Yale University
Department of Computer Science

Time-optimal Synthesis of Systolic Arrays
with Pipelined Cells

Bjorn Lisper

YALEU/DCS/TR-560
September 1987

This work has been supported in part by the Office of Naval Research under
contract N00014-86-K-0564 and in part by The Swedish Board for Technical
Development (STU).

Time-optimal Synthesis of Systolic Arrays

with Pipelined Cells

Bjorn Lisper

Department of Computer Science, Yale University
New Haven, CT 06520-2158
lisper@cs.yale.edu

Abstract

We consider synthesis of systolic arrays where the cells in the network themselves are pipelined.
Synthesis is done by mapping the set of steps in an algorithm to a space-time that consists of events
taking place in different cells in the resulting array. Thus every step will be performed at a given
time in a given cell. We narrow the scope to the case where each step in the algorithm is assigned
an index vector and the resulting set of index vectors is linearly transformed into a discrete space-
time. In this special case the pipeline constraints are easily expressible as linear constraints on the
linear mapping. Some examples are shown where we derive, when possible, optimized versions of
well-known systolic arrays where the pipelining capability of the cells is utilized. We also develop
a technique to automatically find time-optimal linear mappings when the set of index vectors is
a convex polyhedron and the desired constraints on the resulting design are expressible as linear
inequalities.

1. Introduction

The concept of systolic arrays has been around for a few years now. Ever since it got well-known,
[KLe80], its conceptual simplicity, suitability for direct hardware implementation and the potential
large-scale parallelism possible for systolic implementation of certain algorithms have given rise to a
considerable interest. In the theoretical field efforts have been made to find methods for correctness
verification and synthesis. Especially in the field of formal synthesis progress has been made that
seems to be able to have an impact on the real-world design of systolic arrays.

One approach to the synthesis problem that has gained popularity is to consider the algorithm
to be implemented as consisting of a number of atomic steps, each step being suitable to perform by
a cell in a systolic array in one time unit. The steps are partially dependent on each other; certain
steps produce inputs to other steps and must therefore precede these steps. In other words: there is
a data dependence relation between the steps. Steps with no input/output data relationship, direct
or indirect, are independent and can be performed in parallel if suitable.

The steps constituting an algorithm can be defined in different ways. For instance they can be
seen as executions of FORTRAN statements, [Mo082], [MiWi84]. Another approach is to define the
steps as the different argument configurations possible in a uniform recurrence equation (URE),
[KMWe69], [Q83], or extensions thereof, [C86], [RPF86], [HDI87]. These argument configurations
are tuples of integers. Other authors define the steps as nodes in a graph describing the data
dependencies, [RFS82A], [Le83]. The approach taken here was outlined in [Li85] and presented in
full detail in [Li87]. There a step in the algorithm is defined as either a block in a partition of a set
of computational events or as a multiple-assignment. Here the latter definition will be used.

In a systolic array every cell is usually considered to be able to perform a computation every
time step. While this restriction certainly enhances the clarity of the operation of the array, it can
also force the systolic solutions for a given algorithm to be unnecessarily inefficient. The reason
is that the kind of operations a systolic cell performs (say, floating point arithmetic) often have

1

a particularly efficient pipelined hardware implementation. But since the systolic paradigm does
not bother with the inner structure of the cells, an orthodox systolic array must treat the whole
time for one computation as one “systolic” time step and thus the next computation can start only
when the previous one is totally completed. Therefore the pipelining capability of the cell is not
utilized. This problem was recognized in [JKNMS6].

Here we will use the mathematical model given in [Li87] to express the basic pipelining con-
straint that a result of a computation cannot be used until p time steps have passed from the
initialization of the computation. (We take the cycle time in the pipeline to be the unit of time and
p is the number of pipeline stages for the operation in question.) We will show how this constraint
sometimes can be expressed in a particularly simple way. Finally we use the developed formalism
to synthesize systolic arrays that utilize the possible pipelining within the cells fully when possible.

