
In this report we investigate the solution of boundary value problems on polygonal
domains for elliptic partial differential equations. We observe that when the problems
are formulated as the boundary integral equations of classical potential theory, the
solutions are representable by series of elementary functions. In addition to being
analytically perspicuous, the resulting expressions lend themselves to the construction
of accurate and efficient numerical algorithms. The results are illustrated by a number
of numerical examples.
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1 Introduction

In classical potential theory, elliptic partial differential equations (PDEs) are reduced to
integral equations by representing the solutions as single-layer or double-layer potentials
on the boundaries of the regions. The densities of these potentials satisfy Fredholm
integral equations of the second kind.

There are three essentially separate regimes in which such boundary integral equa-
tions have been studied. In the first regime, the boundary of the region is approximated
by a smooth curve. It is known that if the curve is smooth, then the kernel of the in-
tegral equation is smooth as well (see, for example, [21]). The existence and uniqueness
of the solution follows from Fredholm’s theory, and the integral equations can be solved
numerically using standard tools (see, for example, [11]).

In the second regime, the boundary of the region is approximated by a curve with
perfectly sharp corners. In this regime, the kernel of the integral equation has singulari-
ties at the corners, and the existence and uniqueness of the solution in the L2-sense is also
known (see, for example, [23]). The behavior in the vicinity of the corners of the solu-
tions of both the integral equations and of the underlying differential equation have been
the subject of much study (see [25], [15] for representative examples). Comprehensive
reviews of the literature can be found in (for example) [19], [10].

In the third regime, the assumptions on the boundary are of an altogether different
nature. It might be a Lipschitz or Hölder continuous curve, or a fractal, etc. While
during the last fifty years, such environments have been studied in great detail (see, for
example, [13], [23], [4], [6], [5], [14], etc.), they are outside the scope of this paper.

This paper deals with the very special case of polygonal boundaries, and is based
on several specific analytical observations. These observations are summarized in the
following two subsections, and are discussed in detail in sections 4 and 5.

Figure 1: A wedge in R2
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1.1 The Neumann Case

Suppose that γ : [−1, 1] → R

2 is a wedge in R2 with a corner at γ(0), and with interior
angle πα. Suppose further that γ is parametrized by arc length, and let ν(t) denote
the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]). By
extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and Ω2

(see Figure 1).
Let φ : R2 \ Γ → R denote the potential induced by a charge distribution on γ with

density ρ : [−1, 1] → R. In other words, φ is defined by the formula

φ(x) =

∫ 1

−1

log(‖γ(t)− x‖)ρ(t) dt, (1)

for all x ∈ R2 \ Γ, where ‖ · ‖ denotes Euclidean distance. Suppose that n is a positive
integer, and let ⌈x⌉ denote the smallest integer n such that n ≥ x, and ⌊x⌋ denote the
largest integer n such that n ≤ x, for all real x. Suppose further that ρ is defined by the
formula

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1|t|
2i−1

α
−1 +

⌊n/2⌋
∑

i=1

b2i sgn(t)|t|
2i

α
−1 +

⌈n/2⌉
∑

i=1

c2i−1 sgn(t)|t|
2i−1

2−α
−1 +

⌊n/2⌋
∑

i=1

c2i|t|
2i

2−α
−1,

(2)

for all −1 ≤ t ≤ 1, where b1, b2, . . . , bn and c1, c2, . . . , cn are real numbers, and

sgn(x) =







−1 if x < 0,
0 if x = 0,
1 if x > 0,

(3)

for all real x. Suppose finally that g : [−1, 1] → R is defined by the formula

g(t) = lim
x→γ(t)
x∈Ω1

∂φ(x)

∂ν(t)
(4)

for all −1 ≤ t ≤ 1, i.e. g is the limit of the normal derivative of integral (1) when
x approaches the point γ(t) from outside. Then g is smooth on each of the intervals
[−a, 0], [0, a] for any 0 < a < 1 (see Figure 1). In other words, given a charge distribution
ρ of the form (2), the normal derivative of the resulting potential (1) on Γ (in the
sense (4)) is smooth.

Conversely, for any sufficiently smooth g, there exists a charge distribution ρ of the
form (2) such that the normal derivative of the resulting potential (1) on Γ is equal to
g, to high precision.
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1.2 The Dirichlet Case

Suppose that γ : [−1, 1] → R

2 is a wedge in R2 with a corner at γ(0), and with interior
angle πα. Suppose further that γ is parametrized by arc length, and let ν(t) denote
the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]). By
extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and Ω2

(see Figure 1).
Let φ : R2 \ Γ → R denote the potential induced by a dipole distribution on γ with

density ρ : [−1, 1] → R. In other words, φ is defined by the formula

φ(x) =

∫ 1

−1

〈ν(t), γ(t)− x〉

‖γ(t)− x‖2
ρ(t) dt, (5)

for all x ∈ R2 \ Γ, where 〈·, ·〉 denotes the inner product and ‖ · ‖ denotes Euclidean
distance. Suppose that n is a positive integer, and let ⌈x⌉ denote the smallest integer n
such that n ≥ x, and ⌊x⌋ denote the largest integer n such that n ≤ x, for all real x.
Suppose further that ρ is defined by the formula

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1|t|
2i−1

α +

⌊n/2⌋
∑

i=0

b2i sgn(t)|t|
2i

α +

⌈n/2⌉
∑

i=1

c2i−1 sgn(t)|t|
2i−1

2−α +

⌊n/2⌋
∑

i=0

c2i|t|
2i

2−α ,

(6)

for all −1 ≤ t ≤ 1, where b0, b1, . . . , cn and c0, c1, . . . , cn are real numbers, and sgn(x) is
defined by (3). Suppose finally that g : [−1, 1] → R is defined by the formula

g(t) = lim
x→γ(t)
x∈Ω2

φ(x), (7)

for all −1 ≤ t ≤ 1, i.e. g is the limit of integral (5) when x approaches the point γ(t)
from inside. Then g is smooth on each of the intervals [−a, 0], [0, a] for any 0 < a < 1
(see Figure 1). In other words, given a dipole distribution ρ of the form (6), the resulting
potential (5) on Γ (in the sense (7)) is smooth.

Conversely, for any sufficiently smooth g, there exists a dipole distribution ρ of the
form (6) such that the resulting potential (5) on Γ is equal to g, to high precision.

1.3 The Procedure

Recently, progress has been made in solving the boundary integral equations of potential
theory numerically (see, for example, [12], [3]). Most such schemes use nested quadratures
to resolve the corner singularities. However, the explicit representations (2), (6) lead to
alternative numerical algorithms for the solution of the integral equations of potential
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theory. More specifically, we use these representations to construct purpose-made dis-
cretizations which accurately represent the associated boundary integral equations (see,
for example, [18], [16], [24]). Once these discretizations are available, the equations can
be solved using the Nyström method combined with standard tools. We observe that
the condition numbers of the resulting discretized linear systems closely approximate the
condition numbers of the underlying physical problems.

Observation 1.1 While the analysis in this paper applies only to polygonal domains,
a similar analysis carries over to curved domains with corners. A paper containing the
analysis, as well as the corresponding numerical algorithms and numerical examples, is
in preparation.

Observation 1.2 In the examples in this paper, the discretized boundary integral equa-
tions are solved in a straightforward way using standard tools. However, if needed, such
equations can be solved much more rapidly using, for example, [9].

The structure of the paper is as follows. In Section 2, we introduce the necessary
mathematical preliminaries. Section 3 contains the primary analytical tools of the pa-
per. In sections 4 and 5, we investigate the Neumann and Dirichlet cases respectively.
In Section 6, we briefly describe a numerical algorithm and provide several numerical
examples.

2 Mathematical Preliminaries

2.1 Boundary Value Problems

Figure 2: A curve in R2

Suppose that γ : [0, L] → R

2 is a simple closed curve of length L with n corners at the
points 0 = s1 < s2 < . . . < sn < sn+1 = L . Suppose further that γ is parameterized by
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arc length and oriented counterclockwise. We denote the interior of γ by Ω, and denote
the boundary of Ω by Γ. Suppose that γ is analytic on the intervals (si, si+1) for each
i = 1, 2, . . . , n, and that the interior angle at any corner of γ is between 0 and 2π. We
denote the normalized internal normal to γ at t ∈ [0, L] by ν(t). Letting g be a function
[0, L] → R, we will consider the following problems.

