EXPRESSIBILITY AS A COMPLEXITY MEASURE:
RESULTS AND DIRECTIONS

Neil Immerman
YALEU/DCS TR 538
April, 1987

Expressibility as a Complexity Measure:
Results and Directions

Neil Immerman*

Computer Science Department
Yale University
New Haven, CT 06520

April 10, 1987

1 Introduction

Given a property, S, one can discuss the computational complexity of check-
ing whether or not an input satisfies S. One can also ask, “What is the
complexity of ezpressing the property S?” It is natural that these two ques-
tions are related. However, it is startling how closely tied they are when the
second question refers to expressing the property in first-order logic. In this
article we survey some work relating first-order expressibility to computa-
tional complexity, and present a number of open problems. Most complexity
theory is done from the point of view of Turing machines, or boolean cir-
cuits. We believe that first-order logic provides a valuable different point of
view, adding fresh insights to well studied problems.

2 Background and History

Our first ideas concérning expressibility were inspired by the following result
of Fagin:

Theorem 2.1 [18/ NP = (2nd O, 3).

*Research supported by NSF Grant DCR-8603346.

This theorem says that if we consider inputs as logical structures, then
- the NP properties are exactly those properties expressible as second order
existential sentences. A typical example is the set of three colorable graphs.
The corresponding sentence is (JR3Y 3B)p(R,Y, B) where R,Y, and B, are
new monadic relations and ¢ is a first-order sentence saying that R,Y, and
B, form a valid three coloring of the input graph.
Theorem 2.1 gives a beautiful characterization of NP. As a corollary,
Stockmeyer observed that a problem is in the polynomial time hierarchy if
and only if it is expressible in second order logic:

Corollary 2.2 [$6/ PH = (2nd O) .

2.1 First-Order Logic

In order to model computations in a more detailed manner, we chose to
consider the relations between the complexity of properties and their ex-
pressibility in first-order logic. We will describe these close relationships in
the rest of this paper. First, it is necessary to make some precise definitions.
The reader is refered to [12] for more information about first-order logic.

A vocabulary 7 = (R}'...R}*,¢;...¢;) is a tuple of relation symbols and
constant symbols. R{* is a relation symbol of arity a;. In the sequel we
will usually omit the superscripts and the underlines to improve readabil-
ity. A finite structure with vocabulary 7 is a tuple, 4 = ({o,1,...,n -
1}, Rf...R{,cf...c?), consisting of a universe [4| = n = {0,...,n — 1} and
relations Rf...R{ of arities a;,...,a; on |A| corresponding to the relation
symbols R{'...Ri* of 7, and constants cf...c/ from |4| corresponding to the
constant symbols ¢;...c, from 7.

For example, if 7o = (E?) consists of a single binary relation symbol then
a structure G = ({0...n — 1}, E) with vocabulary 7o is a graph on n vertices.
Similarly if 1 = (M) consists of a single monadic relation symbol then a
structure S = ({0...n—1}, M) with vocabulary 7 is a binary string of length
n.

Let the symbol ‘<’ denote the usual ordering on the natural numbers. We
will include < as a logical relation in our first-order languages. This seems
necessary inorder to simulate machines whose inputs are structures given in
some order. For convenience we also include the successor relation, s(z,y),
and the constant symbols 0, max refering to the first and last elements of
the structure respectively. For technical reasons we also include the logical
predicate BIT, where BIT(z,y) holds iff the xth bit in the binary expansion

of y is a one.!

We now define the first-order language L(r) to be the set of formulas
built up from the relation and constant symbols of 7 and the logical relation
symbols and constant symbols: =,<,s,BIT,0, max, using logical connec-
tives: A,V,-, variables: z,y, z,..., and quantifiers: V,3.

We will think of a problem as a set of structures of some vocabulary 7. Of
course it suffices to only consider problems on binary strings, but it is more
interesting to be able to talk about other vocabularies, e.g. graph problems,
as well. Define FO to be the set of all first-order expressible problems.

We will see in section 3 that FO is a nice, uniform version of ACO.
However, in order to consider more powerful complexity classes it is useful
to let the size of our first-order sentences grow with the size of the input
structures:

2.2 The Complexity Classes VAR&SZ

Let |p| denote the size — i.e. number of symbols — of the formula ©. The
number of distinct variables is also an important resource for first-order sen-
tences. Variables in a first-order sentence may be requantified: the quan-
tifier (Vz;) binds only the free occurrences of z; in its scope. For any vo-
cabulary 7 let Li(r) be the restriction of £(r) to formulas in which no
variables besides z;, z2, ...,z occur. We now define the complexity classes
VAR&SZ[v(n), 2(n)] to be the set of problems expressible by a uniform se-
quence of first-order sentences with v(n) variables and size z(n).

Definition 2.3 [22] A set C of structures of vocabulary 7 is a member
of VAR&SZ[v(n),z(n)] iff there ezists a uniform? sequence of sentences

{®n},eN such that

1. For all structures G of vocabulary r with |G| < n,

GeC & GEpn.

2. lpnl = Olz(n)], and pn € Lugm(7)-

10f course some of these logical relations are redundant. We include all of them to
make our life easier. The use of BIT will be explained in Section 3, and the use of the
constant symbols and s will be explained in Section 4.