The arrays have been synthesized using a technique to find a time-optimal mapping that under
certain circumstances is possible to automate fully. This technique is closely related to the one
used in SAGA, [HDI87]. Our underlying mathematical model is somewhat different, however, and
it enables us to express a greater variety of constraints in the form required by the technique.

2. Preliminaries

In this paper we will rely on the concept of an algebra, which is a pair (S, F') where S is a nonempty
set of sets called sorts and F is a set of finitary operators. The sorts could be for instance the
set of real numbers R and the set of boolean values B. Possible operators would then be the
usual arithmetic ones (+, -, /,...), boolean ones (A, V,...) and mixed ones, like the if-operator:
B X R X R — R that returns its second argument as its value if the first argument is ¢true and
returns its third argument otherwise.

We will also need formal expressions. These are objects built up recursively from variables
and constants using the operators of an algebra, that is: all variables and constants are formal
expressions. If py,...,pp are formal expressions of the “right sorts” and if f is a n-ary operator
then f(p1,...,Pn) is a formal expression. Formal expressions are equal if and only if they are built
up exactly the same way; thus 21 - (22 + #3) # 21 - 2 + 21 - 23 when regarded as formal expressions,
even in an algebra where “.” distributes over “+”, and even z; - (z2 + 23) # 1 - (2 + z4) since
variables with different names are considered not to be equal. varset(p) is the set of variables in
the expression p.

For every formal expression p there is a corresponding function ¢(p), a so-called polynomial.
They are defined recursively in the following way: If p is a constant, then ¢(p) is the corresponding
constant function. If p is a variable z, then ¢(p) is the projection eX:T[(Ay | 2’ € X) — A, that
for every tuple (ay | @’ € X) returns a,. If p is a compound expression f(py,.. -> Pn(s)) then
() is f(#(P1),---,(Pn(s)))- Note that, to the contrary of formal expressions, ¢(z; - (22 + 23)) =
&(z1 - 22 + 1 - ©3) when «” distributes over “+”.

A substitution o is a partial function from variables to expressions such that the sort of o(z)
and z always is the same. o applied to the expression p, p/o, is the expression obtained when
all occurrences of variables @ for which o(z) is defined are replaced with o(z). The domain of o,
dom(0), is the set of all variables z for which o(z) is defined. The range of o, range(o), is the set
of all variables that occurs in any o(z). A finite substitution is a substitution defined for only a
finite number of variables. A finite substitution o defined for z1,...,z, is often denoted

z1 «— o(z1)

Tp — 0(Ty).
For more detail, see [Li87] or a textbook on universal algebra such as [G79].

2

3. The mathematical model

For more detail and sometimes more general formulations of the concepts defined in this chapter,
see [Li87].

3.1 The steps of an algorithm

Definition 3.1: A multiple-assignment is a finite substitution.

A multiple-assignment m (or m-assignment, for short) is a partial function and therefore it is
a set of pairs. Every pair (z,m(z)) can be interpreted as an assignment where z is assigned the
value of m(z). m(z) is evaluated bottom up, beginning with the constants and the variables, and
then proceeding to the top while the operators in the expression are applied to the values of the
previously evaluated subexpressions. An example of a m-assignment is

1 < 2o+ Yo - ag

Y1 < Yo-

Here the values of z¢ and g are considered to be known in advance 1 is assigned the value of yg.
zg + 9o is evaluated and the result is assigned to z;.

An algorithm, in our notion, is simply a countable set of m-assignments. If it is to make sense,
however, it must have some additional properties:

Definition 3.2: A set of m-assignments M has the single-assignment property iff m # m' —
dom(m) N dom(m') = for all m, m’ in M.

This property means that a variable represents a value, not a location in a memory that can
be reassigned new values. In short, a variable can only be assigned once. Cf. single-assignment
languages, [A82].

