In this paper, a design methodology for synthesizing efficient parallel algorithms and
VLSI architectures is presented. A design process starts with a problem definition specified
in the language Crystal and is followed by a series of program transformations in Crystal,
each aiming at optimizing the target design for a specific purpose. To illustrate the design
methodology, a set of design methods for deriving systolic algorithms and architectures
is given and the use of these methods in the design of a dynamic programming solver is
described. The design methodology, together with this particular set of design methods,
can be viewed as a general theory of systolic designs (or multi-dimensional pipelines).
The fact that Crystal is a general purpose language for parallel programming allows
new design methods and synthesis techniques, properties and theorems about problems
in specific application domains, and new insights into any given problem to be integrated
readily within the existing design framework.
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A Design Methodology for Synthesizing Parallel Algorithms and Architectures

Marina C. Chen
Department of Computer Science, Yale University ' .
New Haven, CT 06520

Abstract In this paper, a design methodology for synthesizing efficient parallel algorithms and VLSI
architectures is presented. A design process starts with a problem definition specified in the parallel pro-
gramming language Crystal and is followed by a series of program transformations in Crystal, each aiming
at optimizing the target design for a specific purpose. To illustrate the design methodology, a set of design
methods for deriving systolic algorithms and architectures is given and the use of these methods in the design
of a dynamic programming solver is described. The design methodology, together with this particular set
of design methods, can be viewed as a general theory of systolic designs (or multi-dimensional pipelines).
The fact that Crystal is a general purpose language for parallel programming allows new design methods
and synthesis techniques, properties and theorems about problems in specific application domains, and new

insights into any given problem be integrated readily within the existing design framework.

1. Introduction

VLSI technology provides a natural medium for parallel processing, from the level of switching elements,
to logic gates, to functional and control units, and to architectures and algorithms. To expoit its potential
fully, parallelism must be used at increasingly higher levels. Design automation, consequently, must go
beyond the level of taking as givens architectural level specifications, and should head towards compiling or
synthesizing efficient parallel algorithms and architectures. The technology, on the other hand, constrains
the way in which parallel computation can be organized. Dominant costs at the technological level often have
profound implications in the designs at algorithmic and architectural levels. Clearly, to achieve an efficient
design, one must take advantage of what the technology can offer, and minimize the costs associated with
the constraints it imposes upon the design.

Motivated by the former, a design methodology for synthesizing efficient parallel algorithms and VLSI
architectures is presented. A design process starts with a problem definition specified in the parallel pro-
gramming language Crystal [4] and is followed by a series of program transformations in Crystal, each
aiming at optimizing the target design for a specific purpose. To illustrate the design methodology, a set
of design methods for deriving systolic algorithms and VLSI architectures, motivated by the costs and con-
straints of the technology, is given. The use of these methods in the design of a dynamic programming solver
is described. The design methodology, together with this particular set of design methods, can be viewed as

a general theory of systolic designs (or multi-dimensional pipelines).
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Each design method or synthesis technique takes into account the dominant costs in the underlying
technology and minimizes such costs to yield efficient parallel algorithms and architectures. For instance,
the design process starts with a problem definition specified in Crystal, which is interpreted as a parallel
algorithm, however naive and inefficient it might be. From this naive algorithm, the dominating costs it might
incur in the underlying parallel hardware, such as those of communications and fan-ins and fa.n-o'\'xts, are
examined. The algorithm is then improved by a series of transformations that results in a bounded order and
bounded degree program which has reduced hardware costs. Once such a program is obtained, it goes through
another stage of transformation, called space-time mapping, by which pipelining is automatically incorporated
into the algorithm and the hardware resources are fully utilized. Another stage of transformations then
follows, which aims at reducing the amount of hardware necessary for achieving the timing control among
the parallel processing elements.

The set of synthesis methods for the design of VLSI architecture described in this paper has a wide
range of applications, but is by no means a complete set of general synthesis methods. In fact, it is hard
to believe such a set may ever be attainable. However, the fact that Crystal is a general purpose parallel
programming language allows new synthesis techniques, new theorem, and new insights for any give problem
be integrated readily within the existing design framework.

Throughout this paper, the dynamic programming problem is used for illustration. The well-known
systolic algorithm of Guibas, Kung, and Thompson [7] is one of the many possible designs generated. The
rest of the paper is organized as follows: In Section 2, a mathematical definition of dynamic programming is
given. In Section 3, its interpretation as a parallel algorithm is described. In Section 4, transformations for
reducing the number of fan-ins and fan-outs are presented. In Section 5, transformations that reduce long-
range communications are illustrated. In Section 6, algorithms are classified as either uniform or non-uniform
because space-time mapping for uniform algorithms can be obtained by an expedient procedure, which is
described here. A general inductive method for finding space-time mapping for non-uniform algorithms can
be found in [5]. In Section 7, optimization of control signals is illustrated. Some related work is discussed in
Section 8. The appendix contains the actual Crystal programs, starting with a simple mathematical defi-
nition in the first program to a complete architectural specification in the target program. An architecutral
level simulation of the design is generated as a by-product of executing the target program. Therefore the
Crystal programming environment automatically provides a simulation environment for the design of VLSI

architectures.




2. A General Definition of Dynamic Programming

A large class of optimization problems can be solved by dynamic programming. The definition of such

problems can be posed in a general form where C(¢, 7) is some cost function which is to be minimized:

o> 0~ min {(C(i,K), O(k, 1))}

C(i,7) = where A is some function on the costs (2.1)

8 = 0 — C; for some individual cost
where s=j—1-1,

and 1 and j are integers in the range 0 < { < j < n, for some constant n.