24 sufficient uniformity condition is that the map from n to @n can be generated
in DSPACE[v(n)logn| and simultaneously DTIME[z(n) log z(n)]. Below we develop a
simple, syntactic uniformity condition when v(n) is constant.

The next theorem characterizes the relationship between the VAR&SZ -
complexity classes and simultaneous space and time on alternating Turing
machines [7]. Each variable in our sentences ranges between 0 and n— 1 and
thus consists of log n bits. Thus ASPACE[s(n)] corresponds to O[s(n)/ logn]
variables. Similarly an existential (resp. universal) quantifier can simulate
logn existential (resp. universal) steps in a row on an alternating machine.
Thus the essential difference between the power of the two models is that
the alternating machines may alternate at every step, but the formulas only
every logn steps. Define ASPACE&TIME&ALT(s(n),t(n),a(n)] to be the
complexity class of problems accepted by an alternating Turing machine
simultaneously using space s(n), time t(n), and making a total of O[a(n)]
alternations. Then we have,

Theorem 2.4 [22, Theorem B.4] For s(n) > logn and ¢(n) < 28(n),

ASPACE& TIME& ALT(s(n),t(n),t(n)/ logn] =
VAR&SZ[O[s(n)/logn],t(n)/logn] .

Of course one obtains many corollaries from Theorem 2.4 concerning the
relations between expressibility and deterministic complexity. One partic-
ularly interesting observation, though, is that VAR&SZ[v(n),z(n)] makes
sense for z(n) > n?("), In particular when we restrict attention to polyno-
mial space we find,

Theorem 2.5 [22] For t(n) > n,

[~} [<]
DSPACE& TIME[n®,t(n)*] = |J VAR&SZc,t(n)"].
c,k=1 ‘ ¢,k=1
In particular it follows that,

Corollary 2.6 [22]

P = VAR& SZ[c,nF)

PSPACE = VAR&SZ[c,2""

TC8 §Cs

o
—

The above corollary already gives a hint of the dramatic view of complex-
ity that arises when we restrict our attention to constantly many variables.
In particular, the uniformity condition for the constantly many variables
case is purely syntactic, thus giving a uniform characterization of most in-
teresting complexity classes using natural notions coming entirely from logic.
We will concentrate on this picture in the next section.

Open Problem 1 The following bounds can be derived from the proof of
Theorem 2.5 in [22],
DTIME[n*] C VAR&SZ[k + 3,n*]
C DTIME[n%*+4)
We believe these can be improved and it would be of significant interest
to obtain tight bounds, cf. [17,10].

3 Iterating First-Order Sentences

In [22] we observed that a good uniformity condition for the complexity
classes VAR&SZ[O[1],t(n)] is that the sentences @, consist of a “single
sentence iterated t(n) times.” We will use the notation FO[t(n)] to refer to
these complexity classes. We now make this notion of iterating a sentence
precise.

Let z be a variable and M a quantifier free formula. We will use the
notation (Vz.M)y - read, “for all z such that M, %,” - to abbreviate
(Vz)(M —). Similarly we wil write (3z.M)v - read, “there exists an
z such that M, ¥,” — to abbreviate (3z)(M A ¢). We will call the expres-
sions (Vz.M) and (3z.M) restricted quantifiers. Let a guantifier block be
a finite sequence of restricted quantifers: QB = (Q1z1.M)) ... (Qkzk.Mk).
We will use the notation [QB]' to denote the quantifier block QB repeated
t times. Note that for any quantifier free formulas My, My, ..., M € L(7),
and any ¢ € N, the expression [QB]'Mp is a well formed formula in L(7).

Definition 3.1 A setC of structures of vocabulary 7 is a member of FO[t(n))
iff there ezists a quantifier block QB and a quantifier free formula My from
L(7), such that if we let pn = [@B)'("Mo, for n = 1,2,..., then for all
structures G of vocabulary 7 with |G| < n, »

GEC & GEpn.

A more traditional way to iterate formulas is by making inductive defini-
tions, [32,23]. Let IND[¢(n)] be the set of problems expressible as a uniform
induction which requires depth of recursion at most t(n) for structures of
size n. The following lemma relates IND[t(n] to FO[t(n)].

Lemma 3.2 [25]

1. IND[t(n)] C FO[t(n)] for allt(n). In particular, a property in IND[t(n)]
is ezpressible as a FO[t(n)] property in which Mo = (false).

2. IND[t(n)] = FO[t(n)] if t(n) is time constructible by an ASPACE[logn|
Turing machi_ne.

Example 3.3 As an ezample we show how to go from a logn depth induc-
tive definition of the transitive closure of a graph to a FO[logn] definition
of transitive closure.