If M has the single-assignment property, then J(m | m € M) is a partial function from
variables to expressions as well as every m. For any such M J(m | m € M) is called the recursion
scheme of M and is denoted by M. Variables that belong to the domain of a recursion scheme are
called assigned variables. Those that are not assigned are called free variables. The interpretation
is that free variables provide inputs to the system from somewhere outside. Assigned variables, on
the other hand, are computed according to the rules sketched above. They can be seen as carriers
of data between m-assignments and we use them to formally define a data dependence relation:

Definition 3.3: Let M be a set of m-assignments that has the single-assignment property. The
relation <pr on M is defined by

m <y m' < dom(m)nN range(m') £ 0
for all m, m’ in M.

Of course, if this is to make any sense there must be no cycles in the dependency graph implied
by the interpretation of assigned variables as carriers of data. Nor should there be any infinite
chains of dependencies without a “beginning”:

Definition 3.4: A set of m-assignments M with the single-assignment property is causal iff <3},
is well-founded (a strict partial order and no infinite decreasing chains exist).

In the following we will consider only such sets of m-assignments that have the single-assignment
property and are causal. We can give very simple semantics to such sets of m-assignments by giving
semantics to the corresponding recursion schemes. These schemes can be considered as equation
systems that defines the assigned variables.

Definition 3.5: Let M be a recursion scheme. For any z in dom(M) U range(M), the output
expression of x under M, ¢¥m(z), is defined by:

Y(z) = z, z is a free variable
MAT) =\ M(z)/¥m, is an assigned variable.

The output function of z under M is ¢(¢Ym(2)).

The meaning of every variable is thus a function, a polynomial. ¥y is a partial function from
variables to expressions and thus formally a substitution. The recursive definition makes sense
since the well-foundedness of <5s guarantees that the recursion will eventually come to an end.

Sometimes we will be interested in which variables that are dependent of each other, rather
than dependencies between m-assignments. Variable y is considered dependent of z if the value of
z must be present when computing y, or formally:

Definition 3.6: Let M be a set of m-assignments. For any assigned variable y the m-assignment
my is defined by y € dom(m,). For any variables z, y

T oy Y <> & € varset(my(y)).

So if the m-assignment
T1 — To+ Yo - ao
Y1 <= %
belongs to the set of m-assignments M we find that for instance yo —as 1 and yo —pr 71 but
To M Y1-
Proposition 3.1: For any set of m-assignments M and any m, m' in M,

m<ym < Jz,yim=my Am' =my Az >y

Proof. From the definitions of <3s and — 4,

m <y m' <= dom(m) N range(m’) # 0
<= 3Jz[z € dom(m) N range(m’)]
<= Jz[z € dom(m) A Jy[y € dom(m') A = € varset(m'(y))]]
< 3z,y[m = my Am' = my A z € varset(m,(y))]
<= Jz,ylm=mzAm' =my Az —p y).

3.2 Space-time and communication orderings

Space-time is a model of the events in a network of cells; every space point is a possible location
for a cell and at every time something (for instance a m-assignment) may take place at a cell.

Definition 3.7: Any countable nonempty set R is a space. Any set T'= N+to = {n+to|n € N},
where ty € Z is a set of times. T X R is a space-time.

Z is the set of integers and N is the set of the natural numbers. Every time in T represents
a discrete time. tg is the least time of T. The simple construction above of a space-time as the
cartesian product of a set of discrete times and a space is a model of the events in a synchronous,
clocked system.

Definition 3.8: The binary relation <, on the space-time S is a communication ordering on S if
and only if:

col. For all (t,r),(t,7') in S, (t,7) <, (t',r') = ¢t <t

co2. <} is well-founded.

(S, <s) is called a communication structure.

