We describe a procedure for the determination of the roots of functions satisfying second-
order ordinary differential equations, including the classical special functions. The scheme
is based on a combination of the Priifer transform with the classical Taylor series method for
the solution of ordinary differential equations, and requires O(1) operations for the deter-
mination of each root. When the functions in question are classical orthogonal polynomials
(Legendre, Hermite, etc.), the techniques presented here also provide tools for the evalua-
tion of the weights for the associated Gaussian quadratures. The performance of the scheme
for several classical special functions (prolate spheroidal wave functions, Bessel functions,
and Legendre, Hermite, and Laguerre polynomials) is illustrated with numerical examples.
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1 Introduction

Zeroes of classical special functions play an important role in the mathematical
sciences, being related to Gaussian quadratures (both classical and generalized),
resonances in mechanical and electrical systems, quantum mechanical calculations,
etc. As a result, algorithms for the determination of roots of functions of this type
are quite well developed; most of them are based on the existence of three-term re-
currence relations for the classical special functions, and the associated connection to
the eigenvalues of certain tridiagonal matrices (see, for example, [6, 8, 2]). The latter
are dealt with via well-understood and reliable techniques, such as the QR iteration.

While such methods are quite efficient for small-scale problems, they require
order n? operations, where n is the the number of roots to be computed. Relatively
recently, algorithms for the diagonalization of tridiagonal matrices were introduced
with CPU time requirements proportional to n-log(n) (see [7]); a detailed description
of the resulting fast root finding scheme is given in [12]. In this paper we present
a scheme which is unrelated to the three term recurrence relations and tends to be
significantly faster for large n.

The subject of this paper is the fact that the roots of classical special functions
can be found for a cost proportional to n, using the fact that such functions satisfy
ordinary differential equations of the form

p(z) T3 (0) + o(z) Te(z) + vl u(z) =0, )

where p(z), ¢(z) and r(x) are polynomials of degree 2. Using classical tools such as
Taylor series and the Priifer transformation, our approach leads to remarkably simple
and efficient schemes for the construction of classical Gaussian quadratures, roots
of Bessel and prolate spheroidal wave functions, and the roots of other functions
satisfying a second-order differential equation with polynomial coefficients.

2 Mathematical and numerical preliminaries

In this section we summarize several well-known facts to be used in this paper; all
of these can be found in [1, 3, 4, 11, 5]. Throughout this paper, the derivative of a
function f : R — R will be denoted by f’ and p,q,r will denote the second-order
polynomials introduced in equation (1). All functions are assumed to be sufficiently

smooth.




2.1 The Priifer transform

Given equation (1) and a differentiable positive function v : R — R, we define the
function 6 : R — R as the solution of the differential equation
7 | g—p sin(26)

0 = —Lsin?(9) — L cos?(6) — (-——+ ) :
» (0) > (6) ’Y - 5

(2)

where 0,,p, g, are functions of z; integrating both sides of (2) with respect to x
and carrying out elementary manipulations, we obtain

1 p(e)(a)
Y@ u@ ) 3)

where u is the function defined by equation (1); we observe that, for any Z such that
u(Z) =0,

6(z) = arctan (

() = (n+1/2)m, (4)
with n an integer. Similarly, for any Z such that u/(Z)=0,
0(z) = n, (5)

where again n is an integer.

Observation 1 It often happens that the function ¢ is better behaved (both nu-
merically and analytically) than the function u that gave rise to it. In such cases,
it becomes attractive to solve equations (4) and (5) instead of equations

u(z) =0, (6)
ul(x) =0, (7)

respectively. This observation is not new, and in fact the above construction is a
variant of the classical Priifer transform, which can be found, for example, in [3].

The choice of the function 7 in (3) influences the behavior of the function 8,
without changing the solutions of equations (4), (5) (the latter are also the solutions
of equations (6), (7), respectively, with u being independent of ). For example, if
~v =1 and equation (1) is self-adjoint (i.e., ¢ = p'), then

o = —;- sin?(6) — r cos*(6) (8)

and the function 6 is strictly decreasing if p and r are everywhere positive.
However, it often happens that 1/p and r are of different orders of magnitude;

this causes the value of ¢ to vary dramatically on the interval 8 = [-7/2,7/2],

making it inconvenient when used as a numerical tool. Figure 1(a) illustrates the
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last point. It shows @ for a Legendre polynomial of order [ = 100, with p = 1 — 22,
g =p' and r = (I + 1), in the interval between the polynomial’s greatest negative
root and its least positive root.