3. Parallel Interpretation of Algorithms

The straightforward definition given in Equation (2.1) is in the form of a Crystal recursion equation with
indices ¢ and j. It can be interpreted as a parallel algorithm as follows: Each pair (3, ) in Equation (2.1) is
interpreted as a process in an ensemble of parallel processes denoted by the set P, 4 {(G,7):0<i<y<n}
The local processing at each process (i, j) is, in this example, the function mini<k<;{h(zx,yx)} that takes
J — 1 —1 pairs of arguments. The communication between processes is specified, for instance, by the pairs
(¢, k) and (k, 5) appearing on the right-hand side of Equation (2.1) to indicate that the computation of C(3, )
at process (¢, 5) needs the results from processes (i, k) and (k, 7).

The ensemble of processes and its data flow can be depicted by a DAG (Directed Acyclic Graph) as
shown in Figure 1. It consists of nodes, where each node corresponds to a process (%, 5) in P;, and directed
edges, each of which comes out of a node whose corresponding process appears on the right-hand side of
Equation (2.1), and goes into a node whose corresponding process appears on the left-hand side of the
equation. The directed edges of the DAG define the data dependency relation of the algorithm. We say that
a process u immediately precedes v (u < v), or v immediately depends on u (v > u), if there is a directed
edge from u to v. The transitive closure «X” of this relation, called “precede”, is a partial order, and there
is no infinite decreasing chain from any node v, nor is there an infinite number of processes that immediately
precede v. Those nodes that have no incoming edges are called sources.

Processes are parallel in nature. A computation starts at the sources which are properly initialized, and
is followed by other processes each of which starts execution when all of its required inputs, or dependent
data become available. The parallel execution of the naive dynamic programming definition starts with all
processes such that s = 0, followed by processes with increasing s as illustrated in Figure 1.

An immediate, very naive implementation of the parallel interpretation uses one processor for each
process, and altogether O(n?) parallel processors are needed. The number of time steps needed to compute

the result is at best n — 1 since any C(¢, 5) cannot be computed until C(i, s —1) and C(i +1, 5) are computed.

4. Problems with Large Numbers of Fan-ins and Fan-outs

Due to the inherent physical constraints imposed by the driving capability of communication channels,
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Figure 1: The DAG describing the data dependency of dynamic
programming.

power consumptions, heat dissipations, memory bandwidth, etc., it is reasonable to assume that data can
only be sent or received simultaneously to or from a small number of destinations or sources. Putting such
constraints in algorithmic terms: the number of “fan-ins” and “fan-outs” of a datum must be small, where
fan-in degree of a datum is defined to be the number of data items on which it depends, and fan-out degree
is the number of data items dependent upon it. If what we are interested in are practical and efficient
algorithms, the fan-in and fan-out degrees should be taken into account in measuring the complexity.

It can be easily seen that the fan-in degree of C(1, ), which appears on the left-hand side of Equation
(2.1), is 2s, where s def J =1~ 1. Conversely, for any value appearing as C(¢, k) on the right-hand side of
Equation (2.1), that value is needed by C(3, ) for y = k+ 1,...,n (there are n — k such terms). The same
value also appears as C(k, j) in the equation and it is needed by processes (i, ) for ¢ = 1,...,k — 1 (there
are k — 1 such terms). Since both s and & grow with the problem size n, the number of fan-ins and fan-outs
therefore grows linearly with the size of the problem.

To avoid the high cost incurred at the hardware level, the large fan-in and fan-out degrees must be
reduced. In the following transformations, the original fan-in and fan-out degrees are reduced from O(n) to

a constant, while the complexity of the original algorithm is maintained the same as before.

4.1. Reducing fan-out degrees

The idea used in reducing the fan-out degree is quite simple:
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Proposition 4.1. Let z(l) for u <! < v where u and v are integers and u < v be v — u + 1 variables to
which a value z shall be assigned, i.e., z(l) = z for u < | < v (where the fan-out degree of z is v — u + 1).

Then the assignments of these variables can be performed instead by

l=u—z
z(l) = (4.1)
I>u—2z(l-1)
or by
l=v—z
2(l) = (4.2)
l<v—z(I+1)
foru<liI<v

where the fan-out degrees of z and z(l) foru <! < v are 1.

The two recursion equations above are only two out of many possible ways a value z can be concurrently
assigned to many variables z({), for all u < I < v. The first equation describes the situation where z is
assigned first to the variable at the endpoint u of the interval between u and v. Alternatively, the second
equation describes the assignment starting at the other endpoint v. Similarly, z could be first assigned to a
z(w), where w is somewhere in the middle of the interval. To complete the concurrent assignments, all of the
above schemes, called linear broadcasting arrays, require time steps linear to the number of variables to be
assigned. A much different way of implementing the concurrent assignment of z to many variables may be
via a broadcasting tree, in which only a logarithmic number of steps are needed to complete the assignments.
Interested readers may try to describe the broadcasting tree by recursion equations. Such transformation is
very useful in devising efficient parallel programs.

For the dynamic programming problem, in order to decrease the fan-out degree of C(i, k), the schemes
of linear broadcasting array and the broadcast tree are first compared. The former is chosen since the time
complexity of the target program employing each scheme turns out to be of the same order for both cases,
and the linear broadcasting array is simpler and requires less hardware than a broadcasting tree. Within
the class of linear broadcasting arrays, there are a few possible choices: initial assignments to variables at
endpoints of an interval are in general preferred since they result in uni-directional data flow, which requires
simpler control than bi-directional data flow.