Communication orderings describe communication constraints on synchronous systems. s <, s’
means that communication may take place between the events s and s'. If s £, s’ it cannot.

col is a time causality criterion; communication cannot take place backwards in time. It is
however possible for communicating events to take place at the same time. The interpretation of
this in a clocked system is that the signal carrying the information does not pass any latch on its
way between the points in space where they take place. Thus communication orderings can model
systems with ripple, where cells may be connected with no intervening latches. co2 prohibits cycles
with zero delay. It also prohibits infinite chains of zero-delay connections without any beginning.

An interesting special case is when ripple is not allowed:

Definition 3.9: The relation < on the space-time S is ripple-free if and only if for all (¢, 7), (', ')
in§ (t,r)y<{t',r)y = t<t.

Theorem 3.1: All ripple-free relations are communication orderings.

Proof. col follows directly. co2 also follows directly from definition 3.9 since the relation “<” is
well-founded on any set of times T' (See for instance [MaWa85]). |

The communication constraints of a systolic system is typically described by a ripple-free
communication ordering.

3.3 Connecting algorithm and hardware

The basic idea is to map the steps in an algorithm to distinct events in a space-time. Thus every step
will have a space-time “tag” telling where and when it is to be performed. This can be done either
in accordance with a predefined communication ordering specifying the communication constraints
of an existing system, or a communication ordering in space-time is given by the mapping itself
together with the communication requirements between the steps of the algorithm. The latter case
includes the step of deriving a hardware structure that can support this ordering.

Definition 3.10: Let (M, <5s) be a m-assignment structure and let (S, <,) be a communication
structure. The function F: M — S is a correct mapping (M, <pr) — (S, <) if and only if:

cml. For all m, m’ in M, m <y m’ = F(m) <, F(m').

cm2. Fis 1-1.

A function F to a space-time T X R will sometimes be seen as two functions; F; to T' and F,
to R.

Definition 3.11: For any m-assignment structure (M, <ps), space-time S and function F: M — S
that is 1-1 the mapped precedence relation <pF on S is defined by

F(m) <mr F(m') <= m <y m'

for all m, m’' in M.

Thus we can define the concept of free synthesis: Given a m-assignment structure (M, <)
and a space-time 5, find an 1-1 mapping F: M — S such that <p/F is a communication ordering
on S.

Theorem 3.2: Let (M, <) be a m-assignment structure and let S be a space-time. The function
F:M — S is a correct mapping (M, <pm) — (S, <mrF) if and only if:

1. Forallm, m' in M, m <pr m' = Fy(m) < Fy(m').

2. F is 1-1.

Proof.
= : If F is a correct mapping it must be 1-1. Also <psr must be a communication ordering. Thus

m <y m' = F(m) <yr F(m') = Fi(m) < F;(m').

<=: Fis 1-1, so cml holds. Furthermore m <p m’ = F(m) <pr F(m'). It remains to show
that <pF is a communication ordering. col follows immediately from 1 above. co2 follows
since F is 1-1, < is well-founded and F(m) <pyr F(m') < m <y m'. |

Theorem 3.2 gives a more familiar condition for correctness of free synthesis. Cf. [Q83],
[MiWi84]. Note, however, that we, to the contrary of other authors allow Fiy(m) = Fi(m’) when
m <pr m', thus adding the capability to synthesize systems with rippling signals.

An issue of importance is now: How do we organize our hardware so it will support a given
communication ordering? One possible way to do it is to provide a line with integer delay § between
the points r, r’ in space whenever the communication ordering, for some ¢, says that communication
is possible (or required) between (t,r) and (¢ + é,7'). One advantage of this organization is that
the communication paths will be hardwired into the system, thus eliminating the need for routing.
On the other hand the approach might lead to a large number of latches that are rarely used
since certain communication paths may be used sparsely. In such a case it may be better to
support the communication structure with local memory in the cells that is possible to reuse for
different purposes at different times. Clearly the approach is best suited for synthesis of systolic
and semisystolic systems.

Definition 3.12: Let R be a space. Then A C R X R X N is a fized hardware structure on R.