Such step-like behavior complicates many numerical operations involving (2),
and can be controlled via an appropriate choice of . Indeed, choosing

Y=TP (9)
converts (3) into
. 1 plapi(a)
O(z) =a tan( o) U@ ), (10)

and substituting (9) into (2) yields

_ [T _r'p—pr+2rq sin(26) (1)
B D 2rp 2
In this case, the large values of the product rp do not cause excessive variations in
the magnitude of ¢, which is illustrated by Figure 1(b), which shows 6 for the same
Legendre polynomial as in Figure 1(a), but with « defined in (9).
Whenever a‘-l% < 0, the ODE (11) can be rewritten in the form

dr r r'p—pr+2rq sin(20)\
do (\/;+ 2rp 2 ’ (12)

where 0,,, g, p are functions of z, and equation (12) can be viewed as a differential
equation defining = as a function of §. Clearly, ¢ is guaranteed to be negative
whenever

z (13)

)

p

and the latter condition is easy to test for, and is satisfied by all standard special
functions.

r'p—p'r+ 2rq -
4drp

2.2 Taylor series for special functions

As is well known, any function v : R — R, that is sufficiently smooth in the
neighborhood of the point zp € R can be approximated by its Taylor series

= u(k)(%) k
u(zo +h) = kE=o Th + ¢, (14)
with +1( )
u™ T (x
< su ———hm“}, 15
s T 1o
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where u®) denotes the k** derivative of u; the Taylor series for v’ is

’ B) = - u(k) (.’L’o) hk—] =
u'(zo + )—;k_—i-'— + &, (16)
with -
|€] < sup {u—'(z:-)—hm} . (17)
|z—zo|<h m:

If u satisfies equation (1), and p, g, are polynomials of order 2, then the con-
secutive derivatives of u can be obtained via a simple recursion. Indeed, differenti-
ating (1) k times and carrying out elementary manipulations, we have

K= 1
pulk = —(kp’+q)u('“+l)‘( = )p”+kq'+’"> u

_ (k(k; 1)q// + kT'I> u(k"l) —_ ]C_(_]_C_Q:—_l)r//u(k_z)’ (18)

for any k > 0.

2.3 Numerical tools

In this section we summarize several numerical techniques to be used in the paper.
All of them can be found, for example, in [4].

2.3.1 A second-order Runge-Kutta method

The second-order Runge-Kutta method (also known as the Heun or midpoint method)

solves the initial-value problem

y(x()) = Yo,
yl(x) = f(x>y)’ (19)

on the interval [zo, zo + L] by taking a sequence of n steps:

Tiy1 = Ti+h,
kl hf(xz:yl))
k?z = hf(xz+h,y+k1),

1
Yis1 = Y+ §(k1 + ko). (20)

Il

where h = L/n. The cost of this algorithm is of order n, and the global truncation
error is of order h2.




2.3.2 The Taylor series method for the solution of ODEs

The Taylor series method is a classical numerical scheme for the solution of ODEs.
Given equation (1), the values of u(z),u/(zx) at the point zj, and an appropri-
ately chosen integer m > 2, the Taylor series method calls for repeated differentia-
tion of (1), resulting in the values of u” (zx), u® (zg), . .., u™ V(zy), u™ (z;). The
latter are used to evaluate an approximations to w(Zg41),u (Zx41) via the expan-
sions (14), (16), with h = xx4; — 2. Obviously, the truncation error of one step
of the Taylor series method is k™, and its cost is determined by the cost of finding
the derivatives u”'(z), ..., u™ D (z;),u™ (z;); in the case of (1), the recursion (18)
permits u”(zx), ..., u™ V(z),u™ (z;) to be evaluated in O(m) operations.