Exterior Neumann problem: find a function φ : R2 \ Ω → R such that

∇2φ(x) = 0 for x ∈ R2 \ Ω, (8)

lim
x→γ(t)

x∈R2\Ω

∂φ(x)

∂ν(t)
= g(t) for t ∈ [0, L]. (9)

Interior Dirichlet problem: find a function φ : Ω → R such that

∇2φ(x) = 0 for x ∈ Ω, (10)

lim
x→γ(t)
x∈Ω

φ(x) = g(t) for t ∈ [0, L]. (11)

For every g ∈ L2([0, L]), the exterior Neumann problem and the interior Dirichlet prob-
lem have unique solutions (see, for example, [13]).

2.2 Integral Equations of Potential Theory

In classical potential theory, boundary value problems are solved by representing the
function φ by integrals of potentials over the boundary. The potential of a unit charge
located at x0 ∈ R

2 is the function ψ0
x0
: R2 \ x0 → R, defined via the formula

ψ0
x0
(x) = log(‖x− x0‖), (12)

for all x ∈ R2 \ x0, where ‖ · ‖ denotes Euclidean distance. The potential of a unit
dipole located at x0 ∈ R2 and oriented in direction h ∈ R2, ‖h‖ = 1, is the function
ψ1
x0,h

: R2 \ x0 → R, defined via the formula

ψ1
x0,h

(x) =
〈h, x0 − x〉

‖x0 − x‖2
, (13)

for all x ∈ R2 \ x0, where 〈·, ·〉 denotes the inner product.
The potential created by a charge distribution with density ρ : [0, L] → R on Γ is

given by the formula

φ(x) =

∫ L

0

ψ0
γ(t)(x)ρ(t) dt, (14)
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for any x ∈ R2 \ Γ, and is called a single layer potential. The potential created by a
dipole distribution with density ρ : [0, L] → R on Γ is given by the formula

φ(x) =

∫ L

0

ψ1
γ(t),ν(t)(x)ρ(t) dt, (15)

for any x ∈ R2 \ Γ, and is called a double layer potential.

2.2.1 Reduction of Boundary Value Problems to Integral Equations

The following two theorems reduce the boundary value problems of Section 2.1 to bound-
ary integral equations. They are found in, for example, [23].

Theorem 2.1 Suppose that ρ ∈ L2([0, L]). Suppose further that g : [0, L] → R is defined
by the formula

g(s) = −πρ(s) +

∫ L

0

ψ1
γ(s),ν(s)(γ(t))ρ(t) dt, (16)

for any s ∈ [0, L]. Then g is in L2([0, L]), and the solution φ to the exterior Neumann
problem with right hand side g is given by (14). Moreover, for any g ∈ L2([0, L]),
equation (16) has a unique solution ρ ∈ L2([0, L]).

Theorem 2.2 Suppose that ρ ∈ L2([0, L]). Suppose further that g : [0, L] → R is defined
by the formula

g(s) = −πρ(s) +

∫ L

0

ψ1
γ(t),ν(t)(γ(s))ρ(t) dt, (17)

for any s ∈ [0, L]. The g is in L2([0, L]), and the solution φ to the interior Dirichlet
problem with right hand side g is given by (15). Moreover, for any g ∈ L2([0, L]),
equation (17) has a unique solution ρ ∈ L2([0, L]).

Observation 2.1 Equation (16) is the adjoint of equation (17).

Observation 2.2 Suppose that the curve γ : [0, L] → R

2 is not closed. We observe that
if ρ ∈ L2([0, L]), and g is defined by either (16) or (17), then g ∈ L2([0, L]). Moreover,
if g ∈ L2([0, L]), then both equations (16) and (17) have unique solutions ρ ∈ L2([0, L]).
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2.2.2 Properties of the Kernels of Equations (16) and (17)

The following theorem shows that if a curve γ is sufficiently smooth, then the kernels of
equations (16) and (17) are bounded. It is found in, for example, [20].

Theorem 2.3 Suppose that γ : [0, L] → R

2 is a curve in R2 that is parameterized by
arc length, and that is not necessarily closed. If γ is C2 in a neighborhood of a point s,
where 0 < s < L, then

lim
t→s

ψ1
γ(s),ν(s)(γ(t)) = lim

t→s
ψ1
γ(t),ν(t)(γ(s)) = −

1

2
k(s), (18)

where k : [0, L] → R is the signed curvature of γ.

The following corollary shows that if γ is analytic, then the kernels of equations (16)
and (17) are also analytic.

Corollary 2.4 Suppose that γ : [0, L] → R

2 is a curve in R2 that is parameterized by
arc length, and that is not necessarily closed. If γ is analytic in a neighborhood of a point
s, where 0 < s < L, then

ψ1
γ(s),ν(s)(γ(t)), (19)

ψ1
γ(t),ν(t)(γ(s)), (20)

are analytic functions of t in a neighborhood of s.

Proof. We observe that there is some neighborhood V of s such that

ψ1
γ(s),ν(s)(γ(t)), (21)

ψ1
γ(t),ν(t)(γ(s)), (22)

are analytic functions of t on V \{s}. Since, by Theorem 2.3, these functions are bounded
at s, it follows that they are analytic at s. �

When the curve γ is a wedge, the kernels of equations (16) and (17) have a particularly
simple form, which is given by the following lemma.

Lemma 2.5 Suppose γ : [−1, 1] → R

2 is defined by the formula

γ(t) =

{

−t · (cos(πα), sin(πα)) if −1 ≤ t < 0,
(t, 0) if 0 ≤ t ≤ 1,

(23)
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Figure 3: A wedge in R2

shown in Figure 3. Then, for all 0 < s ≤ 1,

ψ1
γ(s),ν(s)(γ(t)) =







t sin(πα)

s2 + t2 + 2st cos(πα)
if −1 ≤ t < 0,

0 if 0 ≤ t ≤ 1,
(24)

and, for all −1 ≤ s < 0,

ψ1
γ(s),ν(s)(γ(t)) =







0 if −1 ≤ t < 0,
−t sin(πα)

s2 + t2 + 2st cos(πα)
if 0 ≤ t ≤ 1.

(25)

Proof. Suppose that 0 < s ≤ 1 and 0 ≤ t ≤ 1. Then,

ψ1
γ(s),ν(s)(γ(t)) =

〈ν(s), γ(s)− γ(t)〉

‖γ(s)− γ(t)‖2

=
〈(0, 1), (s, 0)− (t, 0)〉

|s− t|2

= 0. (26)

Now suppose that 0 < s ≤ 1 and −1 ≤ t < 0. Then,

ψ1
γ(s),ν(s)(γ(t)) =

〈ν(s), γ(s)− γ(t)〉

‖γ(s)− γ(t)‖2

=
〈(0, 1), (s, 0) + t(cos(πα), sin(πα))〉

(s+ t cos(πα))2 + (t sin(πα))2

=
t sin(πα)

s2 + t2 + 2st cos(πα)
. (27)

The proof for the case −1 ≤ s < 0 is essentially identical. �
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Corollary 2.6 Identities (24) and (25) remain valid after any rotation or translation
of the curve γ in R2.

Corollary 2.7 When the curve γ is a straight line, ψ1
γ(s),ν(s)(γ(t)) = 0 for all −1 ≤ s ≤ 1

and −1 ≤ t ≤ 1.

2.3 Several Classical Analytical Facts

In this section we list several classical analytical facts. They can be found in, for exam-
ple, [17] and [2].

The following theorem describes a property of the zeros of analytic functions.

Theorem 2.8 If f is a nonzero analytic function on a domain Ω ⊂ C, then the zeros
of f have no accumulation point in Ω.

Corollary 2.9 (Analytic continuation) Suppose that f and g are both analytic func-
tions on a domain Ω ⊂ C. Suppose further that f and g are equal on a set a points in
Ω that has an accumulation point in Ω. Then f and g are equal on all of Ω.

The following classical theorem provides a test for the convergence of an infinite
series.

Theorem 2.10 (Dirichlet’s test) Suppose a1, a2, . . . is a sequence of real numbers such
that

an ≥ an+1 > 0, (28)

for each positive integer n, and

lim
n→∞

an = 0. (29)

Suppose further that b1, b2, . . . is a sequence of complex numbers such that, for some real
constant M ,

∣

∣

∣

∣

N
∑

n=1

bn

∣

∣

∣

∣

≤M, (30)

for each positive integer N . Then

∞
∑

n=1

anbn <∞. (31)
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The following theorem relates a limit of a power series to the sum of its coefficients.