Cf. computation structures, [CF84]. This model is also close to the delay operator formalism
used in for instance [JWCD81], [WD81] or [KLi83], or the labelled graph approach in [LS81].

Definition 3.13: For any communication ordering <, on the space-time N x R, the fized hardware
projection A(<,) of <5 on R is given by: for all 7, ' in R and 6 in N,

t e N[(t,r) <, (t+6,7")] <= (r,r,8) € A(<,).

Note that for any finite communication ordering the fixed hardware projection can be auto-
matically derived. Note also that for any finite set of m-assignments every mapped precedence
ordering is finite. We can now formulate the process of free synthesis using the concepts defined so
far. Given a set of m-assignments, perform the following steps:

1. Find a suitable space-time that reflects the desired organization of the cells (1-D or 2-D systolic
arrays, n-cube networks etc.).

2. Find a 1-1 mapping from m-assignments to space-time such that the mapped precedence or-
dering is a communication ordering.

3. Derive the fixed hardware projection from the mapped precedence ordering.

3.4 Index vectors and linear mappings

Sets of m-assignments suitable to execute on systolic arrays will typically exhibit a high degree of
uniformity. This can be used to simplify the mapping to space-time. The uniformity can often be
captured by a suitable, sometimes multidimensional enumeration of the m-assignments.

Definition 3.14: For every n > 0, Z™ is an index space. Points in an index space are called
index vectors. A subset of an index space is called a set of index vectors. A function from a set of
m-assignments to an index space that is 1-1 is an indez function.

Given a set of m-assignments M, an index space Z" and an index function G: M — Z™ we
can construct a correct mapping from M to any space-time S by finding a function F:G(M) — S
such that F o G is a correct mapping. Thus, given an indexing of a set of m-assignments, we can
concentrate our efforts on finding a mapping from the set of index vectors.

A space-time of the form T x Z™ where T is a set of times and n > 0 is called a discrete space-
time. Linear systolic arrays are naturally described by a space-time 7" X Z and two-dimensional
systolic arrays by T' x Z2. Many algorithms in, say, linear algebra have very natural indexings in
two or three dimensions. Thus the effort of finding a suitable general mapping can be reduced to
the task of finding a suitable mapping between two well-known vector spaces. In particular we
can, if we wish, reduce our search to linear mappings. This approach is especially interesting for
algorithms with a high degree of uniformity and will usually yield systolic array implementations
of the algorithms.

A linear mapping Z*¥ — Z! can be represented by a [X k-matrix. Sometimes we will denote
the first row, giving the mapping to time, of a linear mapping L by L; and the rest of L, giving the
mapping to space, by L,.

Definition 3.15: Let (M, <ps) be a m-assignment structure and let G be an index function. Then
De(<m) = {G(m') — G(m) | m <pr m'} is the set of data dependence vectors associated with M
by G. For any two assigned variables z and y such that z —r y, d, = G(my) — G(m;) is the data
dependence vector from z to y.

When no amblgulty can arise about the index function G we will write D(<as) for Dg(<nr)
and dgy for d%,. From proposition 3.1 it is easily seen that D(<) = U(dey | € —=m y). Data
dependence vectors represent the “abstract” directions of communication in index space. A linear
mapping L will transform these directions to physical directions in space-time. This gives an easy
check to see if the composed mapping L o G is correct or not:

Theorem 3.3: Let (M, <) be a m-assignment structure and let G be an index function to an
index space Z™. Let T be a set of times. Let L be a linear mapping Z" — Z* for some k > 0
such that L(G(M)) C T x Z*~! and L restricted to G(M) is 1-1. Then Lo G is a correct mapping
(M, <) — (T x ZF1, <ar10G) if and only if for every d € D(<nm) holds that Lid > 0.