By choosing the order m of the expansions (14), (16), one can control the conver-
gence rate of the Taylor series method, and often it makes sense to choose very high
orders, obtaining essentially machine precision. In general, Taylor series algorithms
are not immune to stability problems; however, due to the following observation this
issue does not arise in the algorithm of this paper.

Observation 2 Somewhat surprisingly, stability issues are obviated when all of the
points i, 2, ... are roots of u or u'. Indeed, given the recursion formula (18), the
expressions (14), (16) can be viewed as a linear mapping M : R? — R? converting
the pair u(zx),u'(zx) into the pair u(2k41),w (xk+1); the stability of the resulting
ODE solver is determined by the eigenvalues of M. However, if

u(zg) =0, (21)
u(zr41) = 0, (22)

then the mapping M : R? — R? is replaced with a mapping M : R! — R!, con-
verting u/(zx) into w'(zx41). In other words, the 2-dimensional mapping M has
been replaced with a simple scaling, not affecting the roots of either u or of v’. An
analogous argument applies when equation (21) is replaced by

' (zg) =0, (23)
or equation (22) is replaced by
ul(xk+1) = Oa (24)

or when both equations are replaced.

2.3.3 Newton’s method

Given an initial approximation zp, Newton’s method solves the equation f(z) = 0
iteratively, with the n’* iteration defined by the formula

(za) o5)

T )
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If Z is a simple root of f and xy has been chosen sufficiently close to Z, then the
convergence is quadratic, i.e., the number of correct digits of the approximation z,,
will double after each iteration.

2.4 Orthogonal polynomials, Bessel functions, and prolate
spheroidal wave functions

This section summarizes certain well-known properties of several classes of special
functions, used in Section 4 to test the performance of the algorithm of this paper;
all of the facts in this section can be found in [1, 11, 5].

2.4.1 Orthogonal polynomials

Given a (possibly infinite) interval (a,b) and a positive function w, such that the
product of w with any polynomial is integrable on (a, b), we say that py,p1,...,pn
is an orthogonal family of polynomials on (a,b) with weight w, if for each k =
1,2,3,..., the polynomial py is of degree k and

b . .
/ pi(x)pj(x)w(w)dw={ 0, i#] (26)

a;, 1=7

where a; > 0.

In this subsection we briefly discuss properties of Legendre, Hermite, and La-
guerre polynomials, which are classical examples of orthogonal families of polyno-
mials. Each of these classical families satisfies a homogenous second-order ordinary
differential equation.

The Legendre polynomials Fy, P,,..., P, are the orthogonal family with respect
to the weight function w(z) = 1 on the interval (—=1,1) for k = 1,...,n. The n*
degree polynomial P, of this family satisfies the differential equation

(1 - 2®)P!(z) — 2z P.(x) + n(n + 1) P,(z) = 0. (27)

The Hermite polynomials H,, Hs, ..., H, are the orthogonal family with respect to
the weight function w(z) = exp(—22) on the interval (—oo, 00), and the n* degree
Hermite polynomial H,, satisfies the equation

H)(x) — 2z H, (z) + 2n H,(x) = 0. (28)

Finally, the Laguerre polynomials Ly, Lo, . .., L, are orthogonal with respect to the
weight function w(z) = exp(—z) on the interval (0, c0), and the n** degree Laguerre
polynomial L,, satisfies the equation

z L' (z) + (1 —z)L! (z) +n Ly(z) = 0. (29)




Every class of orthogonal polynomials satisfies a three-term recurrence relation,
i.e., there exist real sequences cy,c,Ca,Cs,- .., do,dy,ds,ds,. .., such that, for any
m>1,

Cm Pm1(2) = (T = dm) Pm(®) = Cm-1Pm—1(2)- (30)
Thus, given z € R, an integer n > 2, and the values po(x), p1(z), it follows from (30)

that the values po(x), p3(x), pa(z),. .., pn(z) can be evaluated in O(n) operations.
Differentiating (30), we obtain the recurrence

Cm Pt () = (T = dim) Py () = Cm1 Pl (%) + Pm(2), (31)

which can be used for the efficient evaluation of the derivatives of ps, ps, .. ..
Specifically, for the Legendre polynomials the recurrence relations for P, and P,

are (see 22.7.10, [1])