Now let the variables at processes (¢,7) for k < j < n to which C(¢, k) will be assigned be denoted by
a(#, 7, k) so that Proposition 4.1 can be applied to C(, k) (the value z) and a(i, j, k) for all § (the variables

~z(1)). Similarly, let the variables at process (¢, j) for 1 < k < ¢ to which C(k, 7) is to be assigned be denoted
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by (1,5, k). Applying Equation (4.1) of the proposition to a(s, 7, k) and Equation (4.2) to b(z, 7, k), we obtain
{j:k-—o C(i, k)

7>k—a(i,j-1,k)
t=k— C(k,j) . (4.3)

a(i, g, k) =

b(s, 5, k) =
i<k—b(i+1,7,k)

for1<i<k<j<n.
Now the n — k fan-out degree of C(i, k) to all processes (3, 7), where k < j < n, is reduced to 1, and so is
the k — 1 fan-out degree of C(k, 5) to all processes (¢, 5) for 1 < { < k. We may now replace the high fan-out
degree values C(t, k) and C(k, 5) on the right-hand side of Equation (2.1) by the low fan-out degree values

a(t, 7, k) and b(1, 7, k):
s> 0— min {h(a(s,s,k),b(s,5,k))}
1<k<j

s=0—C,.

Cli,j) = { (4.4)
4.2. Reducing the fan-in degrees
The reduction of fan-in degree of a value computed by a process relies on the associativity of the

. operation being computed.

Definition 4.1. An operation “@”, where z = @, ,, (1), on v—u — 1 arguments, is associative if it can
be replaced by the composition of the following sequence of binary associative operations “@” on variables

z(l)yu<l<uv:

I=§+l-—»z(u+1)
z(1) ={ (4.5)

ut+l<i<v—z(l-1)®z(])

and z = z(v—1).

Similarly, the same operation can be achieved by a different sequence using both binary and ternary

associative operations.

Proposition 4.2. If %D~ is an associative operation on v — u — 1 arguments z(l) for u < I < v, where
2 = @y <1<y z(1), then it can be replaced by a sequence of binary and ternary operations on variables 2(l),

for m < 1l £ v of the following form:

l=m—z(m)®z(u+v-—m)

()={m<i<v—z(l-1)@z()Dz(u+v-1)
(4.6)
l=v—2z2(l-1)
v+u
5|

where m = |
and z = z(v).

Similar to the case of reducing fan-out degrees, there could be many ways that fan-in degrees can be

reduced. Aside from the two linear schemes described by the recursion equations above, a merge tree which
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takes a logarithmic number of steps to complete an n-ary operation can be used. Again, the choice of these
two very different schemes is problem dependent. Capturing these schemes by recursion equations in a
formal programming language allows the chosen transformation be performed mechanically, and the various
choices be made either manually by the users or, with the help of a set of ad hoc rules for making choices,
automatically by a design tool. )

For dynamic programming, note that the operation “min” for computing C(1, 5) is associative. Therefore
we may let the high fan-in degree value C(z, 5) at process (1, j) be computed instead by the sequence c(t, 5, k)

for m < k < 5, where m <«f [ 1—'!2'-1] We apply Proposition 4.2 to Equation (4.4), and it is transformed to

(s =0— C;

$>0—

( k= m — min(h(a(i, 5, k), b(3, 5, k)),

h(a(i, 5,5+ 5 - k), b(4, 5,5 + 7 = k))

i k)= | (4.7
L

min(c(:', J'a k- 1)1 h(a(i, ja k)y b(iv j, k))s
h(a(i,5,¢ + 5 = k), b(i, 5, + 5 — k))

L k=7 — (i, 5,k - 1),

and C(t,5) = c(1, ,7) for all (1,5) € P,. '

The application of Proposition 4.2 is motivated by the following: Due to the data dependency, the value
h(a(z,4,k), b(1, 5, k)) for i < k < 5 cannot be computed before at least max(k — ¢, 5 — k) time steps. A pair
with the least delay is the one with k = [‘-‘glj and/or k = [%1], where the delay is about half of the interval
size. Consequently, the most efficient sequence of binary or ternary operations will start with this pair, and

will be followed by other pairs in the order of increasing amount of delay.

5. Communcations and Bounded-order Recursion Equations
The following two equations
J=k—cli,k k)
a(s,5,k) =
J>k—a(i,j—-1,k)
t=k—clk,7,7) (5.1)
b(t,7,k) =
i<k—b(E+1,75,k)
forl1<i<k<jy<n,
are obtained from Equation (4.3) by substituting C(i,k) with c(i,k, k), and substituting C(k,s) with

¢(k,5,5). The system of recursion equations consisting of Equation (5.1) and Equation (4.7) is a new
algorithm for dynamic programming. The new ensemble of processes P, &f {(#,7,k):0<i<k<j<n}

is now three-dimensional, as shown in Figure 2. The added one dimension and the increased number of
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Figure 2: Process structure P, in which the fan-in and fan-out
degreess are constant, but in which there are still long range com-
munications.

processes are for the purpose of decreasing fan-in/fan-out degrees. A remaining criterion for a good parallel
algorithm is that all communications between processes should be as local as possible, if such localization is
not achieved at the expense of the total time complexity of the algorithm. To define locality, a few definitions

are called for:

Definition 5.1. The path length between two processes v def (viy.-+svm) and u def (u1y-..,upm) is defined

to be vy —us|+ -+ [um = um|.

Definition 5.2. A communication between two processes u and v, where u < v, is local if their path length

is bounded by a fixed constant.