Proof.
= : For every d € D(<j) holds that d = G(m') — G(m) for some m, m’ in M such that m < m'.
Now

m =<y m' = LoG(m)<mrog LoG(m') = (LoG)(m) < (LoG)(m')
— L(G(m)) < L(G(m")) = Ly(G(m') — G(m)) = Led > 0

where we have used theorem 3.2.
<= For every m, m’ such that m < m' holds that G(m') — G(m) € D(<as). Thus

m <y m = L(G(m') - G(m)) >0 = Ly(G(m)) < Li(G(m"))
=> (Lo G)(m) < (LoG)(m).

7

That L o G is correct now follows from theorem 3.2 and the assumption that L restricted to
G(M)is 1-1. [

Thus we can check the time component of every mapped data dependence vector to see if it
is greater than zero or not. Note the condition that L(G(M)) must be a subset of the space-time
T x Z*¥=1. If this does not hold the composed mapping L o G would not map all m-assignments to
the space-time! It should be pointed out, however, that if there is a time ¢ such that L;z > ¢ for all
iin G(M), then L o G will be a correct mapping to (N +t X Z™ 1, <prLoc) if the condition on the
data dependence vectors holds.

4. How to find optimal solutions

4.1 Separating time and space functions, general case

Consider the problem of finding an optimal correct mapping F from a set of m-assignments M
to a space-time T X R. The first question one should pose when speaking about optimality is:
optimality with respect to what? When M is finite then time optimality, to find a solution to

. ! _
pon (max (Fi(m’)— Fy(m)))

is clearly of great interest, but spatial issues (locality of communication etc.) should not be ne-
glected. A question of great interest is now: since F’ can be split into mappings F; to time and
F, to space, under what circumstances can optimization of F; with respect to time and of F, with
respect to space be performed independently of each other, and the results be merged to an optimal
mapping (Fi, Fy) to space-time? In the general case there are clearly some problems:
1. (F}, F,) might not be 1-1. To decide whether this is the case or not information is in general
needed from both F; and F,.
2. Locality of communications is a property dependending on both F; and F,. If m <p m/,
Fy(m') = Fy(m) + 1 and if F,(m), F,(m') are not “close” non-local communication is needed.
Locality of communications can, however, be assured by F, if it fulfils a certain condition. Let «
be a neighborhood relation on the space. r < 7’ means that r and r’ are adjacent. Locality of
communications now follows if for all m and m’ m <pr m’ = F.(m) < F.(m’).

4.2 The linear case

Let F be composed by an index function G: M — Z" and a linear mapping L: Z" — Z*. In this
case the requirements of 1 and 2 above can be met as follows:

1. It k = n then L = (f_jt) will be 1-1 if det(L) # 0.
T

2. On Z* a suitable neighborhood relation « is given by r < ' <= maxFf_ |r; -7/ < 1. A
linear mapping L, to Z* will yield locality of communications with respect to « if for all data
dependence vectors d holds that maxk_, |L,d| < 1.

4.3 Finding optimal time functions with linear index constraints

When an index function G is given the time optimization problem obtains the following form: find
a solution to

. L N L .

LB -1 72y (P ()~ L))
For some set of times T'. Linear functions G(M) — T, where G(M) C Z™, can be represented by
vectors in Q™ (Q is the set of the rational numbers). Note that there might be functions represented
by vectors not in Z". Whether this is the case or not is dependent on the shape of G(M). When

8

L; € Q™ we can sometimes restrict the search space of the maximization. Consider the more general
maximization problem 4

max(L;i).

nax(L)

Assume that there is a subset I¢ of I such that every 7 in I can be written as a convex combination
at’ + (1 — a)i” of elements #’, 1" in I, where 0 < @ < 1. Then the optimal value will be obtained
for some element of I¢ and the search can be restricted to that set. If I is a convex polyhedron the
search can be further reduced to the corners of I.

In the following we will consider time optimization when the time function L; is linear and
G(M) is given by a system of linear inequalities:

t€EG(M) < Ai>b.