Past(2) = 220 Pafa) = 3 Pani () 2
Phn(z) = 2”+1<xP'(x>+P<x>>——ﬁP;_ @), 33)

with the initial values P_;(z) = 0, Py(z) = 1, P ,(z) = 0, Pj(z) = 0; for the
Hermite polynomials the recurrence relations for H, and H,, are (see 22.7.13, [1])

Hpy1(z) = 2z Hy(z) — 2n Hy oy (2), (34)

H, . \(z) = 2(z H,(z) + Hp(x)) — 2n H,_,(z), (35)

with the initial values H_,(z) = 0, Ho(z) = 1, H' ,(z) = 0, Hj(x) = 0; and for the
Laguerre polynomials the recurrence relations for L, and L’ are (see 22.7.12, [1])

Lnia(@) = T2 (@) = L (o), (36)
@ =20 e @, )

with the initial values L_;(z) = 0, Lo(z) = 1, L' ,(z) = 0, Li(x) = 0.

The Legendre and Hermite polynomials of even degrees are even and have a local
extremum at x = 0; for odd degrees they are odd and have a root at x = 0. We
will also make use of the fact that the first (smallest) root z} of the n'* Laguerre
polynomial satisfies

2
> . 38
17 e (38)
Orthogonal polynomials are a classical tool for the design of numerical integration
rules known as Gaussian quadratures. Given the roots zi,...,, of the n* degree




polynomial p,, of an orthogonal family on the interval (a,b) with weight function w,

there exist real numbers w?, ..., w? such that the formula
b n
JRCETT Sty (39)
a k=1

is exact for any f that is a polynomial of degree 2n — 1 or less.
The quadrature weights for the Legendre polynomials are (see 15.3.1, [11])
2

R EErzCen) o

the Hermite quadrature weights are (see 15.3.6, [11])

1
n  m22MHp)
= —_— 41
Wy H”,%z(xk) ) ( )
and the quadrature weights for the Laguerre case are (see 15.3.5, [11])
' 1
Wy = ———. (42)

oy L2 (x)

Remark 3 The Legendre, Hermite and Laguerre polynomials satisfy the bounds
(see, for example, 22.14, [1])

|Pa(z)] <1, (43)
|Ho ()] < m3272/nl =12, (44)
|Ln(z)] < /2. (45)

The bounds (44) and (45) indicate that the Hermite and the Laguerre polynomials
are likely to cause problems when used as a numerical tool. Even for moderate
values of x their values can become so large that it exceeds the maximum value
representable in standard floating-point arithmetic.

This overflow problem can easily be avoided by working with the functions

- e—w2/2
Hy(x) = mHn(w), (46)
Ln(z) = €7*/L,(z), | (47)

called normalized Hermite and Laguerre functions, instead of working with the poly-
normals directly. The functions H,(x) and L, (z) have the same roots as H,(z) and

Ly(z), and (44), (45) guarantee that they are bounded by one. Equations (28), (29)
imply the following differential equations for Hy(z) and Ly, (x)

H'(z) + @2n+1—2?) Hy(z) = 0, (48)
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2L (z) + z I (z) - (ixz - (n + %) x) L,(z) = 0. (49)
The functions ﬁn can be evaluated via the recurrence

Foi(o) = | 0 (o) - ey @), (50)

with the initial values H_1 =0, HO = r1e72"/2, Furthermore, if z is a root of H,,
then H' ! (x) can be evaluated via the recurrence

n+1(5”) \/ +1(xH’(x)+H(x

with the initial values H_; = 0, Hy = 0. Combining (46) with (41), we observe that

Hl—l(x)) (51)

2
no 26 (52)
H2(z)
The functions Zn can be evaluated via the recurrence
~ 2n+1—-z~ n o~
Ly (z) = o r1 @) - 1 Ln-1(@), (53)

the same recurrence relation as for Ly, with the initial values L_ 1(z) =0, Lo( )=
e~®/2, If 1 is a root of L,, then L. »(2) can be evaluated via the recurrence