Definition 5.3. The order of a system of recursion equations is defined to be the maximum path length

between any pair of processes u and v, where u < v.

Similar to the high fan-in and fan-out degrees, the extra delay introduced by the communications of

the high-order terms in the equations can undermine the efficiency of an algorithm. Therefore the order of
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a system of equations should be either constant or grow very slowly with respect to the problem size.

5.1. Localizing communications by domain contraction

Note that Equation (4.7) contains terms a(z, 5,1+ —k) and b(¢,i+7 — k, 5), and the order of the system
of equations is therefore 2(|k — '—%‘-ll) for 1 < k < j, which grows with the problem size n. To eliminate the
high order terms, further transformations are required.

The path length 2(]k — 1%ll) between two communicating processes is an expression whose value de-
pending on those of ¢, 7 and k. The goal is to transform this expression into one whose value is bounded.
The most obvious choice is to set k = i%i, in which case the path length becomes 0, i.e., two processes are
collapsed into a single one. Geometrically, the coordinates of these high order terms are symmetric to those
- of the low-order terms a(i, j,k) and b(s, 5, k), with respect to the plane k = (¢ 4- 7)/2 which is shaded as
shown in Figure 2. The algebraic transformation now corresponds to the contraction of the original domain
of processes by one half along the plane, so that (1,7, k) and (i, 7,t + j — k) become a single process (1, 7, k).

Let processes (¢, 7, k), such that m < k < 7, be referred to as being in the upper half of the process
structure P,. Similarly, let those processes, such that { < k < m/, be referred to as being in the lower half
of Ps.

Let the new process structure be the upper half of P;, i.e., Ps & {(+,7,k) : 0 <i<j<nandm<
k < j}, as shown in Figure 3. The data streams a and b of those processes originally residing in the lower
half must be given new names so that they can be differentiated from those of the processes originally in
the upper half. To achieve this, let d and e be new data streams to replace a and b for the processes of the

lower half as shown in Figure 3.

5.2. Algebraic manipulation to obtain bounded-order equations
First, Equation (5.1), defined for (i,7,k), 1 £ k < 7, is now split into two sets of equations, one for

the case m %' [ '-%1] < k < j where (1,7, k) resides in the upper half of P;, and the other for the case

t<k<m def ['—‘%’- | where (3, 7, k) resides in the lower half. Since, for those processes (i, j, k) that reside in
the lower half, @ and b will be renamed by d and e, we must be aware of the case when a process (1, 7, k) is
in the lower half of P, while process (i, 7 — 1, k) might be in the upper half, such as in the case when k = m’
and i + 7 is even (or s Ey—i-1is 0dd). Another case to watch for is when (4, , k) is in the upper half

while (¢ + 1,7, k) might be in the lower half: it occurs when k = m and ¢ + j is even (or s is odd). Two

9




Figure 3: Process structure P3, in which all data dependencies
are local.
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equations in (5.1) are now split into four equations, where the above two cases are singled out:

upper half:

a(i,j, k) = {

lower half:
0(8',]', k) =9

upper half:
((

b(i, 5, k) =
(1,5, k) <(

lower half:
b(i,7,k) = {

)

Next, every a(i, 5, k) in the lower half

‘t

J=k—c(i,kk)

m<k<j—a(i,j—-1,k).

(k= m') A (odd(s)) = a(¢,5 — 1,k)

(upper half)

(k = m') A (even(s)) — a(i,5 — 1,k)

<k<m —a(i,j-1,k).
(3,3 ) (5.2)

k=m)A (odd(s)) — b(: + 1,7, k)
(lower half)

k = m) A (even(s)) — b(: + 1,4, k)

(m<k<j—bi+1,5,k).

k=1i—c(k,J,75)

<k<m' —bi+1,71,k).

is replaced by d(t, 7,1 + j — k), where (¢, 7,1 + 7 — k) is now the

upper half. Similarly, every b(7, 7, k) in the lower half is replaced by (1, 7,1 + 7 — k):

(1,7, k) lower half

d(i,j,i+j—k)={

(1,7, k) lower half

C(l,],i+]—k) = {

4

\

(k=m") A (odd(s)) — a(t,5 — 1,k)
(upper half)

(k= m') A (even(s)) —
dii,j - 1L,i+(j—1)-k) (5.3)

i<k<m —d(,j-1L,i+(7—-1)—k).

k=1—c(k,j,7)

i<k<m —e(i+1,7,(6+1)+75-k).

Finally, a “substitution of variable” is performed on the above two equations, which replaces i + 5 — k

11



by k’:
(K = m) A (odd(s)) = ali,5 = 1,i + 5 k')
d(i, 5, k') = { (k' = m) A (even(s)) — d(i,j — 1, k' — 1)

m<k <j—d{ij—1,k-1). (5.4)
K'=j—ec(i,j,7)
e(i,s,k') =

m<k'<j—e(i+1,7,K+1).

Since k’ is a bound variable, it can be replaced by k throughout Equations (5.4) without any effect. Note

also that when k' = m, we have 1 + j — k' = K.

5.3. Resulting systém of equations

The resulting algorithm is the following system of recursion equations:
I=k—c(i,k k)

a(i,j, k) =
m<k<j—a(i,j-1,k)
[ (k = m) A (odd(s)) — a(i,j — 1,k)

d(i,j,k) = { (k=m)A (even(s)) — d(s,7 — 1,k —1)

| m<k<j—dij-1k-1)
( (k = m) A (odd(s)) — e(i + 1,7,k + 1)

b(t,7,k) =< (k=m) A (cvcn(s))v—-— b(i +1,5,k)

| m<k<j—bi+1,4,k)

( ) k=j—ci7,71)

eiaj3k = 5.5
m<k<j—e(t+1,57,k+1) (5:3)
'8-‘—-0-*0.'