That is, G(M) is a convex polyhedron in Z". We furthermore assume that all corners given by
the inequalities are in G(M) and that G(M) is finite. Quinton [Q83] gave a method to find a
feasible linear mapping when G(M) is a possibly infinite polyhedron. The restriction here to finite
polyhedra enables us to find a time-optimal linear mapping instead.
We further assume that all other constraints on the mapping regarding causality, injectivity
etc. can be expressed as a system
LA >V

of linear inequalities. These constraints will be referred to as external constraints.
We thus have the following problem: given

i € G(M) < Ai>b, all corners are in G(M),

find a solution to

. s . — . T — . .
B8 T~ 2 = e (= D =i R any (M)
or, if we define C' = {4’ — 4| ¢, ¢’ are corners of G(M) },
i Lj 1
min(max(Lej)) (1)

when
LA > 0.

Now, for every j in C, let us find the time functions L; for which L;j > L.j’ for all j'in C\ {j}.
They are defined by the system of inequalities

CL(i-J5) 20, jeC\{j}

Furthermore, for each j in C we add the external constraints L; A’ > b’ on L;. So we end up with
the following system of inequalities for each j:

Li(j—3)>0, jeC\{j}
LA >V

This is a polyhedron in Q™. Let us denote it by P(j). L:j will obtain its smallest value in P(j)
at a corner L. This corner can be found either through linear programming or, if the number
of corners is small, by an exhaustive search. So for every j in C L] minimizes L;j in the subset

9

P(j) where it is greater than every L:j'. Thus, for every j in C we have a candidate Lf to being
an optimal solution globally to (1), which can be found by simply comparing all different L{ and
select one giving the smallest Lj. In summary we have the following steps:

1. Form the external constraints L; A’ > b'.

2. Find the corners of G(M).

3. Form C = {4’ —i| 4, ¢ are corners of G(M)}.

4. For every j in C, form P(j) defined by

L(i—3) 20, j €C\{j}

L; € P(j)
te (J) LtA,Zb,

<)

. For every j in C, find the corner L{ of P(j) minimizing L;j.
. Find a j in C such that L}j < L j/ for all j/ in C.

There is a small complication in connection with step 5 above. The corner L} of P(j) might
not be a valid time function, that is, there might be some 7 in G(M) such that L]7 is not an integer.
It is, however, still possible to come up with a candidate of P(j) by searching in the direction of
increasing L;j until we find a hyperplane L;j = ¢ that contains a valid time function in P(j). We
can note that any integer-valued L; maps index vectors to integer times and thus is a valid time
function in the sense above.

How can the restriction of the external constraints to linear inequalities be justified? First
we can note that causality constraints can be expressed as linear inequalities; if the conditions of
theorem 3.3 are met <asrog is a communication ordering if for all data depedence vectors d holds
that

=)

Lid > 0.

This is a linear inequality of the assumed form. If we want <7 70c to be ripple-free then it must
hold that

Lid>0
or equivalently
Lid>1

since L;d must be an integer. This is also a valid external constraint.
Other frequently encountered constraints are of the form

LA#Db

where A is an integer n X k-matrix and b is integer-valued. This can be logically converted as

follows:
k k

LiA#b < A LiAi#b < A(LAi > b v LA; < b).
=1 i=1

This conjunction is true if and only if exactly one of the two inequalities is true for each . (Both
cannot be true at once.) Thus we will have 2* different systems of inequalities, one for each possible
choice of inequalities for every . For every choice s of inequalities and for every j in C we will
obtain a subset P,(j) of Z™ defined by the system of inequalities obtained when combining s with
the original inequalities defining P(j). So in this case we will get 2* candidates of optimal time
functions for each j instead of one if all P;(5) are nonempty.