~ 2n+1—-z~ 1 = n =
Ly (z)= qul_L;‘(x) - 'n—_rl'Ln(x) - mL;q(SU), (54)

with the initial values Z-l(a:) =0, Lo(z) = 0, L' \(z) = 0, Z{)(:c) = 0. Finally,
combining (47) and (42), we obtain
—p
W= — (55)
.’L‘kLg(:L'k)
2.4.2 Bessel functions

The n' order Bessel function J, of the first kind satisfies the differential eqﬁation
2*J)(z) + z J)(z) + (2% — n?)Jp(z) = 0. (56)

Figure 2 shows a plot of Js;. The Bessel function of order n starts to oscillate
around = = n, so that with x; denoting the smallest positive root of J,(z) (see [1],
9.5.14)

T3 > n+nd. (57)
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For large values of z, the asymptotic behavior of J, is given by (see [1], 9.2.5)

() ~ \/g cos (x - <n+ %) 32’—> +0 (;}—5> ‘ (58)

Remark 4 There exist various classical schemes for the evaluation of J,(x) in O(n)
operations. See, for example, 9.12, [1] for J,(z) and 9.1.27, [1] for J} ().

2.4.3 Prolate spheroidal wave functions

The prolate spheroidal wave functions (PSWFs) corresponding to the band-limit c
are the eigenvectors of the integral operator G, defined via the formula

F)(z) = / detp () di; (59)

1

they are also the eigenvectors of the differential operator
Ge(¥)(z) = (1 — 2" (z) — 209/ (z) — *2*¢(). (60)

The nt* eigenvalue of the operator (60) is normally denoted by Xn, so that the n®
eigenvector ¢ of (60) satisfies the ODE

(1 - 2®)yfy(z) — 29, (2) + (x5, — *2*)yn(z) = 0, (61)

which provides the standard tools for the evaluation of the functions 1/, eigenval-
ues X<, and related quantities.

The function ¥, has n roots; for even n the function 1, is even and has a local
extreme value at = 0; for odd n the function %, is odd and has a root at z = 0.
We refer the reader to [13, 10] for more detailed information about PSWF's.

3 Algorithm

In this section we describe an algorithm for computing the roots of a function u
which is a solution of equation (1). We give an informal outline in the section
below, followed by a detailed description in Section 3.2.

3.1 Informal description

The algorithm of this paper finds all roots of a function u satisfying equation (1)
recursively by calculating each successively bigger root from the previous one.
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3.1.1 First root

Given a starting value z;, the algorithm calculates the smallest root x; that is larger
or equal to zs in two steps. First, it finds an approximation # to the initial root by
calculating 6y = 6(z;s) via equation (10) and solving the differential equation (12)
with the initial condition 2(6p) = z, in the interval 6 € (6p, —7/2) via the Runge-
Kutta method (20). Due to (4), the value of z at —7/2 is a root of u.

Remark 5 In our experience, ten steps of the Runge-Kutta method are sufficient
to yield x; with two to three digits of accuracy. Using a higher order scheme for
the solution of the differential equation (12) and increasing the number of nodes
in the discretization of the interval (7/2, —7/2), one could obtain the root x; with
arbitrarily high precision. While this scheme could be continued to find all roots
Z1, %2, -, Ty for a cost proportional to n, its actual cost would be much greater
than the cost of the scheme of this paper, where we solve the equation (12) to low
precision, and refine the solution via the Newton procedure described below.

The second step uses the Newton procedure (25) to obtain the root z,, starting
with the approximation Z;. Since the Newton process is quadratically convergent,
it takes about three steps per root to obtain 15-digit accuracy, and each of the steps
requires the evaluation of v and v’ at a point in the vicinity of z;4,.

The evaluation of u and v’ are performed by a scheme specific to the function w.
If the evaluation cost is k operations then the cost for calculating the first root is
of order k. For orthogonal polynomials, for example, u and v’ can be evaluated via
the recurrence relations (30), (31) for a cost which is of order of the degree of the
polynomial.

Remark 6 In cases like the Legendre or the Hermite polynomials, where an initial
root or an extreme value can be obtained via symmetry considerations, the compu-
tation of the first root can be simplified substantially. These details are discussed
in Sections 3.2, 4 below.