8>0—
(k= m — min(k(a(1, 5, k), b(3, 5, k)),

h(d(i, 7, k), e(4, 5, k))

e(i, 7, k) =«
m<k<j—

min(c(i,j, k- 1), h(a(ia Js k)’ b(” Js k))’
h(d(t, 5, k), (s, 5, k))

L

( \k=j5— c(i’j»k- 1)'

The order of the system of equations is now 2, due the path length between processes described by equations

for streams b and d.

12




6. Space-time Mapping to Incorporate Pipelining

From the algorithm (5.5) derived above, we further improve the efficiency of the algorithm by incorpo-
rating pipelining automatically. From the standpoint of implementation, a process v in a system of recursion
equations will be mapped to some physical processor s during execution, and once the process is terminated,
another process can be mapped to the same processor. In fact, such re-use of the resource is the essénce of
pipelining. We call each execution of a process by a processor an fnvocation of the processor. Let t be an
index for labeling the invocations so that the processes executed in the same processor can be differentiated,
and let these invocations be labeled by strictly increasing non-negative integers. Then for a given implemen-
tation of a program, each process v has an alias [s,2] 'y (v), telling when (which invocation) and where
(in which processor) it is executed. The key to an efficient parallel implementation of an algorithm is to find
an appropriate one-to-one function f that maps a process v to its alias [s, ] such that ¢ will be non-negative
and tz > t; if v; < vg, where [sy,1;] def f(v1) and [sq,13] def (v2). In the following , we call t the time

index and each component of s a space index.

6.1. Data dependency vectors

To find such a mapping, we require that the domains of the indices of a Crystal program be vector
spaces, and that the appropriate vector addition and scaler vector product be defined. Though each of the
indices ¢ and 5 in Equation (2.1) assumnes an integer value, its domain can be extended to the set of rationals.
For instance, an m dimensional process structure is now embedded in an m-dimensional vector space over
the rationals. From now on, we may refer to the m-tuple of values of indices identified with a process as a .
vector. As suggested by [12], a data dependency vector plays an important role in mapping algorithms to
parallel processors. Since the vector addition is defined and the data dependency of two vectors takes on an

exact meaning, a data dependency vector can be formally defined:

Definition 6.1. A data-dependency vector is the difference v — u of vector v and vector u, where u < v (u

immediately precedes v).

6.2. Basis communication vectors

As described above, each program defines a set of data dependency vectors. On the other hand, each
network topology defines a set of linearly independent basis communication vectors. For instance, in an
n-dimensional hypercube, a processor has n connections to its nearest neighboring processors. Each of the
n communication vectors (one for each connection), has n + 1 components. The first n components in-
dicate the movement in space and the (n + 1)th component indicates movement in time, which is always
positive (counting invocations). These n communication vectors, together with the communication vector
[0,0,...,0,1] representing the processors’s communication of its current state to its next state, form the
basis communication vectors. In an n-dimensional network, there can be more than one set of basis com-
munication vectors. Taking a two-dimensional hexagonal network as an example, a diagonal connection has

a communication vector [1,1,1]. The set of vectors {[1,0,1],[0,1,1],[1,1,1]} serves as the bases as well as
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the set {[1,0,1],(0,1,1],(0,0,1]}. For any n-dimensional network which has nearest neighbor connections
and is regularly connected and indefinitely extensible, all possible sets of basis communication vectors can

be obtained by the enumeration of its symmetry groups (Lin and Mead [10]).

6.3. Uniformity of a parallel algorithm
The concept of uniformity is introduced to characterize parallel algorithms so that an expedient pro-
cedure can be applied to a uniform algorithm to find the space-time mapping from processes to processors.

Let di, 1 < ¢ < k, denote the data dependency vectors appearing in a program.

Definition 6.2. A uniform algorithm is one in which a single set of basis vectors B = (b;,...,by,), m <k,
where each b, is a column vector of m components, can be chosen so as to satisfy the mapping condition

that every data dependency vector d, appearing in the algorithm can be expressed as a linear combination
a5
of the chosen basis vectors with non-negative coordinates, in other words, there exists a; = : such

Qim

that d; = Ba; and a;; 20for1<j<m.

6.4. Motivation for the mapping condition

The mapping condition is motivated by the possibility of using as the space-time mapping a linear
transform from the basis data dependency vectors B to the basis communication vectors C = (cy,...,Cm),
m < k, where each c; is a column vector of m components. Each basis communication vector ¢; corresponds
to a nearest neighbor communication on a network of processors. When the mapping between the two sets
of basis vectors is determined, then each communication vector e;, 1 < ¢ < k, to which a data dependency
vector d, corresponds is also determined, i.e., if d; = Ba, then e; = Ca,.

If a data dependency vector d; has a term with a negative coordinate a; in its linear combination, then
vector a;,c;, which contributes in part to the communication vector e;, represents a communication that
takes negative time steps, a situation that does not make sense in any physical implementation.