Theorem 2.11 (Abel’s theorem) Suppose that a0, a1, a2, . . . is a sequence of real num-
bers such that

∞
∑

n=0

anx
n <∞, (32)

for all −1 < x < 1. Suppose further that

∞
∑

n=0

an <∞. (33)

Then

lim
x→1
x<1

∞
∑

n=0

anx
n =

∞
∑

n=0

an. (34)

3 Analytical Apparatus

The elementary theorems 3.4 and 3.5 in this section are the primary analytical tools of
this paper.

The following theorem provides the value of a certain integral. It is found in, for ex-
ample, [8], Section 3.252, formula 12. For completeness, a proof is provided in Appendix
A.

Theorem 3.1 Suppose that −1 < µ < 1 and 0 < α < 2 are real numbers. Then

∫ ∞

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
, (35)

for all a > 0.

The following lemma gives the Taylor series of a certain rational function.

Lemma 3.2 Suppose that −1 < p < 1 and x are real numbers. Then

p sin(x)

1− 2p cos(x) + p2
=

∞
∑

n=1

pn sin(nx). (36)
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Proof. Let −1 < p < 1 and x be real numbers. Then

∞
∑

n=1

pn sin(nx) = Im

( ∞
∑

n=0

pneinx
)

= Im

(

1

1− peix

)

= Im

(

1− pe−ix

1− 2p cos(x) + p2

)

=
p sin(x)

1− 2p cos(x) + p2
. (37)

�

The following lemma evaluates the integral in (35) when it is taken from 0 to 1 instead
of from 0 to ∞.

Lemma 3.3 Suppose that −1 < µ < 1 and 0 < α < 2 are real numbers. Then

∫ 1

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
+

∞
∑

k=0

sin
(

(k + 1)πα
)

µ− k − 1
ak, (38)

for all 0 < a < 1.

Proof. Suppose that 0 < a < 1. Clearly,
∫ ∞

1

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx =

∫ ∞

1

xµ−1

a
·

(a
x
) sin(πα)

(a
x
)2 − 2(a

x
) cos(πα) + 1

dx.

(39)

Since a
x
< 1 for all x ≥ 1, by Lemma 3.2 we observe that

∫ ∞

1

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx =

∫ ∞

1

xµ−1

a

∞
∑

n=1

an sin(nπα)

xn
dx. (40)

Interchanging the order of integration and summation, we further observe that

∫ ∞

1

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx =

∞
∑

n=1

∫ ∞

1

an−1 sin(nπα)

xn−µ+1
dx

= −
∞
∑

n=1

an−1 sin(nπα)

µ− n

= −
∞
∑

k=0

sin((k + 1)πα)

µ− k − 1
ak. (41)
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Combining (35) and (41), we find that

∫ 1

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
+

∞
∑

k=0

sin
(

(k + 1)πα
)

µ− k − 1
ak, (42)

for all 0 < a < 1.
�

The following two theorems are the primary analytical tools of this paper.
A simple analytic continuation argument shows that identity (38) in lemma 3.3 is

also true for all complex µ such that Re(µ) > −1 and µ 6= 1, 2, 3, . . .. This observation
is summarized by the following theorem.

Theorem 3.4 Suppose that 0 < α < 2 is a real number and µ is complex, so that
Reµ > −1 and µ 6= 1, 2, 3, . . .. Then

∫ 1

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
+

∞
∑

k=0

sin
(

(k + 1)πα
)

µ− k − 1
ak, (43)

for all 0 < a < 1.

Proof. Suppose that 0 < a < 1. We observe that the right and left hand sides of
identity (38) are both analytic functions of µ, for all µ such that Re(µ) > −1 and
µ 6= 1, 2, 3, . . .. Therefore, by analytic continuation (Theorem 2.9), it follows that iden-
tity (38) holds for all complex µ such that Re(µ) > −1 and µ 6= 1, 2, 3, . . .. �

The following theorem extends Theorem 3.4 to the case when µ is a positive integer.
We prove it by repeated application of L’Hôpital’s rule.

Theorem 3.5 Suppose that 0 < α < 2 is a real number and that m = 1, 2, 3, . . .. Then

∫ 1

0

xm sin(πα)

a2 − 2ax cos(πα) + x2
dx

= am−1π(1− α) cos(mπα)− am−1 log(a) sin(mπα) +
∑

k≥0
k 6=m−1

sin
(

(k + 1)πα
)

m− k − 1
ak,

(44)

for all 0 < a < 1.
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Proof. Suppose that m is a positive integer and 0 < a < 1. We observe that the left
hand side of identity (43) is analytic in µ, for all µ such that Re(µ) > −1, including the
points µ = 1, 2, 3, . . .. Therefore,

∫ 1

0

xm sin(πα)

a2 − 2ax cos(πα) + x2
dx = lim

µ→m

∫ 1

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx. (45)

By Theorem 3.4,

∫ 1

0

xm sin(πα)

a2 − 2ax cos(πα) + x2
dx = lim

µ→m
πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
+

∞
∑

k=0

sin
(

(k + 1)πα
)

µ− k − 1
ak

=
∞
∑

k=0
k 6=m−1

sin
(

(k + 1)πα
)

m− k − 1
ak + lim

µ→m
πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
+

sin(mπα)

µ−m
am−1

=
∞
∑

k=0
k 6=m−1

sin
(

(k + 1)πα
)

m− k − 1
ak + lim

µ→m

p(µ)

q(µ)
, (46)

where p and q are defined by the formulas

p(µ) = πaµ−1(µ−m) sin(µπ(1− α)) + am−1 sin(µπ) sin(mπα), (47)

and

q(µ) = (µ−m) sin(µπ). (48)

Clearly,

lim
µ→m

p(µ) = lim
µ→m

q(µ) = 0, (49)

so we will use L’Hôpital’s rule to determine limµ→m
p(µ)
q(µ)

. We observe that

p′(µ) = π log(a)aµ−1(µ−m) sin(µπ(1− α)) + πaµ−1 sin(µπ(1− α))

+ π2(1− α)aµ−1(µ−m) cos(µπ(1− α)) + πam−1 cos(µπ) sin(mπα), (50)

and

q′(µ) = sin(µπ) + (µ−m)π cos(µπ). (51)

Since

lim
µ→m

p′(µ) = lim
µ→m

q′(µ) = 0, (52)
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we will use L’Hôpital’s rule again. We observe that

p′′(µ) = π
(

log(a)
)2
aµ−1(µ−m) sin(µπ(1− α) + 2π log(a)aµ−1 sin(µπ(1− α))

+ 2π2(1− α) log(a)aµ−1(µ−m) cos(µπ(1− α)) + π2(1− α)aµ−1 cos(µπ(1− α))

− π3(1− α)2aµ−1(µ−m) sin(µπ(1− α))− π2am−1 sin(µπ) sin(mπα), (53)

and

q′′(µ) = 2π cos(µπ)− (µ−m)π2 sin(µπ). (54)

Since

lim
µ→m

p′′(µ) = 2(−1)mam−1π2(1− α) cos(mπα)− 2(−1)mam−1π log(a) sin(mπα), (55)

and

lim
µ→m

q′′(µ) = 2π(−1)m, (56)

it follows that

∫ 1

0

xm sin(πα)

a2 − 2ax cos(πα) + x2
dx =

∑

k≥0
k 6=m−1

sin
(

(k + 1)πα
)

m− k − 1
ak + lim

µ→m

p(µ)

q(µ)

=
∑

k≥0
k 6=m−1

sin
(

(k + 1)πα
)

m− k − 1
ak + lim

µ→m

p′′(µ)

q′′(µ)

= am−1π(1− α) cos(mπα)− am−1 log(a) sin(mπα) +
∑

k≥0
k 6=m−1

sin
(

(k + 1)πα
)

m− k − 1
ak. (57)

�

The following lemma states that a certain series converges.