3.1.2 Subsequent roots

Given a root z; of u, the algorithm finds the next bigger root ;4 of u in two steps.
Analogous to the computation of the first root, the first step finds an approximation
Zi41 by solving the differential equation (12) via the Runge-Kutta scheme (20) on
the interval 6 € (m/2, —7/2) with the initial condition z(r/2) = z;. Due to (4), ;41
is an approximation to the root x;,;.

The second step uses the Newton procedure (25) to increase the accuracy of
the approximation Z;;;. However, now the evaluation of v and v’ is performed via
expansion (14), where the required derivatives of u are computed via the recur-
rence (18).
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Remark 7 The required number of terms in the Taylor expansion has been deter-
mined numerically. For all examples shown in this paper, 30 terms are sufficient
for double precision (15-digit), and 60 terms are sufficient for extended precision

(30-digit).

The Taylor expansion enables the evaluation of u and u' at a reasonably small
constant cost. Adding up the costs for all n roots, we observe that the total cost of
the algorithm is of the order n + k operations, where k is the cost for evaluating u
and u'.

The repeated evaluation of u via its Taylor expansion can be seen as an instance
of the Taylor series method. Since the steps are taken from one root to another,
Observation 2 obviates the issue of numerical stability of the procedure.

Remark 8 The algorithm can easily be adapted to solve the equation
u'(z) =0 (62)

instead of u(z) = 0, facilitating the computation of n local extreme values of u in
order n operations.

Remark 9 In the algorithm described above, Taylor expansions are used to evalu-
ate u close to its roots. Of course, Taylor expansions can also be used to evaluate u
between roots, thus providing a scheme for the fast evaluation of u. Specifically,
given a set of n points &1, X, . .., &,, where ;1 < &;, and m roots x;, T2, ..., Ty of
u, where z;—; < z;, the scheme finds the closest root to each point Z; and evaluates u
at @; via a Taylor expansion at that root. Including the cost for computing the m
roots of u, the total cost of this scheme is of the order of m + n operations.

3.2 Detailed description

In this section we present the algorithm in some detail. Algorithm 1 describes the
core algorithm. As input, it requires the smallest root which is to be computed and
the number N of roots to compute. It returns the roots z; . . . xy and the derivatives
u'(z1) ... v (xy) for a cost of order IV operations. Algorithms 2 and 3 are auxiliary
schemes for finding the initial root.

Algorithm 1

Comment|The input parameters are the polynomial coefficients of p, ¢, and r in
equation (1), an initial root z; of u, the number of roots N which are greater than
or equal to z;, and the derivative at the initial root u'(z;). Algorithm 1 returns the
N roots of u which are greater than or equal to z; in the vector roots. Furthermore,
it returns the value of v’ at the roots in the vector ders.]

12




Set roots(1) = x; and ders(1) = u'(x;).
doi=1, N-1

1. Use the Runge-Kutta method (20) to solve equation (12) for 8 = 7/2 to —m/2
with initial conditions 6y = 7/2 and z(6y) = roots(i). The resulting value for
z(—m/2) is the first approximation to roots(z + 1).

2. Use recurrence relation (18) to calculate the first 30 derivatives of v at x =
roots(i). Start the recurrence with u(z) = 0, v/(z) = ders(3).

3. Increase the precision of roots(i + 1) = z(—m/2) via Newton’s method (25),
where u and v are evaluated via the first 30 terms of the Taylor expansion
around roots(z). Set ders(i+ 1) = u/(roots(i + 1)).

end do

If a local extremum of u is given an analogous procedure to steps 1-3 of Algo-
rithm 1 can be used to calculate the next biggest root. This procedure is described
in Algorithm 2.

Algorithm 2

Comment [The input parameters are the polynomial coefficients of p, ¢, and r in
equation (1), an extreme value z. of u, and u(z.). Algorithm 2 returns z,, the
smallest root of u which is bigger than z., and the derivative u/().]

1. Use the Runge-Kutta method (20) to solve equation (12) for § = 0 to —m/2
with initial conditions 6y = 0 and z(6y) = z.. The resulting value for z(—m/2)
is the first approximation to z;.

2. Use recurrence relation (18) to calculate the first 30 derivatives of u at z..
Start the recurrence with u(z.), u'(z.) = 0.