Examples of using such a simple procedure to find linear mappings of processes to parallel architectures
for matrix products, LU decomposition, array multipliers, etc., can be found in |2, 3]. Most of the systolic
algorithms reported in the literature can be obtained this way. New systolic algorithms are in fact discovered
due to the ability to generate systematically all possible sets of basis communication vectors. In the case of
a non-uniform program, more than one set of basis data dependency vectors must be chosen so as to satisfy
the mapping condition, and the space-time mapping may become non-linear. In this case, the inductive

mapping procedure becomes necessary.
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6.5. A uniform dynamic programming algorithm
Let di, ¢ = 1,2,...,5 denotes the data dependency vectors of Systems (5.5):

‘ 0 - -1
dl {'g 1 9d2 d__e_f 0 [) d3 dé’ 0 )
0 -1 0 i
6.1
f 0 def 0 o1
dE¥1],d¥ (0
1 1

Let the following vectors be the chosen basis data dependency vectors:

- 0
¥ o | b ¥ 1), bs¥ 0],
-1 0 1
and let matrix B be defined as B &' (b1, bz, bs), then
d; = Ba,, where
def 0 def 1 def L
aj = 11],a = 0}],as = 0 y
0 0 1
def 0 def 0
Ay = 1},as = 0
1 1

Since every component a,; of a; is non-negative, thus System (5.5) of dynamic programming is a uniform

algorithm. Choose the set of basis communication vectors as

1 0 0
a® (o], (1 s X 0], andc¥ (c1,€2,¢3). (6.2)
1 1 1

The linear mapping T from the basis dependency vector to the basis communication vector is then

-1 0 0
T=CB™'=|0 10
-2 11

Proposition 6.1. A space-time mapping from each process (¢, j, k) in Ps of System (5.5) to an invocation
of a processor (z,y,t) is a linear mapping T, in the matrix notation where each process and invocation is

written as a column vector, or written in a functional notation as
(SC, Y, t) = f(’.’j’ k) = (”1‘,,1., -2t+75+ k) where
-n<z<-1, —z<y<n, 2<t<2n-1).
The inverse mapping from the image of f to the process structure, denoted by ™!, is
(is ja k) = I-I(za Y, t),= ("'1’, Y -2z - y+ t)a
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specifying which process is being executed at a particular time step t of processor (z,y).

Similarly, other space-time mappings can be derived from other sets of basis communication vectors
such as B, Bz, and Bg given below in a matrix notation where each basis communication vector is written

as a column vector:

101 1 0 -1 1 0 -1
Bi=|{011],B=|01 -1|,Bs=[01 o0 ]. (6.3)
111 111 11 1

The set of basis communication vectors in Equation (6.2), or in each of {6.3) above, results in a different

systolic architecture, as demonstrated below.

6.6. Space-time recursion equations (STREQ)

A system of apace-time recursion equaifons (STREQ), which describes a target systolic architecture or
algorithm, can be obtained from an original program and a space-time mapping by algebraic manipulation.
The following STREQ that describe the resulting design are obtained by substituting the inverse mapping
/™Y of 1, 7, and k, the mappings f(d;), ! = 1,2...,5 of dependency vectors d;, into the original system
of recursion equations, and by renaming é&(z,y,t) = a(s, 4, k), 5(:::, y,t) = b(¢, 7, k), é(z,y,t) = cli,7,k),
d(z,y,t) = d(i, 5, k), and é(z,y,t) = e(i, 7, k). Note that as a result, the substitution of the predicates s = 0
becomes z = 1, where z % z +y, k = m becomes t = [E%‘tll] =[32], k= j becomes t =2z, m< k <

becomes ([4] < t < 2z), etc.
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t=2z— éz,yt)
i(z,y,t) =

r§2i1 <t<2 —d(zy-1,t-1)
(6= 151 Aleven(2) = d(z,y— 1, 1)
d(z,98) = { (= [21) A (odd(2) — d(z,y - 1, - 2)
\ [3’25] <t<2:—d(z,y-1,t-2)
(6= 131 Aleven(2) = éfz — 1yt~ 1)

Bz,y,t) =4 (t= [%5]) A (0dd(2)) — b(z — 1,y,¢ — 2)

‘[3—22']<t<2z—+3(:r-1,y,t-2)

( ) t=2z —-oé(x,y, t) (6.4)
é(z,y,t) =

’ [%E]St<2z—+é(x-—l,y,t-—1)

(z2=1—C;

z>1—
t=131~

| min(h(&(z, y,t), b(2, v, ), h(d(z, 9, 1), é(z, y, 1))
é(z,y,t) = 9 3z
(F1st<2:)—

min{é(z,y,t — 1), h(é(z,y, ), E(a:, ¥, t)),
h(d(z,y,t), é(z, y,t))

\ Lt =22 — é(z,y,t —1).
‘7. Target Systolic Architectures

7.1. Processor and time requirements

The design consists of a triangular array of (n— 1)(n —2)/2 processors which complete the computation
in 2(n — 2) time steps, as indicated by the range of z, y and ¢ in Proposition 6.1. Notice that the space-time
mapping has achieved the goal of decreasing the complexity of processor requirement from O(n3) of the
naive interpretation of System (5.5), to O(n?) in the new algorithm, by only increasing the time complexity
with a constant factor, in this case, 2. Thus we see pipelining in the resulting algorithm and the successful

sharing of a single processor among O(n) processes.

7.2. I/O and storage requirements
In the resulting algorithm, if any of the space components of a process on the right-hand side of an

equation differs from that on its left-hand side, then the data associated with the right-hand side process is
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Figure 4: A series of parallel planes indicates the time steps of the
space-time mapping. Processes on the same plane are mapped to
the same invocation number t. (The processor number of a process
in this case is its projection onto the bottom plane with the sign of
z changed.)

an input to the left-hand side process, such as a(z,y — 1,¢ — 1) in Equation (6.4). In this case, the input is
from processor (z,y — 1) which is, say, south of processor (z,y) and it takes one time step to arrive. If space
components of two processes on both sides of an equation are the same, then the data associated with the
right-hand side process is a stored value such as é(z,y,t — 1) in Equation (6.4).