Lemma 3.6 Suppose that m is a positive integer and 0 < α < 2 is a real number. Then

∞
∑

n=1

sin(πnα)

m− nα
<∞. (58)
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Proof. We observe that

1

nα−m
≥

1

(n+ 1)α−m
> 0, (59)

for all positive integers n such that n > m/α. Moreover,

lim
n→∞

1

nα−m
= 0. (60)

We also observe that, for any positive integer N ,

∣

∣

∣

∣

N
∑

n=1

sin(πnα)

∣

∣

∣

∣

≤

∣

∣

∣

∣

N
∑

n=0

einα
∣

∣

∣

∣

=

∣

∣

∣

∣

1− ei(N+1)α

1− eiα

∣

∣

∣

∣

≤

∣

∣

∣

∣

ei(N+1)α/2

eiα/2
·
e−i(N+1)α/2 − ei(N+1)α/2

e−iα/2 − eiα/2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

cos((N + 1)α/2)

cos(α/2)

∣

∣

∣

∣

≤
2

| cos(α/2)|
. (61)

Hence, (58) follows by Dirichlet’s test (Theorem 2.10).
�

The following theorem states that a certain Taylor series converges and is bounded
on the interval [0, 1].

Theorem 3.7 Suppose that m and k are positive integers and 0 < α < 2 is a real
number. Suppose further that φ is a function [0, 1] → R defined by the formula

φ(t) =
∞
∑

n=k

sin(πnα)

m− nα
tn−k, (62)

for all 0 ≤ t ≤ 1. Then φ is well defined and bounded on the interval [0, 1].

Proof. We observe that
∣

∣

∣

∣

sin(πnα)

m− nα

∣

∣

∣

∣

=

∣

∣

∣

∣

sin(π(m− nα))

m− nα

∣

∣

∣

∣

= π

∣

∣

∣

∣

sin(π(m− nα))

π(m− nα)

∣

∣

∣

∣

≤ π, (63)

for all positive integers n. Therefore,

∞
∑

n=k

sin(πnα)

m− nα
tn−k <∞, (64)
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for all 0 ≤ t < 1. By Lemma 3.6,
∞
∑

n=k

sin(πnα)

m− nα
<∞, (65)

so φ is well defined on [0, 1]. Furthermore, by Abel’s theorem (Theorem 2.11),

lim
t→1
t<1

∞
∑

n=k

sin(πnα)

m− nα
tn−k =

∞
∑

n=k

sin(πnα)

m− nα
, (66)

so φ is continuous on the interval [0, 1]. Therefore, φ is bounded on [0, 1].
�

The following theorem states that a certain matrix is nonsingular.

Theorem 3.8 Suppose that 0 < α < 2 is a real number. Suppose further that A(α) is
an n× n matrix defined via the formula

Ai,j(α) =















α ·
sin(παi)

2j − 1− αi
if i is odd,

(2− α) ·
sin(παi)

2j − (2− α)i
if i is even,

(67)

where 1 ≤ i, j ≤ n are integers. Then A(α) is nonsingular for all but a finite number of
0 < α < 2.

Proof. We observe that the functions

α ·
sin(παi)

2j − 1− αi
, (68)

(2− α) ·
sin(παi)

2j − (2− α)i
, (69)

are entire functions of α, where 1 ≤ i, j ≤ n are integers. Therefore, det(A(α)) is an
entire function of α. We also observe that

A(1) = πI, (70)

where I is the identity matrix, from which it follows that

det(A(1)) = π. (71)

Since the interval [0, 2] is compact, it follows from Theorem 2.8 that det(A(α)) is equal
to 0 at no more than a finite number of points in [0, 2]. Hence, A(α) is nonsingular for
all but a finite number of 0 < α < 2.

�
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4 Analysis of the Integral Equation: the Neumann

Case

Suppose that the curve γ : [−1, 1] → R

2 is a wedge defined by (23) with interior angle
πα, where 0 < α < 2 (see Figure 3). Let g be a function in L2([−1, 1]), and suppose that
ρ ∈ L2([−1, 1]) solves the equation

− πρ(s) +

∫ 1

−1

ψ1
γ(s),ν(s)(γ(t))ρ(t) dt = g(s), (72)

for all s ∈ [−1, 1].
In this section, we will analyze this boundary integral equation, which is well-posed

even though the curve γ is open (see Observation 2.2). In Section 4.1 we investigate the
behavior of (72) for functions ρ ∈ L2([−1, 1]) of the forms

ρ(t) = |t|µ−1, (73)

ρ(t) = sgn(t)|t|µ−1, (74)

where µ > 1
2
is a real number and

sgn(x) =







−1 if x < 0,
0 if x = 0,
1 if x > 0,

(75)

for all real x. If identities (24) and (25) are substituted into (72) and ρ has the forms (73)
and (74), then for most values of µ the resulting g is singular. In Section 4.2, we observe
that for certain µ, the function g is smooth. In Section 4.3, we fix g and view (72) as
an integral equation in ρ. We then observe that for certain classes of functions g, the
solution ρ is representable by a series of functions of the forms (73) and (74).

4.1 Integral Equations Near a Corner

The following lemma uses a symmetry argument to reduce (72) from an integral equation
on the interval [−1, 1] to two independent integral equations on the interval [0, 1].

Theorem 4.1 Suppose that ρ is a function in L2([−1, 1]) and that g ∈ L2([−1, 1]) is
given by (72). Suppose further that even functions ge, ρe ∈ L2([−1, 1]) are defined via the
formulas

ge(s) =
1

2
(g(s) + g(−s)), (76)

ρe(s) =
1

2
(ρ(s) + ρ(−s)). (77)
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Then

ge(s) = −πρe(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρe(t) dt, (78)

for all 0 < s ≤ 1.
Likewise, suppose that odd functions go, ρo ∈ L2([−1, 1]) are defined via the formulas

go(s) =
1

2
(g(s)− g(−s)), (79)

ρo(s) =
1

2
(ρ(s)− ρ(−s)). (80)

Then

go(s) = −πρo(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρo(t) dt, (81)

for all 0 < s ≤ 1.

Proof. By Lemma 2.3,

g(s) = −πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 + 2st cos(πα)
ρ(t) dt, (82)

for all −1 ≤ s < 0, and

g(s) = −πρ(s) +

∫ 0

−1

t sin(πα)

s2 + t2 + 2st cos(πα)
ρ(t) dt, (83)

for all 0 < s ≤ 1. Therefore,

g(−s) = −πρ(−s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (84)

for all 0 < s ≤ 1, and

g(s) = −πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(−t) dt, (85)

for all 0 < s ≤ 1.
Adding equations (84) and (85), we observe that

ge(s) = −πρe(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρe(t) dt, (86)
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for all 0 < s ≤ 1.
Likewise, subtracting equation (84) from equation (85), we observe that

go(s) = −πρo(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρo(t) dt, (87)

for all 0 < s ≤ 1.
�

4.2 The Singularities in the Solution of Equation (72)

In this section we observe that for certain functions ρ, the functions ge and go defined
by (76) and (79) are representable by convergent Taylor series on [0, 1].

4.2.1 The Even Case

Suppose that ρ ∈ L2([−1, 1]) is an even function, and suppose that g ∈ L2([−1, 1]) is
defined by (72). By Theorem 4.1, g is also even and

g(s) = −πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (88)

for all 0 < s ≤ 1.
Suppose further that ρ(t) = tµ−1 for all 0 ≤ t ≤ 1. The following theorem shows that

for certain values of µ, the function g in (88) is representable by a convergent Taylor
series on the interval [0, 1].

Theorem 4.2 Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

πs
2n−1

α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1

α
−1 dt = α

∞
∑

m=1

sin(mπα)

2n− 1− αm
sm−1, (89)

πs
2n

2−α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t

2n

2−α
−1 dt = (2− α)

∞
∑

m=1

sin(mπα)

2n− (2− α)m
sm−1, (90)

for all 0 < s ≤ 1.
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Proof. Suppose that 2n−1
α

is not an integer. Substituting µ = 2n−1
α

into (43), we observe
that

πs
2n−1

α
−1 +

∫ 1

0

t
2n−1

α sin(πα)

s2 − 2st cos(πα) + t2
dt

= πs
2n−1

α
−1 + πs

2n−1

α
−1 sin

(

2n−1
α

· π(1− α)
)

sin(2n−1
α

· π)
+

∞
∑

k=0

sin
(

(k + 1)πα
)

2n−1
α

− k − 1
sk

= πs
2n−1

α
−1 + πs

2n−1

α
−1 sin

(

2n−1
α

· π − (2n− 1)π
)

sin(2n−1
α

· π)
+ α

∞
∑

k=0

sin
(

(k + 1)πα
)

2n− 1− α(k + 1)
sk

= πs
2n−1

α
−1 − πs

2n−1

α
−1 + α

∞
∑

m=1

sin
(

mπα
)

2n− 1− αm
sm−1

= α
∞
∑

m=1

sin
(

mπα
)

2n− 1− αm
sm−1, (91)

for all s > 0.
Now suppose that 2n−1

α
is an integer. We observe that there is a neighborhood V of

α such that 2n−1
α

is not an integer on V \{α}. Clearly, (91) is a bounded and analytic on
V \{α}. Therefore, identity (91) is extended to this case by an application of L’Hôpital’s
rule.