Let E be the edge predicate for a graph G with n vertices. We can
inductively define E* the reflezive,transitive closure of G as follows:

E*(z,y) =z =yV E(z,y) Vv (32)(E"(z,2) AE*(2,9)) -

Let Po(z,y) mean that there is a path of length at most n from z to y.
Then we can rewrite the above definition of E* as:

Pa(z,y) =z =yV E(z,y) V (32) (Pay2(2, 2) A Prpa(2,9)) -
This can be rewritten:
Pa(z,y) = (V2.M))(32)(Pyy2(2,2) A Paja(2:))
where My =-(z=yV E(z,y)). Nezt,
Pa(z,y) = (V2.M1)(3z) (Vuv. M) (Pny2(u,v))
where M= (u=zAv=2)V(u=zAv=y). Now,
Pa(z,y) = (V2.M1)(32) (Vuv.M3) (Vzy.M3)(Pp/2(z, v))

where Mz = (z=uAy=v). Thus,

Pu(z,9) = [QBI™*"} (Pi(2,9))
where QB = (Vz.M))(3z) (Vuv.M;)(Vzy.M3). Note that

Py(z,y) = [QB](false)

It follows that
Pu(z,y) = [QB]I*1°5™ (false)

and thus E* € FO[logn] as claimed.

3.1 FO and Parallel Complexity

We now describe some results relating parallel complexity to first-order ex-
pressibility. All the material in this subsection may be found in more detail
in [25].

Let a CRAM be essentially a Concurrent Read, Concurent Write Paral-
lel Random Access Machine (CRCW PRAM) [37,25]. These well studied,
idealized parallel computers consist of a certain number of processors each
of which may access any word of the unbounded global memory at each
synchronous step. The convention is that if several processors try to write
into the same location at the same time step then the lowest numbered pro-
cessor will succeed. The definition of the CRAM differs from the standard
definition of the CRCW PRAM in [37] only in that the CRAM may shift a
word of memory by logn bits in unit time. Thus for parallel time greater
than or equal to logn there is no distinction between the two models.

Define CRAM][t(n)] to be the complexity class of problems solvable by a
CRAM using polynomially many processors and parallel time t(n). We have
the following fairly strong connection between parallel time and first-order
expressibility:

Theorem 3.4 [25] For all polynomially bounded t(n),
CRAM(t(n)] = FO[t(n)] .

Open Problem 2 The proof of Theorem 8.4 in [25] gives the following
bounds for translating from CRAM to FO. Let CRAM& PROC|t(n),p(n)]
be the complezity class CRAM][t(n)] restricted to machines using at most
O|[p(n)] processors. Then for t(n) < n we have,

CRAM& PROC{t(n),n*] VAR&SZ[2k + 4,t(n)]

c
C CRAM&PROC(t(n),n?**4]

We feel that these bounds can and should be significantly improved. We
would especially like to know if the processor blow-up can be reduced to a
linear factor, perhaps by allowing a small increase in t(n).

For t(n) > logn, Theorem 3.4 may also be obtained as a corollary of
Theorem 2.4 together with a result of Ruzzo and Tompa relating CRAMs
to alternating Turing machines [37). In order to prove the theorem for
t(n) < logn we were forced to modify the models slightly, adding the logn
shift operation to the CRAMs, and adding BIT as a new logical relation to

7

our first-order language. We believe that the naturalness of Theorem 3.4
justifies these modifications.

We also obtain corollaries relating FO[t(n)] to the NC and AC circuit
classes. Let NC' (resp. AC') be the set of problems recognizable by a
uniform sequence of polynomial size, bounded fan-in (resp. unbounded fan-
in) boolean circuits. Let NC = AC = |; NC'. Ruzzo [33] characterized
these uniform circuit classes in terms of alternating Turing machines. See
[?] for an overview of these classes.

Theorem 3.5 [$3] Fori 2> 1,

NC = ASPACE&TIME(logn,log' n]
AC = ASPACE&ALT{logn,log' n]

Corollary 3.8 [25] Fori> 1, AC' = FO[log' n].

In [8] it is shown that in the non-uniform case, the obvious bounds
nonuniform NC' € nonuniform AC' can be improved to

nonuniformNC' C nonuniform AC-depth[log'n/loglogn] .
When i = 1 this bound is optimal because nonuniform AC-depth[logn/loglogn]
is necessary and sufficient for Parity [20]. Furthermore, the same bound
holds in the uniform case:
Theorem 3.7 [25] For i > 1, NC' C FO[log' n/loglogn] .
" Consider the following characterizations of nonuniform ACO:
Theorem 3.8 [$7] nonuniform AC° = nonuniform CRAM[1].
Theorem 3.9 [22] nonuniform AC° = nonuniform FO[1].

The above two results, together with Theorems 3.4 and 3.7, justify the
following

Definition 3.10 Let (uniform) AC° & FO[1] = CRAM(1] .

Open Problem 3 Evaluate this definition for (uniform) AC°. In particu-
“lar, 1s 1t too restrictive?

Theorem 3.7 makes us want to prove an Q[logn] lower bound on transi-
tive closure. This is Open Problem 10 which we discuss in Section 5.

Open Problem 4 Steve Homer recently suggested the following problem:
Given a function t(n), derive a (szmple) quantifier block, @B, and formula
My such that the property [QBF(") M, is complete for the class FO[t(n)]. In
particular, can the same QB work for more than one t(n)? How about for
all t(n)?

Figure 1 summarizes many of the known relationships between complex-
ity classes and the FO[t(n)] expressibility classes. We also include a few
expressibility classes involving new operators, which we will explain in the
next section.

Open Problem 5 Figure 1 shows that as t(n) ranges from log n/loglogn
through 2", FO[t(n)] ranges through most of the interesting complezity classes.
Almost any hierarchy theorem in this interval would settle an important open
problem. However, this is not a sufficient reason to be scared off. There is
still plenty of room for partial results concerning the trade off between size
and number of variables. (Two significant hierarchy results for FO[1] and
FOl[logn/loglogn] are [84] and [20], respectively.)