The space-time mapping in Proposition 6.1 yields the well-known systolic architecture for dynamic
programming [7]. It can be seen in Figure 4 that a process (¢, 7, k) is mapped to processor (—i, ) at time
step t = —2¢ + y + k. Such an invocation may have inputs from invocations both at time ¢t —1andt — 2 as
shown, corresponding to the fast registers and the slow registers described in [7]. All signals controlling the
loading and unloading between registers of different speeds can be systematically derived by techniques of

program optimization as described below.
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7.8. Control requirements

Predicates appearing in a given system of STREQ indicate the control of the functionality and timing
of the processors. Their implementations might be different depending on different target implementation
media. In a multiprocessor machine, the “processor id” (z,y) can be stored and an “invocation counter”
keeps track of ¢ until conditions such as t = 2z are satisfied. In a VLSI implementation, however, it is too
costly to store these integers and dedicate hardware to perform the tests. Program optimization of STREQ to
eliminate such tests therefore becomes necessary. A better design can be obtained by replacing the expensive
computations of a predicate by transferring a one-bit control signal, as illustrated by [7]. For a predicate
that is independent of ¢, there is no concern, since it can be hardwired into the design. For any predicate
that is dependent on ¢, it must be substituted by one that is independent of ¢. Since a communication always
both moves in space and takes time to complete, it can be used to “compute” expressions of the space-time

indices in a time-variant predicate.
7.4. Control signal optimization

Definition 7.1. A control ezpression is an expression p(z;,23,...,2,) of the space indices z;,, 1 < i <

-—

n, which is non-negative, rational-valued, and consists of only rational coefficients and first-power terms.
However, the expression may consist of non-linear operations, e.g., absalute value, ceiling, floor, conditional,

etc.
Proposition 7.1. Suppose a control expression p(z1,22,...,2,) is strictly monotonic in some space index
z,, i.e., if z; < z; then p(zy,...,2},...,2,) < p(Z1,...,Ziy...,Z,). Then for each z;, the time dependency

dt(z,) = p(z1,Z2,. ., Ziyeo oy Zn) — p(T1, T2y oo oy 2 — 1,000y 2,)

of the control expression has a fixed value which is positive.

Proposition 7.2. Suppose a control expression p(z1,%3,...,2s) is strictly monotonsc descreasing in some
space index z;, i.e., if z; < z; then p(zy,...,2},...,2a) > p(z1,...,Zi,...,2Zn). Then for each z;, the time
dependency

dt(z;) = p(z1,22,.. .y Ziy ooy Zn) — (21,22, ..y Ti + 1, ..., 2p)
of the control expression has a fixed value which is positive.

Theorem 7.1. Time-variant predicates of the form
t< p(zh T2yeeny zn)v
t = p(z1,22,...,2y), and,
t>p(z1,22,...920),
where p(z1,22,...,2p) Is a strictly monotonic control expression, can be implemented by time-invariant
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predicates
9(11, z2, "'1znyt) = 09

g(z1,22,...,25,t) = 1, and
q(z1,22,...,Za,t) = 2, respectively,
where g(z1,22,...,2n,t) is a control stream

( t<0—0

p(zl,zg,...,zn)=0-—> t=0—1

(21,22, 0.y Tn,t) = < 502

(establish the truth initially for the test)

( P(21,22, ..., 2Z0) > 0 — g(z1,22,...,2i — 1,...,2,t — dt(g;))

in which all predicates, except for the switch-on predicatest < 0,t =0, and t > 0, are time-invariant, and

dt(z;) is the time dependency of control expression p(z1,23,...,Z,).

Certainly, a similar theorem holds for a control expression that is strictly monotonic decreasing. For
an application of the above theorem, take for instance, predicates t = z — 1 and ¢t > z — 1. The control
expression z — 1 is monotonic in z, and its time dependency is dt(z) = 1 for all z. By the theorem, it can be
implemented by predicates g(z,t) = 1 and g¢(z,t) = 2, respectively, where the control stream is defined as

t=0~—1

z—1=0—
q(:x:,t)‘—" t>0—2

z=1>0—g(z-1,t-1)

Note that since predicate t < z — 1 is not needed, g(z,t) needs to assume only two values, 1 and 2. Thus
it can be reduced to a single bit signal. This control stream can be easily implemented by a one-bit signal
initially fed to processor z = 1, which changes its value at t = 1, and shifts subsequently to processors with
increasing z values one at a time.

Readers might be curious about how, in general, the initialization of control stream q(z1,22,...y2n,t)
for the switch-on predicates t < 0 is carried out in practice. The implementation is just the familar “system
reset” which puts a given system into a desired initial state.

In general, a control expression might be strictly monotonic (decreasing) in more than one space index.
The choice of an index z; should be such that dt(z;) is minimized over all other choices of space indices
because dt(z,) can determine the rate at which data streams are transferred. In the case when some choices
of space indices are equally good as far as timing is concerned, the topology of the chip layout and the input
pin arrangement may determine which space index should be chosen since control signals must be fed into
the chip from outside. )

For the dynamic programming example, one possible implementation of all of the time-variant predicates

is illustrated in BOX 5 of the appendix. It is worth noting, in particular, the implementation of the predicate
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t= f%’-] The predicate contains a piece-wise linear control expression, and the resulting signal travels in
those processors with odd z in half the speed as it does in those processors with even z. This particular
type of signal is described incorrectly as a linear signal that moves “two cells every three time units” in [7]
as opposed to the above-mentioned piece-wise linear signal.