�

4.2.2 The Odd Case

Suppose that ρ ∈ L2([−1, 1]) is an odd function, and suppose that g ∈ L2([−1, 1]) is
defined by (72). By Theorem 4.1, g is also odd and

g(s) = −πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (92)

for all 0 < s ≤ 1.
Suppose further that ρ(t) = tµ−1 for all 0 ≤ t ≤ 1. The following theorem shows that

for certain values of µ, the function g in (92) is representable by a convergent Taylor
series on the interval [0, 1].

Theorem 4.3 Suppose that 0 < α < 2 is a real number and n is a positive integer.
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Then

− πs
2n

α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n

α
−1 dt = α

∞
∑

m=1

sin(mπα)

2n− αm
sm−1, (93)

− πs
2n−1

2−α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1

2−α
−1 dt = (2− α)

∞
∑

m=1

sin(mπα)

2n− 1− (2− α)m
sm−1,

(94)

for all 0 < s ≤ 1.

4.3 Series Representation of the Solution of Equation (72)

Suppose that g is a function in L2([−1, 1]) such that ge and go defined by (76) and (79) are
representable by convergent Taylor series on [0, 1]. Suppose further that ρ ∈ L2([−1, 1])
satisfies equation (72). In this section we observe that ρe and ρo defined by (77) and (80)
are representable by certain series of singular powers of x ∈ [0, 1].

4.3.1 The Even Case

Suppose that g ∈ L2([−1, 1]) is an even function, and suppose that ρ ∈ L2([−1, 1])
satisfies equation (72). By Theorem 4.1, ρ is also even and

− πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (95)

for all 0 < s ≤ 1, where 0 < α < 2.
Let ⌈x⌉ denote the smallest integer n such that n ≥ x, and let ⌊x⌋ denote the largest

integer n such that n ≤ x, for all real x. The following theorem shows that if the g is
representable by a convergent Taylor series on [0, 1], then for any positive integer n there
exist unique real numbers b1, b2, . . . , bn such that the function

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

α
−1 +

⌊n/2⌋
∑

i=1

b2it
2i

2−α
−1, (96)

where 0 ≤ t ≤ 1, solves equation (95) to within an error O(tn).

Theorem 4.4 Suppose that n is a positive integer and c1, c2, . . . , cn are real numbers.
Suppose further that g : [0, 1] → R is defined by the formula

g(t) =
n

∑

i=1

cit
i−1, (97)
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for all 0 ≤ t ≤ 1. Then, for all but a finite number of 0 < α < 2, there exist unique real
numbers b1, b2, . . . , bn such that

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

α
−1 +

⌊n/2⌋
∑

i=1

b2it
2i

2−α
−1, (98)

for all 0 ≤ t ≤ 1, and

− πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) + snφ(s), (99)

for all 0 < s ≤ 1, where φ : [0, 1] → R is a bounded function representable by a convergent
Taylor series of the form

φ(t) =
∞
∑

i=1

dit
i−1, (100)

for all 0 ≤ t ≤ 1, where d1, d2, . . . are real numbers.

Proof. By Theorem 3.8, the n × n matrix A(α) defined by (67) is nonsingular for all
but a finite number of 0 < α < 2. Whenever A(α) is nonsingular, there exist unique real
numbers b1, b2, . . . , bn such that

−

n
∑

j=1

A(α)i,jbj = ci, (101)

for every i = 1, 2, . . . , n. Suppose that ρ : [0, 1] → R is defined by (98). By Theorem 4.2,

− πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt

= −α

⌈n/2⌉
∑

j=1

b2j−1

∞
∑

i=1

sin(παi)

2j − 1− αi
si−1 − (2− α)

⌊n/2⌋
∑

j=1

b2j

∞
∑

i=1

sin(παi)

2j − (2− α)i
si−1

= −α

⌈n/2⌉
∑

j=1

b2j−1

n
∑

i=1

sin(παi)

2j − 1− αi
si−1 − (2− α)

⌊n/2⌋
∑

j=1

b2j

n
∑

i=1

sin(παi)

2j − (2− α)i
si−1 + snφ(s),

(102)

for all 0 ≤ s ≤ 1, where φ : [0, 1] → R is defined by the formula

φ(t) = −α

⌈n/2⌉
∑

j=1

b2j−1

∞
∑

i=n+1

sin(παi)

2j − 1− αi
ti−1−n − (2− α)

⌊n/2⌋
∑

j=1

b2j

∞
∑

i=n+1

sin(παi)

2j − (2− α)i
ti−1−n,

(103)
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for all 0 ≤ t ≤ 1. By Theorem 3.7, φ is bounded on [0, 1]. By interchanging the order of
summation in (102), we observe that

− πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt

=
n

∑

i=1

(

−α

⌈n/2⌉
∑

j=1

sin(παi)

2j − 1− αi
b2j−1 − (2− α)

⌊n/2⌋
∑

j=1

sin(παi)

2j − (2− α)i
b2j

)

si−1 + snφ(s)

=
n

∑

i=1

(

−
n

∑

j=1

A(α)i,j bj

)

si−1 + snφ(s) =
n

∑

i=1

cis
i−1 + snφ(s) = g(s) + snφ(s), (104)

for all 0 ≤ s ≤ 1. �

4.3.2 The Odd Case

Suppose that g ∈ L2([−1, 1]) is an odd function, and suppose that ρ ∈ L2([−1, 1]) satisfies
equation (72). By Theorem 4.1, ρ is also odd and

− πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (105)

for all 0 < s ≤ 1, where 0 < α < 2.
Let ⌈x⌉ denote the smallest integer n such that n ≥ x, and let ⌊x⌋ denote the largest

integer n such that n ≤ x, for all real x. The following theorem shows that if the g is
representable by a convergent Taylor series on [0, 1], then for any positive integer n there
exist unique real numbers b1, b2, . . . , bn such that the function

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

2−α
−1 +

⌊n/2⌋
∑

i=1

b2it
2i

α
−1, (106)

where 0 ≤ t ≤ 1, solves equation (105) to within an error O(tn).

Theorem 4.5 Suppose that n is a positive integer and c1, c2, . . . , cn are real numbers.
Suppose further that g : [0, 1] → R is defined by the formula

g(t) =
n

∑

i=1

cit
i−1, (107)
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for all 0 ≤ t ≤ 1. Then, for all but a finite number of 0 < α < 2, there exist unique real
numbers b1, b2, . . . , bn so that

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

2−α
−1 +

⌊n/2⌋
∑

i=1

b2it
2i

α
−1, (108)

for all 0 ≤ t ≤ 1, and

−πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) + snφ(s), (109)

for all 0 ≤ s ≤ 1, where φ : [0, 1] → R is a bounded function representable by a convergent
Taylor series of the form

φ(t) =
∞
∑

i=1

dit
i−1, (110)

for all 0 ≤ t ≤ 1, where d1, d2, . . . are real numbers.