4 Adding Operators to First-Order Logic

At first glance the idea of iterating a first-order sentence in the definition
of FO[t(n)] may seem unusual. In this section we study an alternative
approach: adding operators to first-order logic.

One likely place to begin is by adding the least fixed point operator
(LFP). LFP is a standard way to formalize inductive definitions [32,6,23].
Suppose that o(R¥,z;,...,7;) is a formula in which the new k-ary relation
symbol R¥ occurs only posxtxvely, i.e. within an even number of negation
symbols. Then for any structure A, ¢ defines a monotone map 4 from
k-ary relations on A to k-ary relations on A:

oa:S— {(ar,...,ax) € |AF | A o(S,a1,...,ak)}

Since 4 is monotone, it has a least fixed point, which may be calculated
by starting with the empty relation and applymg @4 to it repeatedly until
a fixed point is reached — after at most nF applications where n = |4].

9

AC’ = = FO

N n
NC! = (FO + W5TC) C FOllogn/loglogn]
n N . n
DSPACE[logn] = (FO + DTC)
N N
NSPACE[logn] = (FO + pos TC)
n N N
AC! = = FO[log n]
n : n
NC = = U,’ FO[IOg' n]
N N N
P — (FO+LFP) = U; FO[n']
N N
NP = = (2nd O 3)
N N
PH = = (2nd O)
n n
PSPACE = = Ui Fo[2™]

Figure 1: Complexity versus Expressibility

10

We will adopt the notation LFP[/\R",xl,. .-, Tk] to denote the least
fixed point of . Let (FO + LFP) be the closure of FO under LFP ap-
plied to positive formulas. The following theorem follows immediately from
Corollary 2.6 and Lemma 3.2.

Theorem 4.1 [22,41] P = (FO + LFP) .

Example 4.2 Continuing Ezample 3.8, we would formalize the inductive
definition of E* as follows: Let

Q(R, z, y) Ez= va(z, y) v (32)(3(2, Z) A R(Za y)) .
Then E* = LFP[AR?,2,yq].

It follows from Lemma 3.2 that LFP may be thought of simply as an
iteration operator. See [5] for an elaboration of this point of view as well
as a study of the power of LFP in the more subtle case when the ordering
relation < is not present. See also [23,19).

Open Problem 6 [5/ Sam Buss and I show in [5] that even when ordering
is not present, (FO + LFP) = |J, FO[a], where o ranges over the closure
ordinals of positive formulas. (The closure ordinal of a formula is the depth
of recursion of the induction defined by the formula.) An intriguing question
18 then, what closure ordinals can occur in various sets of unordered struc-
tures? A highly related question was posed by Steven Lindell [29]: For which
sets of structues, T, besides those containing ordering, does (FO + LFP) =
p? :

Another very natural kind of operator to add is the transitive closure
operator, TC.

Definition 4.3 For any formula o in which the free variables zy,. .., 2k, z],. ..

may occur, let the notation TC[)\E,-z_'go] denote the reflezive, transitive clo-
sure of the binary relation p(Z,7'). Let (FO + TC) be the closure of FO
under this formation rule for TC. Let (FO + pos TC) be that part of (FO
+ TC) in which there is no occurrence of TC within any negation symbols.

Theorem 4.4 (2] NSPACE[logn] = (FO + pos TC).

In [24] we introduced and studies several transitive closure operators.
Here we mention one other: the deterministic transitve closure, DTC.

11

azk

Definition 4.5 For any formula o(z1,...,%k, 2},...,2}), let the determin-
istic version of © be given as follows:

04z, 7) = o(Z,7) AVY(p(Z,7) = T=7) .
That i3, pg has at most one ‘edge’ leaving any ‘vertez’. Define DTC[)\%,7' o]
to be an abbreviation for TC\Z, 7’ pd]
Theorem 4.6 [24] DSPACE[logn] = (FO + DTC).

Let IL be the class of problems recognizable by an ASPACE(log] ma-
chine making only k-1 alternations, and beginning in an existential state.
It was recently shown that the Logspace Hierarcy U 2% collapses at TF,
[38]. There is a corresponding (FO + TC) Hierarchy in which one alternates
occurrences of TC and negation, e.g. (FO + pos TC) = £TC, We know the
following:

Theorem 4.7 [24]

DSPACE]log n] (FO + DTC)

NSPACE{logn] = =T¢

Uz (==2(38)

(FO + TC) =|J=T¢
k

N N

N N

FOllogn]
(FO + LFP)=P

N N

Open Problem 7 Theorem 4.7 leaves an open question for each of the siz
‘C’ symbols, namely, “Is it ‘C’, or is it ‘="2" Of special interest - because
these seem tractable — are the questions: “Does the (FO + TC) Hierarchy
collapse?” and if so, “Is (FO + TC) = FO[logn]?”