Central to an optimizing compiler for parallel systems is the making of trade-offs between communi-
cations and computations, i.e., trading local computation with global control signals or vice versa. Such
trade-offs can be systematically devised and carried out by symbolic transformations in quite an elegant

fashion, as illustrated here.

7.5. Transformations for lower dimensional networks

Another stage of transformations is required if a problem must be solved on a fixed-dimensional network.
Taking the dynamic programming problem for instance, suppose one is intereseted in solving it by a one-
dimensional network. At any given time step of the target program above, there are O(n2) number of
processors in execution, and the number must be reduced to O(n) for a one-dimensional network. For any
processor (z,y) in this target program, one can simply choose to interpret any of the space components,
say, z as a loop index within a processor y (described by the rest of space components). It is clear then
that any linear combination of the space components can serve as a loop index. In general, one can perform
a linear transformation on the original space coordinates and choose any one of the components of the
new coordinates as a loop index; the remaining components then become the new “processor id”. The

transformations on the program are quite similar to those described in Section 6.6.

8. Related Work

Many attempts in pursuit of systematic methods for synthesizing systolic computations have appeared
in the literature. In the classification of systolic designs from the geometric point of view, Lin and Mead
[10] classify systolic arrays using symmetry groups, but there is no attempt made to obtain new designs.
Cappello and Steiglitz [1] view systolic designs as affine transforms from combinational designs; however,
their method does not give clues to finding the appropriate transforms.

Moldovan [12, 13] notes that data dependency vectors are what suggest clues to potential linear trans-
forms. Miranker and Winkler [11] describe a similar method, and they have observed that all planar two-
dimensional regularly connected arrays can be embedded in a hexagonal array, called a universal array.
Quinton [14] starts with a specification called a system of uniform recurrence equations and applies affine
and linear transforms to obtain a systolic array. The class of systolic computations that can be described by
uniform recurrence equations is limited to those that have only one of their data streams dependent upon
other data streams. Li and Wah [8] describe a method that first finds an appropriate placement of one of
the input streams and then perform the linear transforms. Delosme and Ipsen [6] describe how to implement
a hyperbolic Cholesky solver by a linear transformation from a system of recurrences.

All of the above four methods focus on (quasi-)linear or affine mappings from a restricted class of
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algorithms to a new design. The class of designs that can be obtained by these methods are subject to
restrictions such as starting with uniform recurrent equations (a much more restrictive definition than the
uniformity defined in this paper), yielding only designs that are synchronous, regular, having uniform data
flow, etc. The capabilities of these methods in various restricted situations may, at best, be equal to the
general mapping procedure for the uniform algorithms defined in this paper. However, instead of using a
simple, constant time procedure consisting of enumerating the basis communication vectors by subgroup
enumerations and finding mappings between the two sets of basis vectors, they find linear mappings by
searching through the space of possible linear transforms or input placements. The search requires a time
that is at least polynomial of the size of the problem [8].

Some attempts, such as in [12, 11] are made to transform an initial mathematical definition to a de-
scription that is suitable for space-time mapping. The method used in their work applies to certain specific
cases, and is somewhat ad hoc and not systematic or foraml enough for potentially automating the process
of transformations.

Li and Wah [9] have classified the problems that can be solved by dynamic programming into several
classes and have proposed systolic processors for solving them. The formulation given in this paper corre-
sponds to the most general class — in their terminology, the “polyadic-nonserial” class. In their treatment,

the issue of synchronization and timing is not addressed.

9. Concluding Remarks

The objective of this work is the devising of efficient parallel programs and VLSI architectures. Due to
the complexity that might arise in dealing with hundreds of thousands of autonomous parallel processing
elements, we find design methodology for this process necessary in order to take the enormous burden off
the designers.

Program synthesis, at the very basic level, relies on a formal notation for describing the problem, and
henceforth on manipulating the descriptions to yield efficient parallel programs. This paper describes, along
with a set of program synthesis methods, a design methodology and program transformation environment
in which these methods are applied at the various ;tages of transformations, such as the stage that proceeds
from a problem definition to a program that has bounded fan-in and fan-out degrees, the stage that reduces
long-range communications to local ones, the stage that incorporates pipelining into programs by space-time
mapping, and the stage that derives optimized control signals.

It is worth mentioning that the transformation rules to derive bounded fan-in/fan-out degree and
bounded order recursion equations are automatable and apply to problem definitions in general. The pro-
cedure of space-time mapping for uniform algorithms and the test for the existence of linear mappings are
computationally attractive and their complexities are independent of the problem sizes. The theorems that
allow the conversion of time-variant predicates to time-invariant ones for generating optimized control signals

have a wide range of applications.
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It is essential that the language Crystal be amenable to algebraic manipulation so that techniques
developed for algorithm transformation can be carried out formally by an automated process. More impor-
tantly, Crystal is a general purpose programming language which allows new design methods and synthesis
techniques, properties and theorems about problems in specific application domains, and new insights into
any given problem be integrated within the existing program transformation and architecure sin;ulation

environment.

10. Appendix

The target program enclosed in the box shall be replaced subsequently by code in BOX 1 to BOX 5,
one by one. Each replacement results in a new Crystal program that is more optimized towards the final
implementation. The result of each program is requested in such a way that all programs give the same

outputs, as shown at the bottom of Figure 5.

Figure 5: Dynamic programming in Crystal.
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