4.4 Summary of Results

We summarize the results of the preceding subsections 4.1, 4.2, 4.3 as follows.
Suppose that the curve γ : [−1, 1] → R

2 is a wedge defined by (23) with interior angle
πα, where 0 < α < 2 (see Figure 3). Let g ∈ L2([−1, 1]), and consider the boundary
integral equation

− πρ(s) +

∫ 1

−1

ψ1
γ(s),ν(s)(γ(t))ρ(t) dt = g(s), (111)

for all s ∈ [−1, 1], where ρ ∈ L2([−1, 1]).
Suppose that the even and odd parts of g are each representable by convergent Taylor

series on the interval [0, 1]. Then, for each positive integer n, there exist real numbers
b1, b2, . . . , bn and c1, c2, . . . , cn such that

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1|t|
2i−1

α
−1 +

⌊n/2⌋
∑

i=1

b2i sgn(t)|t|
2i

α
−1 +

⌈n/2⌉
∑

i=1

c2i−1 sgn(t)|t|
2i−1

2−α
−1 +

⌊n/2⌋
∑

i=1

c2i|t|
2i

2−α
−1,

(112)

for all −1 ≤ t ≤ 1, solves equation (111) to within an error O(tn). Moreover, the even
and odds parts of this error are also representable by convergent Taylor series on the
interval [0, 1] (see theorems 4.4 and 4.5).
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Observation 4.1 Numerical experiments (see Section 6) suggest that, for a certain sub-
class of functions g, stronger versions of theorems 4.4 and 4.5 are true. Suppose that G
is a harmonic function on a neighborhood of the set {x ∈ R2 : ‖x‖ ≤ 1}, and let

g(t) =
∂G

∂ν(t)
(γ(t)), (113)

for all −1 ≤ t ≤ 1, where ν(t) is the inward-pointing unit normal vector at γ(t). We
conjecture that there exist infinite sequences of real numbers b1, b2, . . . and c1, c2, . . . such
that

ρ(t) =
∞
∑

i=1

b2i−1|t|
2i−1

α
−1 +

∞
∑

i=1

b2i sgn(t)|t|
2i

α
−1 +

∞
∑

i=1

c2i−1 sgn(t)|t|
2i−1

2−α
−1 +

∞
∑

i=1

c2i|t|
2i

2−α
−1,

(114)

is well defined for all −1 ≤ t ≤ 1, and (114) solves equation (111).

Observation 4.2 Numerical experiments (see Section 6) indicate that the solution to
equation (111) is representable by a series of the form (112), to high precision, for a more
general class of curves γ. More specifically, suppose that γ : [−1, 1] → R

2 is a wedge in
R

2 with smooth, curved sides, with a corner at 0 and interior angle πα. Suppose further
that all derivatives of γ, 2nd order and higher, approach zero near the corner. Then the
solution is representable by a series of the form (112), to high precision.

5 Analysis of the Integral Equation: the Dirichlet

Case

Suppose that the curve γ : [−1, 1] → R

2 is a wedge defined by (23) with interior angle
πα, where 0 < α < 2 (see Figure 3). Let g be a function in L2([−1, 1]), and suppose that
ρ ∈ L2([−1, 1]) solves the equation

g(s) = −πρ(s) +

∫ 1

−1

ψ1
γ(t),ν(t)(γ(s))ρ(t) dt, (115)

for all s ∈ [−1, 1].
In this section, we will analyze this boundary integral equation, which is well-posed

even though the curve γ is open (see Observation 2.2). In Section 5.1 we investigate the
behavior of (115) for functions ρ ∈ L2([−1, 1]) of the forms

ρ(t) = |t|µ, (116)

ρ(t) = sgn(t)|t|µ, (117)
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where µ > 1
2
is a real number and

sgn(x) =







−1 if x < 0,
0 if x = 0,
1 if x > 0,

(118)

for all real x. If identities (24) and (25) are substituted into (115) and ρ has the
forms (116) and (117), then for most values of µ the resulting g is singular. In Sec-
tion 5.2, we observe that for certain µ, the function g is smooth. In Section 5.3, we fix
g and view (115) as an integral equation in ρ. We then observe that for certain classes
of functions g, the solution ρ is representable by a series of functions of the forms (116)
and (117).

The proofs of the theorems in this section are essentially identical to the proofs of
the corresponding theorems in Section 4, and are omitted.

5.1 Integral Equations Near a Corner

The following lemma uses a symmetry argument to reduce (115) from an integral equation
on the interval [−1, 1] to two independent integral equations on the interval [0, 1].

Theorem 5.1 Suppose that ρ is a function in L2([−1, 1]) and that g ∈ L2([−1, 1]) is
given by (115). Suppose further that even functions ge, ρe ∈ L2([−1, 1]) are defined via
the formulas

ge(s) =
1

2
(g(s) + g(−s)), (119)

ρe(s) =
1

2
(ρ(s) + ρ(−s)). (120)

Then

ge(s) = −πρe(s)−

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρe(t) dt, (121)

for all 0 < s ≤ 1.
Likewise, suppose that odd functions go, ρo ∈ L2([−1, 1]) are defined via the formulas

go(s) =
1

2
(g(s)− g(−s)), (122)

ρo(s) =
1

2
(ρ(s)− ρ(−s)). (123)

Then

go(s) = −πρo(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρo(t) dt, (124)

for all 0 < s ≤ 1.
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5.2 The Singularities in the Solution of Equation (115)

In this section we observe that for certain functions ρ, the functions ge and go defined
by (119) and (122) are representable by convergent Taylor series on [0, 1].

5.2.1 The Even Case

Suppose that ρ ∈ L2([−1, 1]) is an even function, and suppose that g ∈ L2([−1, 1]) is
defined by (115). By Theorem 5.1, g is also even and

g(s) = −πρ(s)−

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (125)

for all 0 < s ≤ 1.
Suppose further that ρ(t) = tµ−1 for all 0 ≤ t ≤ 1. The following theorem shows that

for certain values of µ, the function g in (125) is representable by a convergent Taylor
series on the interval [0, 1].

Theorem 5.2 Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

π +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
dt = (2− α)π −

∞
∑

m=1

sin(mπα)

m
sm, (126)

πs
2n−1

α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1

α dt = α
∞
∑

m=1

sin(mπα)

2n− 1− αm
sm, (127)

πs
2n

2−α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t

2n

2−α dt = (2− α)
∞
∑

m=1

sin(mπα)

2n− (2− α)m
sm, (128)

for all 0 < s ≤ 1.

Proof. Taking the limit µ → 0 in (43) and applying L’Hôpital’s rule once, we observe
that

∫ 1

0

sin(πα)

a2 − 2ax cos(πα) + x2
dx = (1− α)πa−1 −

∞
∑

k=0

sin
(

(k + 1)πα
)

k + 1
ak, (129)

for all 0 < a < 1. Clearly, identity (126) follows.
The proofs of identities (127) and (128) are essentially identical to the corresponding

proofs in Theorem 4.2. �
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5.2.2 The Odd Case

Suppose that ρ ∈ L2([−1, 1]) is an odd function, and suppose that g ∈ L2([−1, 1]) is
defined by (72). By Theorem 4.1, g is also odd and

g(s) = −πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (130)

for all 0 < s ≤ 1.
Suppose further that ρ(t) = tµ−1 for all 0 ≤ t ≤ 1. The following theorem shows that

for certain values of µ, the function g in (92) is representable by a convergent Taylor
series on the interval [0, 1].

Theorem 5.3 Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

− π +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
dt = −απ −

∞
∑

m=1

sin(mπα)

m
sm, (131)

− πs
2n

α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n

α dt = α

∞
∑

m=1

sin(mπα)

2n− αm
sm, (132)

− πs
2n−1

2−α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1

2−α dt = (2− α)
∞
∑

m=1

sin(mπα)

2n− 1− (2− α)m
sm,

(133)

for all 0 < s ≤ 1.

5.3 Series Representation of the Solution of Equation (115)

Suppose that g is a function in L2([−1, 1]) such that ge and go defined by (76) and (79) are
representable by convergent Taylor series on [0, 1]. Suppose further that ρ ∈ L2([−1, 1])
satisfies equation (72). In this section we observe that ρe and ρo defined by (77) and (80)
are representable by certain series of singular powers of x ∈ [0, 1].

5.3.1 The Even Case

Suppose that g ∈ L2([−1, 1]) is an even function, and suppose that ρ ∈ L2([−1, 1])
satisfies equation (72). By Theorem 4.1, ρ is also even and

− πρ(s)−

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (134)
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for all 0 < s ≤ 1, where 0 < α < 2.
Let ⌈x⌉ denote the smallest integer n such that n ≥ x, and let ⌊x⌋ denote the largest

integer n such that n ≤ x, for all real x. The following theorem shows that if the g is
representable by a convergent Taylor series on [0, 1], then for any positive integer n there
exist unique real numbers b0, b1, . . . , bn such that the function

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

α +

⌊n/2⌋
∑

i=0

b2it
2i

2−α , (135)

where 0 ≤ t ≤ 1, solves equation (134) to within an error O(tn+1).