4.1 First-Order Translations and Projection Translations

We were surprised to find that all the operators we have considered satisfy
a very restrictive normal form theorem. For example,

12

Theorem 4.8 [24] Let ® be the operator TC (resp. DTC), and let o €
(FO + pos TC) (resp. (FO + DTC)). Then there ezists a constant k and a
first-order formula B(R*, uy, ... ug,u},...u}) such that o is equivalent to

®[AR¥, u1,. .. ug, ul, ... u} B)(0, max) .
where 0, Max are the constant symbols 0, max repeated k times.

Theorem 4.8 says that only one application of the operator is needed in
(FO + DTC) and (FO + pos TC). It follows that versions of these operators
are complete for these classes via first-order translations, which we now
define.

Definition 4.9 cf. [12,24] Letry and; be vocabularies where 7o = (R ...RE).
Let k be a constant. An interpretation, o, of £L(r2) in L(n1) is a sequence of

r formulas from L(n1): Zi(z115...,%ak) t = 1...7, where each Z; has k - a;
free variables.

Such an interpretation o translates any structure 4 of vocabulary 7, to
a structure o(A) of vocabulary 7, as follows: |o(4)| = n*. Each element t €
|o(A)] is associated with a k-tuple, t1,...,t, from | 4| via the lexicographical
ordering of k-tuples. Thus, for example, 0:-’(‘“) =04 i=1,...,k. Each
relation R; € 7 is defined in o(A) using the corresponding Z;:

RO = ((i1,...,1%) | AESi(th th,. .., 7))

Definition 4.10 Given two problems: S ¢ STRUCT|ny] and T € STRUCT |y,
a first order translation of S to T is an interpretation, o, of L(72) in L(n)
such that:

GeS & o(G)eT

Thus a first-order translation is a reduction between two problems given
by a fixed r-tuple of first-order formulas. The following is immediate from
Definitions 4.9, 4.10 and Theorem 4.8.

Corollary 4.11 [24] Let GAP = {G|TC|[E](0,maz)} and let 1IGAP = {G|DTCI[E](0,maz)}.
Then GAP is complete for (FO + pos TC) (i.e. NSPACE[logn]) and 1GAP

is complete for (FO + DTC) (i.e. DSPACE[logn]), both via first-order

translations.

13

It follows from Theorem 3.4 and Definition 3.10 that the first-order trans-
lation is a uniform version of constant depth reducibility [8]. It would seem
that the projections of Valiant [40], are even weaker.

Definition 4.12 [{0] Let S and T be problems on boolean strings. S s said
to be a projection of T if there ezists a constant k, and, for each n, a map,

Pn i {Z1,y .y Tpr} — {¥1,15-++sYnsIny U {0,1}

such that
S={y1---Yn | pn(21)s.--,Pn(zne) €T}
Thus, S is a projection of T iff the circuits for T also work for S with
polynomial blow-up, and a rewiring of the inputs.
A first-order structure may be coded as a binary string listing the truth
value for each of its non-logical predicates. (For example, a graph is coded as
its n? bit adjacency matrix.) Note that the input bits correspond to atomic

occurrences of non-logical relations. We found that a stronger version of
Theorem 4.8 holds:

Theorem 4.13 [24] Let & be the operator TC (resp. DTC), and let a €
(FO + pos TC) (resp. (FO + DTC)). Then there ezists a constant k and a
first-order formula B(R¥,u,u’) such that a is equivalent to

®[ARF, uy,. .. uk, v, ... u F] (0, m3X) .

where B is a quantifier free formula in disjunctive normal form:

I
B = V ~i A& where:

i=1
1. Each ~; is a conjunction of the logical atomic relations, s,=, and their
negations.
2. Each §; is atomic or negated atomic.
8. For i # j, vi and ~y; are mutually ezclusive.
Call a first order translation o = (Z1,...,Z,) a projection translation if

each of its formulas is in the form of 3 in the above theorem. It is easy to
see that,

Corollary 4.14 [24]

14

1. GAP is complete for NSPACE[logn] via projection translations.
2. 1GAP is complete for DSPACE[logn] via projection translations.

Corollary 4.15 [24] NP = DSPACE[logn] iff CLIQUE is a projection
translation of 1GAP.

Remark 4.16 The projection translation is a uniform version of Valiant’s
projection. The maps p, in the definition of projection are all given by a
fized quantifier free formula, B.

Open Problem 8 One would solve an important problem by showing that
CLIQUE is not a projection translation of 1GAP. It would be very worth- '
while to study the projection translation, and more generally the first-order
translation, in detail. In particular it would be of great interest to prove a
lower bound on k for which a k-ary projection translation from CLIQUE to
1GAP ezists, cf. [16].

4.2 NC! and Bounded-Width Branching Programs

David Barrington recently showed that NC! is equal to the set of problems
recognizable by polynomial-size, width 5 branching programs.

Theorem 4.17 (8]

1. NC' = Bounded- Width, Polynomial-Size Branching Programs.

2. The word problem for Ss is complete for NC! via non-uniform AC°
reductions.

One can define a version of TC restricted to width 5 graphs, which we will
call W5TC. Similarly, one can define a corresponding version of GAP called
W3sGAP. The following is then proved by checking that the non-uniform
AC?® reductions in Theorem 4.17 can in fact be made uniform. This adds
futher support to Definition 3.10.

Theorem 4.18 1. NC* = (FO + WsTC)

2. The word problem for S5 and W5 GAP. are complete for NC' via first-
order translations.

Open Problem 9 Are the word problem for S5 and Ws GAP complete for
NC! via projection translations?