3. Increase the precision of z; = z(—=n/2) via Newton’s method (25), where u
and v are evaluated via the first 30 terms of the Taylor expansion around z..

If the first roots of u lie in a regime where the Taylor expansion has a poor
convergence rate (see, for example, the results on Laguerre polynomials in Section
4.3), the following algorithm can be used.

Algorithm 3
Comment [Algorithm 3 requires a routine for evaluating u and v/. Its input pa-
rameters are the polynomial coefficients of p, ¢, and r in equation (1), and a starting
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value z; which is less than the smallest root. Algorithm 3 returns z,, the smallest
root of u which is bigger than z; and v/'(x;).]

1. Compute 6(z;) via equation (10).

2. Use the Runge-Kutta method (20) to solve equation (12) for § = 0(z;) to
—7/2 with initial conditions 6y = 6(z,) and z(f,) = z,. The resulting value
for z(—m/2) is the first approximation to z;.

3. Increase the precision of x; = x(—m/2) via Newton iterations, where u and v’
are evaluated by the given routine, which is specific to u. Return z; and u'(x,).

4 Implementation and numerical results

We have implemented the algorithm of this paper in FORTRAN 77 and tested it on
several classical families of special functions. Below we discuss our implementation
for Legendre, Hermite, and Laguerre polynomials, Bessel functions, and prolate
functions. For each example we give timings and accuracy for different problem
sizes. The computation time has been measured on an Intel Pentium 4, 2.4 GHz
with 1 GB RAM. The given accuracy is based on computations in double precision.

The accuracy shown in the tables has been measured by computing the roots
in double (15-digit) and in extended (30-digit) precision. Given N roots x(ld) . .ng,l)
of the function u in double precision and the exact values (calculated in extended
precision) :ci"’, e ,:1:53), the absolute accuracy r, and the relative accuracy r, are

computed as

re = max 29 — 9| (63)
(@ _ (a)
rr = Inax Zi ( )xz (64)
i€{1,..,N} xiq

Remark 10 One of the principal applications of the roots of orthogonal polynomi-
als is numerical integration, as given by formula (39). In the tables for the orthogonal
polynomials (Tables 1, 2, and 3), we show the relative accuracy of the roots and the
absolute accuracy of the weights, as computed by the algorithm of this paper. In
addition, we provide the accuracy of the quadrature formula (39).

For an orthogonal polynomial of degree n we measure this accuracy by using (39)
to integrate the polynomial of degree 2 n of the same family, e.g., the accuracy of
1000 computed Laguerre nodes is tested by integrating the Laguerre polynomial
of degree 1500. The analytical value of this integral is zero, so that the resulting
numerical value is a direct measure for the error.

The orthogonal polynomial which is to be integrated is evaluated via the proce-
dure described in Remark 9. To avoid additional numerical errors, these computa-
tions are performed in extended precision (30 digits).
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4.1 Legendre polynomials

Equation (27) is the ODE defining the n** degree Legendre polynomial P,. Due to
the symmetry of Legendre polynomials it is sufficient to compute only the positive
roots. If n is even, P, has an extreme value at z = 0, and Algorithm 2 is used to
find the first positive root, followed by Algorithm 1 to find the n/2 — 1 subsequent
roots. If n is odd, P, has a root at x = 0, and Algorithm 1 is used to find the
(n — 1)/2 positive roots. The values for P,(0) or P.(0) which are required as input
for Algorithm 2 or 1 are calculated via the recurrence relations (32) and (33). Finally,
the Legendre quadrature weights are calculated via formula (40).

Table 1 shows the total computation time, as well as the accuracy of the roots,
the weights, and the quadrature formulae (see Remark 10). The total computation
time includes the computation of the quadrature weights.

4.2 Hermite polynomials

To avoid numerical overflow, we have applied our algorithm to the Hermite functions
H,, instead of the polynomials (see Remark 3). The differential equation for the
Hermite functions is given in (48).

Since Hermite polynomials have the same symmetry as Legendre polynomials,
the computation of the first root and the application of the main algorithm is com-
pletely analogous. The values H,(0) and H’ 1 (0) can be calculated via the recurrence
relations (50), (51). Formula (52) is used to calculate the Hermite weights from the
returned roots and derivatives of the Hermite functions. Table 2 shows computation
time and accuracy (see Remark 10).