Theorem 5.4 Suppose that n is a positive integer and c0, c1, . . . , cn are real numbers.
Suppose further that g : [0, 1] → R is defined by the formula

g(t) =
n

∑

i=0

cit
i, (136)

for all 0 ≤ t ≤ 1. Then, for all but a finite number of 0 < α < 2, there exist unique real
numbers b0, b1, . . . , bn so that

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

α +

⌊n/2⌋
∑

i=0

b2it
2i

2−α , (137)

for all 0 ≤ t ≤ 1, and

− πρ(s)−

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) + sn+1φ(s), (138)

for all 0 < s ≤ 1, where φ : [0, 1] → R is a bounded function representable by a convergent
Taylor series of the form

φ(t) =
∞
∑

i=0

dit
i, (139)

for all 0 ≤ t ≤ 1, where d0, d1, . . . are real numbers.

5.3.2 The Odd Case

Suppose that g ∈ L2([−1, 1]) is an odd function, and suppose that ρ ∈ L2([−1, 1]) satisfies
equation (72). By Theorem 4.1, ρ is also odd and

− πρ(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (140)
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for all 0 < s ≤ 1, where 0 < α < 2.
Let ⌈x⌉ denote the smallest integer n such that n ≥ x, and let ⌊x⌋ denote the largest

integer n such that n ≤ x, for all real x. The following theorem shows that if the g is
representable by a convergent Taylor series on [0, 1], then for any positive integer n there
exist unique real numbers b0, b1, . . . , bn such that the function

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

2−α +

⌊n/2⌋
∑

i=0

b2it
2i

α , (141)

where 0 ≤ t ≤ 1, solves equation (140) to within an error O(tn+1).

Theorem 5.5 Suppose that n is a positive integer and c0, c1, . . . , cn are real numbers.
Suppose further that g : [0, 1] → R is defined by the formula

g(t) =
n

∑

i=0

cit
i, (142)

for all 0 ≤ t ≤ 1. Then, for all but a finite number of 0 < α < 2, there exist unique real
numbers b0, b1, . . . , bn so that

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1t
2i−1

2−α +

⌊n/2⌋
∑

i=0

b2it
2i

α , (143)

for all 0 ≤ t ≤ 1, and

− πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) + sn+1φ(s), (144)

for all 0 < s ≤ 1, where φ : [0, 1] → R is a bounded function representable by a convergent
Taylor series of the form

φ(t) =
∞
∑

i=0

dit
i, (145)

for all 0 ≤ t ≤ 1, where d0, d1, . . . are real numbers.

5.4 Summary of Results

We summarize the results of the preceding subsections 5.1, 5.2, 5.3 as follows.
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Suppose that the curve γ : [−1, 1] → R

2 is a wedge defined by (23) with interior angle
πα, where 0 < α < 2 (see Figure 3). Let g ∈ L2([−1, 1]), and consider the boundary
integral equation

πρ(s) +

∫ 1

−1

ψ1
γ(s),ν(s)(γ(t))ρ(t) dt = g(s), (146)

for all s ∈ [−1, 1], where ρ ∈ L2([−1, 1]).
Suppose that the even and odd parts of g are each representable by convergent Taylor

series on the interval [0, 1]. Then, for each positive integer n, there exist real numbers
b0, b1, . . . , bn and c0, c1, . . . , cn such that

ρ(t) =

⌈n/2⌉
∑

i=1

b2i−1|t|
2i−1

α +

⌊n/2⌋
∑

i=0

b2i sgn(t)|t|
2i

α +

⌈n/2⌉
∑

i=1

c2i−1 sgn(t)|t|
2i−1

2−α +

⌊n/2⌋
∑

i=0

c2i|t|
2i

2−α ,

(147)

for all −1 ≤ t ≤ 1, solves equation (146) to within an error O(tn+1). Moreover, the even
and odds parts of this error are also representable by convergent Taylor series on the
interval [0, 1] (see theorems 5.4 and 5.5).

Observation 5.1 Numerical experiments (see Section 6) suggest that, for a certain sub-
class of functions g, stronger versions of theorems 5.4 and 5.5 are true. Suppose that G
is a harmonic function on a neighborhood of the set {x ∈ R2 : ‖x‖ ≤ 1}, and let

g(t) = G(γ(t)), (148)

for all −1 ≤ t ≤ 1. We conjecture that there exist infinite sequences of real numbers
b0, b1, . . . and c0, c1, . . . such that

ρ(t) =
∞
∑

i=1

b2i−1|t|
2i−1

α +
∞
∑

i=0

b2i sgn(t)|t|
2i

α +
∞
∑

i=1

c2i−1 sgn(t)|t|
2i−1

2−α +
∞
∑

i=0

c2i|t|
2i

2−α , (149)

is well defined for all −1 ≤ t ≤ 1, and (149) solves equation (146).

Observation 5.2 Numerical experiments (see Section 6) indicate that the solution to
equation (146) is representable by a series of the form (147), to high precision, for a more
general class of curves γ. More specifically, suppose that γ : [−1, 1] → R

2 is a wedge in
R

2 with smooth, curved sides, with a corner at 0 and interior angle πα. Suppose further
that all derivatives of γ, 2nd order and higher, approach zero near the corner. Then the
solution is representable by a series of the form (147), to high precision.
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6 The Algorithm

To solve the integral equations of potential theory on polygonal domains, we use the
algorithm described in [3]; however, instead of discretizing the corner singularities using
nested quadratures, we use the representations (112), (147) to construct purpose-made
discretizations (see, for example, [18], [16], [24]). A detailed description of this part of
the procedure will be published at a later date.

We illustrate the performance of the algorithm with several numerical examples.
The exterior Neumann problem and interior Dirichlet problem were solved on each of
the domains in figures 4–9, where the boundary data was generated by a unit charge
inside the region in the Neumann case, and outside the region in the Dirichlet case. The
numerical solution was tested by comparing the computed potential to the true potential
at five arbitrary points. Tables 1 and 2 present the results. The following quantities are
reported for each problem:

n is the total number of nodes;

t is the wall clock time required to solve the problem;

E is the largest error in absolute value measured in the computed potential;

κ is the condition number of the linear system that was solved.

Observation 6.1 Clearly, the curves Γ1 and Γ2 are not polygons. However, all deriva-
tives of the curve, 2nd order and higher, approach zero near the corner. We observe
that in this case, the singularities in the solutions of the boundary integral equations are
identical to those in the polygonal case.

Observation 6.2 We observe that if the boundary values are produced by a charge inside
the domain in the Neumann case, or outside the domain in the Dirichlet case, certain
terms in the representations of the solutions near a corner vanish. More specifically, in
the Neumann case, the terms c1, c2, . . . in (114) vanish, while in the Dirichlet case, the
terms b0, b1, . . . in (149) vanish.

Observation 6.3 The purpose of the numerical examples in this section is to illustrate
the accuracy and convergence of the algorithms, as opposed to the resulting CPU time.
For historical reasons, the resulting linear systems were solved using the minimal residual
method (see, for example, [7]). Clearly, the CPU times in tables 1 and 2 would be
significantly improved by using an algorithm appropriate to the size of the problems being
solved.
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7 Extensions and Generalizations

7.1 The Helmholtz Equation on Polygonal Domains

In this report, we investigate the solution of boundary value problems for Laplace’s equa-
tion on polygonal domains; we observe that, when the problems are formulated as the
boundary integral equations of classical potential theory, the solutions are representable
by series of elementary functions. A similar analysis applies to the Helmholtz equation
on polygonal domains. More specifically, if boundary value problems for the Helmholtz
equation on polygonal domains are formulated as the boundary integral equations of
classical potential theory, the solutions are representable by series of appropriately se-
lected Bessel functions. A paper containing this analysis (together with the requisite
numerical apparatus) is in preparation.

7.2 Curved Boundaries with Corners

While this report only deals with the solution of Laplace’s equation on domains with
polygonal boundaries, a similar analysis applies to the case of curved boundaries with
corners. More specifically, if the boundary is smooth except at corners, the solutions
to the associated boundary integral equations of classical potential theory are also rep-
resentable by series of elementary functions. This analysis, along with the requisite
numerical apparatus, will be described in a forthcoming paper.

7.3 Generalization to Three Dimensions

The generalization of the apparatus of this report to three dimensions is fairly straight-
forward, but the detailed analysis has not been carried out. This line of research is being
vigorously pursued.