15

5 Lower Bounds

When we began this line of research one of the most exciting directions
seemed to be lower bounds. For example, to prove P# AC! it suffices to
show that some property in P cannot be expressed by sentences of length
Ollogn]. Similarly, proving P # NP is equivalent to showing that some
second-order property is not in (FO + LFP). Of course even when we cast
these problems in this new light, they are still very hard. In this section we
review the little we can show about lower bounds and suggest some problems
and future directions to be tackled.

5.1 Ehrenfeucht-Fraisse Pebble Games

One way to prove that a problem S is not describable in a language L is
to produce a pair of structures, A € S,B ¢ S, such that that 4 and B are
L equivalent, i.e. agree on all sentences from L. In [22] we showed how to
modify the standard Ehrenfeucht-Fraisse games [11,14] to include pebbles.®
The game G(A,B,k,n) is played for n moves with k pairs of pebbles on
structures A,B. There are two players: Player I is trying to show that
A % B and Player II is trying to prevent Player I from succeeding. Let
Lim be the language Lk restricted to sentences of quantifier rank at most
m. (The quantifier rank is the maximum depth of nesting of quantifiers in
a formula.) We have:

Theorem 5.1 [22] The following are equivalent:

1. Player II has a forced win in the game G(4, B,k,m).

2. A and B are Lim equivalent.

By Theorem 5.1 the above pebbling games provide a convenient tool for
proving the L . equivalence of structures, and thus proving VAR& SZ[k, m]

lower bounds. A problem arises however in that when the logical relation
‘<’ is present, two structures that look the same are equal:

Proposition 5.2 [21,22]

IF |A| € n, L includes ‘<’ and A 18 L3 g+iogn equivalent to B
THEN A=B.

3See also [4] for a similar modification.

16

Proposition 5.2 is a significant stumbling block to proving lower bounds
greater than FO[logn]. A straight forward Ehrenfeucht-Fraisse argument
shows that Q[log n] quantifiers are necessary in Proposition 5.2 and also nec-

essary to express deterministic transitive closure, even with ordering present
(but without BIT):

Theorem 5.3 [21] If t(n) is oflogn] then 1GAP & FO(w.o. BIT)[t(n))].

Open Problem 10 Eztend Theorem 5.9 to include BIT. This would have
the very interesting consequence that NC! # DSPACE|logn|, cf. Theorem
8.7. We feel that this problem may be tractable and thus 1s worth considerable
effort.

5.2 Lower Bounds Without Ordering

In [21,22] we proved several lower bounds on VAR& SZ(w.o. <)[v(n), z(n)].
Here when we say, ‘w.o. <,’ we also exclude s and BIT. Since the languages
without ordering are not strong enough to simulate Turing machines it is
difficult to interpret the meaning of the following three theorems. We be-

lieve, however, that they provide some intuitive support for the conjectures:
NC #P, P#NP, and Graph Isomorphism ¢ P, respectively.

Theorem 5.4 [21] The problem AGAP is in P, but AGAP is not in VARE
$Z(w.0.<)[t(n),t(n)] for t(n) = o2V logn),
Theorem 5.5 1. [22,10] For allk, “Has a Hamilton Circuit” & VAR(w.o.
<)IK]. |
2. [22] For all k, “Has a k + 1-Clique” ¢ VAR(w.o. <)[k].

Theorem 5.6 [22] For all k,
Graph Isomorphism & VAR(w.o. <)[k].

5.3 Replacing Ordering by Counting

Proposition 5.2 shows that we can’t prove interesting lower bounds on the
computational complexity of a property S simply by constructing a pair of
structures which differ on S, but are equivalent for a language that includes
ordering. On the other hand, the following proposition points out that
first-order logic without ordering is not powerful enough to simulate Turing
machines, or even to count. Thus, lower bounds on FO(w.0.<) do not
immediately carry over to complexity lower bounds.

17

Proposition 5.7 [27] Let G and H be graphs with n and n + 1 vertices,
respectively, and no edges. Then G and H are L, equivalent (in the language
without ordering).

Proposition 5.7 points out the only defect of FO(w.0.<) that we know
about, namely that this language is not strong enough to count. A possible
fix is to add counting quantifiers: for each k € N add the quantifier (3n2)
where (3n z)p(z) means that there exists at least n distinct elements z for
which ¢(z) holds. Note that (3n+ 1z)(z = z) says that there exist at least
n+1 points, and only uses one variable instead of the n+1 that are needed if
we don’t have counting quantifiers. Define Cy to be the first-order language
L; plus counting quantifiers. In the rest of this section we will confine our
attention to languages without ordering.

In [27) we consider the following algorithms to test whether graphs G
and H are isomorphic: For appropriate k, test if G is Ck equivalent to H.

Theorem 5.8 [27] Given graphs G and H with at most n vertices, we
can test if G i3 Ly equivalent to H and if G is Cy equivalent to H in
DTIME|(n* log n)k?] .