4.3 Laguerre polynomials

As in the Hermite case, we have used the differential equation for the Laguerre
functions given in equation (49) instead of the ODE for the Laguerre polynomials
(see Remark 3). Equation (38) provides the starting value z, = ﬁ, and recurrence
relations (53) and (54) are used for the evaluation of the function and its derivative.
The quadrature weights are calculated via formula (55). Table 3 shows timings and
accuracy (see Remark 10).

Remark 11 The differential equations (29), (49) have a singularity at z = 0, lead-
ing to bad convergence rates of the Taylor expansion of L, close to z = 0. In
order to avoid this issue, the first 20 roots are calculated via repeated application
of Algorithm 3; the subsequent roots are then calculated via Algorithm 1.
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4.4 Bessel functions

The differential equation for the nt* order Bessel function J, of the first kind is
given in equation (56). The first root is found via Algorithm 3 with the starting
value z;, = n + n3 as given by equation (57). The values for J,(z,) and J) (x;)
are calculated by means of a standard scheme, which can, for example, be found

in 9.12, 9.1.27, [1].

We compute the first 20 n roots of J,. For larger roots, J, will start to behave
like a cosine, due to the asymptotic formula (58), and the distance between two
consecutive roots approaches m. Computation time and accuracy for the Bessel

roots are shown in Table 4.

4.5 Prolate spheroidal wave functions

The differential equation for prolate spheroidal wave functions is given in equa-
tion (61). We refer the reader to [13, 10] for a procedure to calculate the parame-
ter x¢. The computation of the first root and the application of the algorithm to
prolate functions is completely analogous to Legendre polynomials, since they have
same symmetry. Table 5 shows computation time and accuracy.
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Figure 1: Figure (a) shows 6 as defined in equations (2) and (3) for a Legendre
polynomial of order 100 with v = 1. Figure (b) shows 6 for the same polynomial

with v = /rp.
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Figure 2: Plot of Js
number of | relative acc. | absolute acc. accuracy computation
nodes of roots of weights | of quadrature | time in sec.
1000 4x 1070 2 x 10710 6 x 1071° 0.02
10000 5x 1071° 1x 10716 4 x 10718 0.15
100000 7 x 1071 1 x 10716 2 x 10715 1.30
1000000 | 3 x 1071 5x 10717 2 x 10710 12.31

Table 1: Timings and accuracy for Legendre roots and weights (see Remark 10).
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number of | relative acc. | absolute acc. accuracy computation

nodes of roots of weights | of quadrature | time in sec.
1000 5x 107" | 2x1071® 2x 10710 0.02
10000 1x 1071 1x 10716 2x 1071 0.16
100000 5x 1071 3 x 10716 6 x 10716 1.54
1000000 9 x 10713 9 x 10" 2x 10716 15.36

Table 2: Timings and accuracy for Hermite roots and weights (see Remark 10).

number of | relative acc. | absolute acc. accuracy computation

nodes of roots of weights | of quadrature | time in sec.
1000 4 x 107" 2x 10718 1x 10718 0.04
10000 4 x 10710 9x 10713 2x 10713 0.37
100000 8 x 1078 1x 1071 8 x 10712 3.27
1000000 | 2x 10°° 1x 10710 5x 10! 31.18

Table 3: Timings and accuracy for Laguerre roots and weights (see Remark 10).

number of order n of Bessel | relative acc. | computation

computed roots function of roots time in sec.
2000 100 5x 1071 0.06
20000 1000 6 x 1071 0.58
200000 10000 3x 1071 5.83
2000000 100 000 9x 10~ 58.20

Table 4: Timings and accuracy for the roots of Bessel functions.

number of band- | relative acc. | computation
computed roots | limit ¢ of roots time in sec.
2000 1000 4x10°P 0.03
20000 10000 6 x 10715 0.28
200 000 100000 | 2x 10~ 2.33
2000000 1000000 | 4x 107 22.27
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Table 5: Timings and accuracy for the roots of prolate spheroidal wave functions.
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