7.4 Robin and Mixed Boundary Conditions

This report deals with the solution of Laplace’s equation on polygonal domains with
either Dirichlet or Neumann boundary conditions. There are two additional boundary
conditions that have not yet been analyzed in detail: the Robin condition, which specifies
a linear combination of the values of the solution and the values of its derivative on
the boundary; and the mixed boundary condition, which specifies Dirichlet boundary
conditions on some sides of the polygon and Neumann boundary conditions on others.
The results of our pending investigation will be reported at a later date.
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n t E κ
Γ1 180 0.041426 9.88098491916389× 10−15 4.7357
Γ2 228 0.086169 4.13558076672871× 10−15 6.1593
Γ3 219 0.033944 9.99200722162641× 10−16 7.5586
Γ4 289 0.064797 3.60822483003176× 10−15 18.363
Γ5 704 1.428900 5.55111512312578× 10−16 21.365
Γ6 1007 4.284600 1.22124532708767× 10−15 27.666

Table 1: Numerical results for the exterior Neumann problem

n t E κ
Γ1 162 0.078327 4.88498130835069× 10−15 28.640
Γ2 250 0.075677 1.33226762955019× 10−14 5.4339
Γ3 303 0.046949 3.05311331771918× 10−16 31.302
Γ4 349 0.068338 5.21804821573824× 10−15 107.14
Γ5 776 0.425080 2.86437540353290× 10−14 99.830
Γ6 997 0.781490 1.08801856413265× 10−14 46.737

Table 2: Numerical results for the interior Dirichlet problem
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Figure 4: A cone Γ1 in R2

Figure 5: A curve Γ2 in R2 with an inward-pointing wedge
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Figure 6: An equilateral triangle Γ3 in R2

Figure 7: A right triangle Γ4 in R2

Figure 8: A star-shaped curve Γ5 in R2
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Figure 9: A tank-shaped curve Γ6 in R2
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8 Appendix A

In this section we provide a proof of Theorem 3.1, which is restated here as Theorem 8.4.
The following lemma provides the value of a certain contour integral.

Lemma 8.1 Suppose that −1 < µ < 1 and 0 < α < 1 are real numbers. Then

∫ ∞

−∞

zµ

1− 2z cos(πα) + z2
dz = −π

eiπαµ

sin(πα)
. (150)

Proof. Let ǫ and R be real numbers such that 0 < ǫ < 1 and 1 < R. Suppose that C

Figure 10: A contour in C

is a contour consisting of the intervals [−R,−ǫ] and [ǫ, R], together with the arcs CR,
defined by the formula Reiθ for all 0 ≤ θ ≤ π, and Cǫ defined by the formula ǫeiθ for all
0 ≤ θ ≤ π (see figure 10). We observe that

zµ

1− 2z cos(πα) + z2
=

zµ

(eiπα − z)(e−iπα − z)
(151)

is a meromorphic function of z inside C, with a simple pole inside C at eiπα. Since eiπα

is within the contour, by the residue theorem

∮

C

zµ

1− 2z cos(πα) + z2
dz =

∮

C

zµ

(eiπα − z)(e−iπα − z)
dz = 2πi

(eiπα)µ

e−iπα − eiπα
= −π

eiπαµ

sin(πα)
.

(152)

We observe that when for any z ∈ CR, |z| = R and

∣

∣

∣

∣

zµ

1− 2z cos(πα) + z2

∣

∣

∣

∣

=

∣

∣

∣

∣

zµ

(eiπα − z)(e−iπα − z)

∣

∣

∣

∣

≤
Rµ

(R− 1)2
. (153)
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Consequently,
∣

∣

∣

∣

lim
R→∞

∫

CR

zµ

1− 2z cos(πα) + z2
dz

∣

∣

∣

∣

≤ lim
R→∞

∫

CR

∣

∣

∣

∣

zµ

1− 2z cos(πα) + z2

∣

∣

∣

∣

dz

≤ lim
R→∞

∫

CR

Rµ

(R− 1)2
dz

= lim
R→∞

π
Rµ+1

(R− 1)2

= 0. (154)

Likewise, we observe that for any z ∈ Cǫ, |z| = ǫ and
∣

∣

∣

∣

zµ

1− 2z cos(πα) + z2

∣

∣

∣

∣

=

∣

∣

∣

∣

zµ

(eiπα − z)(e−iπα − z)

∣

∣

∣

∣

≤
ǫµ

(1− ǫ)2
. (155)

Consequently,
∣

∣

∣

∣

lim
ǫ→0

∫

Cǫ

zµ

1− 2z cos(πα) + z2
dz

∣

∣

∣

∣

≤ lim
ǫ→0

∫

Cǫ

∣

∣

∣

∣

zµ

1− 2z cos(πα) + z2

∣

∣

∣

∣

dz

≤ lim
ǫ→0

∫

Cǫ

ǫµ

(1− ǫ)2
dz

= lim
ǫ→0

π
ǫµ+1

(1− ǫ)2

= 0. (156)

Therefore,

lim
R→∞

lim
ǫ→0

∮

C

zµ

1− 2z cos(πα) + z2
dz =

∫ ∞

−∞

zµ

1− 2z cos(πα) + z2
dz. (157)

Combining formulas (152) and (157), we observe that
∫ ∞

−∞

zµ

1− 2z cos(πα) + z2
dz = −π

eiπαµ

sin(πα)
. (158)

�

The following corollary evaluates the integral in formula (150) when it is taken from
0 to ∞ instead of from −∞ to ∞.

Corollary 8.2 Suppose that −1 < µ < 1 and 0 < α < 1 are real numbers. Then,
∫ ∞

0

xµ sin(πα)

1− 2x cos(πα) + x2
dx = π

sin(µπ(1− α))

sin(µπ)
. (159)
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Proof. Lemma 8.1 states that

−π
eiπαµ

sin(πα)
=

∫ ∞

−∞

zµ

1− 2z cos(πα) + z2
dz, (160)

which we rewrite in the form

− π
eiπαµ

sin(πα)
=

∫ ∞

0

zµ

1− 2z cos(πα) + z2
dz +

∫ 0

−∞

zµ

1− 2z cos(πα) + z2
dz

=

∫ ∞

0

zµ

1− 2z cos(πα) + z2
dz + eiπµ

∫ ∞

0

zµ

1 + 2z cos(πα) + z2
dz. (161)

Replacing α with 1− α, we also observe that

− π
eiπ(1−α)µ

sin(πα)
=

∫ ∞

0

zµ

1 + 2z cos(πα) + z2
dz + eiπµ

∫ ∞

0

zµ

1− 2z cos(πα) + z2
dz. (162)

Multiplying formula (161) by −e−iπµ and adding it to formula (162), we observe that

π
eiπ(α−1)µ − eiπ(1−α)µ

sin(πα)
= (eiπµ − e−iπµ)

∫ ∞

0

zµ

1− 2z cos(πα) + z2
dz. (163)

Therefore,

π
sin(µπ(1− α))

sin(µπ)
=

∫ ∞

0

zµ sin(πα)

1− 2z cos(πα) + z2
dz. (164)

�

A simple analytic continuation argument shows that identity (159) in corollary 8.2
is also true for all real 0 < α < 2. This observation is summarized by the following
theorem.

Theorem 8.3 Suppose that −1 < µ < 1 and 0 < α < 2 are real numbers. Then,
∫ ∞

0

xµ sin(πα)

1− 2x cos(πα) + x2
dx = π

sin(µπ(1− α))

sin(µπ)
. (165)

Proof. We observe that the right and left hand sides of identity (159) are both analytic
functions of α, for all complex α such that 0 < Re(α) < 2. Therefore, by analytic con-
tinuation (Theorem 2.9), it follows that identity (159) holds for all complex α such that
0 < Re(α) < 2. �

A simple change of variables gives us the following theorem.
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Theorem 8.4 Suppose that −1 < µ < 1 and 0 < α < 2 are real numbers. Then

∫ ∞

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
, (166)

for all a > 0.

Proof. Let a > 0. We observe that

∫ ∞

0

xµ sin(πα)

1− 2x cos(πα) + x2
dx =

∫ ∞

0

(

x
a

)µ
sin(πα)

1− 2
(

x
a

)

cos(πα) +
(

x
a

)2 ·
dx

a

= a1−µ

∫ ∞

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx. (167)

Therefore, by theorem 8.3,

∫ ∞

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(

µπ(1− α)
)

sin(µπ)
. (168)

�
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