Definition 5.9 Let T be a set of graphs. Define var(Z,n) (resp. ve(Z,n))
to be the minimum k such that for all G,H € £ with |G|,|H| < n, IfG is Lk
(resp. Ci) equivalent to H, then G = H. Let var(n) = var(GRAPHS,n)
and ve(n) = ve(GRAPHS, n) where GRAPHS is the set of all finite graphs.
When var(Z,n) or ve(T,n) is bounded, we write var(Z) = max, var(Z,n),
and ve(S) = maxy ve(Z,n).

Corollary 5.10 [27] Let T be any set of graphs, and let v(n) = ve(Z,n).
Then we can test isomorphism of graphs in T in DTIME[(n*(™ log n)(v(n))?]

Open Problem 11 [27] We don’t know much about the values of var(n)
and vc(n). We know by Theorem 5.6 that var(n) is unbounded. We know
that 3 < ve(n) < n — 1. However, both for its own sake and also in view of
Corollary 5.10 it is important to find much better bounds on var and vc.

We also have very little information right now about the values of var(Z)

and vc(Z) for most classes of graphs, I. For trees, however, the situation is
simpler:

18

Theorem 5.11 Let TREES be the set of all finite trees. Let Ty be the set
of finite trees such that each node has at most k children, and let Sy be the
subset of Tk in which each non-leaf has ezactly k children. Then,

1. [26] .
ifk=1
var(Ty) =4 3 #f2<k<3
k ifk>3

2. [26]
2 fl<k<?2
var(Sk) =14 3 if3<k<6
[k/2] ifk>6

8. [27]
ve(TREES) =2

Open Problem 12 [27] It would be very interesting to determine var(Z,n)
and ve(Z,n) for various T, for ezample: planar graphs, trivalent graphs,
graphs with bounded color class size, graphs with bounded eigenvalue multi-
plicity, etc. It would be valuable simply to determine whether or not these
values are bounded, c¢f. Problem 15.

The problem of appropriately replacing ‘<’ is a fundamental one. In
particular it is not recursively decidable if a given polynomial-time Turing
machine, M, computes a graph property or not, i.e. does M accept its inputs
irrespective of their ordering? The following question is open.

Open Problem 13 Is there an r.e. listing of all polynomial-time graph
properties?

One way to attack Problem 13 is to express problems in languages such as
Ci; and we would love to know if C is rich enough to express all polynomial-
time graph properties. One defect of Ci as a language for expressing com-
putation, rather than testing graph isomorphism, is that the arguments to
the counting quantifiers are constants. Instead we can consider a two-sorted
language with variables m; ranging over the numbers 0,...,n — 1, with <
given over this domain (and thus PLUS and TIMES and BIT definable). The
connection between the number domain and the universe of the structure
would be the counting quantifiers: (3m; z;). Let FOC[t(n)] be the analogue
of FO[t(n)] with these numbers and counting quantifiers available. It’s not

19

hard to show that we would still have |J; FOC[n'] = (FOC + LFP). The
following three problems now address the question, “Is Counting Enough,
or Do We Need Something Else?”

Open Problem 14 Prove or disprove: (FOC + LFP) = P4

Note that a positive solution to Problem 14 would provide a positive
solution to Problem 13.

Open Problem 15 Prove or disprove: For every set of graphs ¥ having a
polynomial-time graph isomorphism algorithm, ve(S,n) = O(1].

Open Problem 16 Prove or disprove: Problems 14 and 15 are equivalent.

References

[1] M. Ajtai, “C] Formulae on Finite Structures,” Annals of Pure and
Applied Logic 24, 1983, (1-48). 603-617.

[2] L4szl6 Babai and Gydrgy Turdn, “The Complexity of Defining a Re-
lation on a Finite Graph,” to appear in Zeitschr. fur Math. Logik .

[3] David Barrington, “Bounded-Width Polynomial-Size Branching Pro-
grams Recognize Exactly Those Languages in NC!,” 18th ACM STOC
(1986), 1-5.

[4] Jon Barwise, “On Moschovakis Closure Ordinals,” J. Symb. Logic 42
(1977), 292-296.

[5] Samuel R. Buss and Neil Inmerman, “Iterated Quantifier Blocks and
First-Order Logic for Finite Structures,” in preparation.

[6] Ashok Chandra and David Harel, “Structure and Complexity of Re-
lational Queries,” 21st IEEE Symp. on Foundations of Computer Sci-
ence, (1980), (333-347). Also appeared in a revised form in JCSS 25
(1982), (99-128).

Steve Lindell [20] has recently shown that if we restrict our attention to complete
binary trees, then (FOC + LFP) = P. Lindell also shows that a restriction of (FOC +
LFP), in which elements from the number domain may not appear in relations defined
by induction, is equal to (FO(w.0.<) + LFP) and is strictly contained in P, c.f. Theorem
5.11.

20

[7] Ashok Chandra, Dexter Kozen, and Larry Stockmeyer, “Alternation,”
JACM, 28, No. 1, (1981), 114-133.

[8] Ashok Chandra, Larry Stockmeyer and Uzi Vishkin, “Constant Depth
Reducibility,” SIAM J. of Comp. 13, No. 2, 1984, (423-439).

[9] Stephen Cook, “A Taxonomy of Problems with Fast Parallel Algo-
rithms,” Information and Control 64 (1985), 2-22.

[10] Michel de Rougemont, “Uniform Definability on Finite Structures with
Successor,” 16th ACM STOC Symp., (1984), 409-417.

