-1

are the expected rate of convergence, E, and the observed rate, R, where R

is computed by a least squares fit to
log N = R log (NUMBER OF ITERATIONS) + C
for N = 30,40,...,90.

For each of the methods, the numerical results for the modified and
unmodified DKR factorizations are almost identical. Consequently, we have
plotted the number of iterations for the methods based upon the unmodified
DKR factorization only in Figures 6-2 and 6-3. The CGDKR method is

included in each graph for comparison.
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E | 2731 2731 2731 2731 1731 1/31 1/31 1731 1/31 1/3] 1/2] 1/2
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The rate of convergence of the methods, with the possible exception
of CHN, agrees very well with the rate predicted by the analysis in the
previous section, The reason for the discrepancy for CHN is not clear to
us, but it could be that Assumption 4 of Theorem 5.4 is violated or that
the parameters that we chose for the Chebyshev iteration are not optimal.

This question requires further investigation.

Although the principal aim of this paper is to present asymptotic
work estimates for several ADIF methods and not to compare the efficiency
of various algorithms for solving (1.1), we conclude with a few
observations about the efficiency of CGS. Even on coarse grids, the number
of iterations required to solve this test problem by CGS is about half the
number required by CGDKR. Moreover, this ratio decreases with N, as the
theory predicts. However, straightforward implementations of CGS and CGDER
require 16(N—1)2 and 44(N—1)2, respectively, multiply—adds per iter#tion.
Hence, for these implementations, this problem, and the grids considered,
CGDKR requires less work than CGS to solve the problem. But the relative
efficiency of these two methods is problem dependent: for the Laplacian on
a unit square with the same sequence of grids and implementations, we found
that CGS requires slightly less work than CGDKR on the fine grids. In
addition, Eisenstat [6] has shown that CGDKR can be implemented in 10(N—1)2
multiply—adds per iteration. Some of his techniques are applicable to CGS
as well, and it is our hope that the work per iteration for this method can
be significantly reduced. We intend to consider the question of efficient
implementation of ADIF methods in [3], as well as the comparison of these

methods with others.,
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