[11) A. Ehrenfeucht, “An Application of Games to the Completeness Prob-
lem for Formalized Theories,” Fund. Math. 49 (1961), 129-141.

[12] H. Enderton, A Mathematical Introduction to Logic, Academic Press,
1972.

[13] Ron Fagin, “Generalized First-Order Spectra and Polynomial-Time
Recognizable Sets,” in Complezity of Computation, (ed. R. Karp),
SIAM-AMS Proc. 7, 1974, (27-41).

[14] R. Fraisse, “Sur les Classifications des Systems de Relations,” Publ.
Sci. Univ. Alger I (1954).

[15] M. Furst, J.B. Saxe, and M. Sipser, “Parity, Circuits, and the
Polynomial-Time Hierarchy,” 22nd IEEE FOCS Symp., 1981, (260-
270).

[16] Joachim von zur Gathen, “Permanent and Determinant,” it 27th
IEEE Symp. on Foundations of Computer Science, (1986), 398-401.

[17] Etienne Grandjean, “The Spectra of First-Order Sentences and Com-
putational Complexity,” SIAM J. of Comp. 13, No. 2, 1984, (356-373).

[18] Yuri Gurevich, “Toward Logic Tailored for Computational Complex-
ity,” Computation and Proof Theory (M.M. Ricther et. al., eds.).
Springer-Verlag Lecture Notes in Math. 1104 (1984), 175-216.

[19] Yuri Gurevich and Saharon Shelah, “Fixed-Point Extensions of First-
Order Logic,” 26th Symp. on Foundations of Computer Science, 1985.
(137-161).

21

[20] Johan Hastad, “Almost Optimal Lower Bounds for Small Depth Cir-
cuits,” 18th ACM STOC Symp., (1986), 6-20.

[21] Neil Immerman, “Number of Quantifiers is Better than Number of
Tape Cells,” JCSS 22, No. 3, June 1981, 65-72.

[22] Neil Immerman, “Upper and Lower Bounds for First Order Express-
ibility,” JCSS 25, No. 1 (1982), 76-98.

[23] Neil Immerman, “Relational Queries Computable in Polynomial
Time,” 14th ACM STOC Symp., (1982), 147-152. Also appeared in
revised form in Information and Control, 68 (1986), 86-104.

[24] Neil Immerman, “Languages Which Capture Complexity Classes,”
15th ACM STOC Symp., (1983) 347-354. Also to appear in revised
form in SIAM J. Comput. 16, No. 4 (1987).

[25] Neil Immerman, “Expressibility and Parallel Complexity,” Tech. Re-
port, Yale University Department of Computer Science (1987).

[26] Neil Immerman and Dexter Kozen, “Definablitity with Bounded Num-
ber of Bound Variables,” Second LICS Symp. (1987)

[27] Neil Inmerman and Eric S. Lander, “Telling Graphs Apart: A First-
Order Approach to Graph Isomorphism,” Tech. Report, Yale Univer-
sity Department of Computer Science (1987).

[28] Daniel Leivant, “Characterization of Complexity Classes in Higher-
Order Logic,” this volume.

[29] Steven Lindell, personal communication.

[30] L. Lovész and P. Gécs, “Some Remarks on Generalized Spectra,”
Zeitchr. f. math, Logik und Grundlagen d. Math, Bd. 23, 1977, (547-
554).

[31] James Lynch, “Complexity Classes and Theories of Finite Models,”
Math. Sys. Theory 15, 1982, (127-144).

[32] Yiannis N. Moschovakis, Elementary Induction on Abstract Structures,
North Holland, 1974.

[33] Larry Ruzzo, “On Uniform Circuit Complexity,” J. Comp. Sys. Sci.,
21, No. 2 (1981), 365-383.

22

[34] Michael Sipser, ”Borel Sets and Circuit Complexity,” 15th Symp. on
Theory of Computation, 1983, (61-69).

[35] S. Skyum and L.G. Valiant, “A Complexity Theory Based on Boolean
Algebra,” 22nd IEEE Symp. on Foundations of Computer Science,
1081, (244-253). Revised version appears in JACM, 32, No. 2, April,
1085, (484-502).

[36] Larry Stockmeyer, “The Polynomial-Time Hierarchy,” Theoretical
" Comp. Sci. 3, 1977,(1-22).

[37] Larry Stockmeyer and Uzi Vishkin, “Simulation of Parallel Random
Access Machines by Circuits,” SIAM J. of Comp. 13, No. 2, 1984,
(409-422).

[38] Martin Tompa, “Ax¥ C AN} (Lange, Jenner, and Kirsig),” hand-
written notes (Dec. 1986).

[39] Gybrgy Turdn, “On the Definability of Properties of Finite Graphs,”
Discrete Math, 49 (1984), 291-302.

[40] L.G. Valiant, “Reducibility By Algebraic Projections,”
L’Enseignement mathématique, T. XXVIII, 3-4, 1982, (253-268).

[41] M. Vardi, “Complexity of Relational Query Languages,” 14th Sympo-
sium on Theory of Computation, 1982, (137-146).

[42] Andrew Chi-Chih Yao,“Separating the Polynomial-Time Hierarchy by
Oracles,” 26th IEEE Symp. on Foundations of Comp. Sci., 1985.

23