10

L

A constraint of this form assures injectivity if we consider linear mappings L = (I

t> VAR A
and L, is given. L is 1-1 if det(L) # 0. But

det(L) = i(Lt),-(-n‘H det(Ly;) = Zn:(Lt),-a,:

where L,; is the n—1Xn—1-matrix obtained by removing column ¢ from L, and a; = (—1)*+! det(L,;). .
Thus we obtain a constraint of the form L;a # 0.

Broadcast of a variable occurs if it is used by several m-assignments mapped to the same
time by the time function Fi. Define M(z) = {m | 2 € varset(m) }. Broadcast of z is avoided iff
for all m, m' in M(z)

Fy(m) # Fi(m)
or, in the linear case

Li(G(m)) # Li(G(m'))

Ly(i' —d) #£0

for all ¢, ¢/ in G(M (z)).

A subset X of the free variables might be a time series. This means that the variables become
available in a certain order. So there is an enumeration (z; | 0 < ¢ < n) of the variables in
X such that if ¢ < j then z; becomes available before z;. An execution pattern that fulfils the
following condition will be suitable for on-line processing of the time series: if 1 < j then the first
m-assignment using x; should be executed before the first using zj. Let M; = M(z;) for 0 < i < n.
A m in M; that is executed first under the time mapping L, satisfies the following condition:

Vm' € M;[L(G(m') — G(m)) > 0].

Let us denote this condition first(m,%,L;). This is a system of linear inequalities. Using this
predicate we can now write the predicate on L; expressing that L; yields an execution pattern
where the first usage of z; precedes the first usage of ;: for all 4, j such that ¢ < j,

Im € M;,m' € Mj[first(m,i, L) A first(m/, j, L) A Li(G(m') — G(m)) > 0].

This is a split into different cases: for every choice of m from M; and m' from M; there is a
system of linear inequalities expressing that m, m' are executed first in M;, M; respectively and
that m is executed before m/, defining a convex polyhedron P(%,j, m,m') where L; resides if it
satisfies the system. For every 7, j there will thus be a number of such polyhedra, and the union
P(i,5) = U(P(¢,j,m,m) | m € M;,m' € M;) gives the subspace where L; must be if the first
m-assignment in M; is executed before the first of M;. Finally this must hold for all ¢, such that
t < j, thus N(P(3,7) | ¢ < 7) gives the subspace where L; must be. Since the intersection can be
distributed into every P(i,7) this is a union of convex polyhedra, each being defined by a system
of inequalities.

The number of inequalities can be greatly reduced if every point in G(M;) can be written as a
convex combination of points from a set C; C G(M;). Then the first m-assignment in M; must be
indexed in C; and it is thus sufficient to form the differences between these index vectors. If every
M; contains only one m-assignment m;, then the condition above reduces further to: for all 7, j
such that 1 < j

Li(G(m;) — G(m;)) >0

which is a single system of inequalities.

11

5. Expressing pipelining as time constraints

5.1 The general case

The basic property of a pipeline we will use as a starting point is the following: in a p-stage pipeline
the results are available p time units after the inputs have been provided. At every time we can
initialize a computation at a pipelined cell but we must wait p time steps until the result is ready.

A cell in a systolic array will be considered as possibly being composed out of more than one
pipelined component. An intermediate result, internal to the cell, may for instance be computed
in one pipeline and then fed in together with another input to a second pipeline. This calls for the
possibility in the mathematical model to allow inputs to a m-assignment m to arrive later than
the scheduled time for m. If all inputs were required to be present at this time unnecessary delays
could be introduced.

A m-assignment being mapped to a space-time point (¢,7) has the following interpretation if
the cell at r is pipelined: at time ¢ the computation is initialized. Some inputs may have to be
present at 7 at this time, but possibly not all. As the computation goes on the remaining inputs
must be provided at certain times relative to the time of initialization. Outputs will also become
available at possibly different times, since the total length of the pipelines may be different for
different outputs. Directly when an output is ready it is available to use for other m-assignments.
We choose the integer time step to be equivalent to the clock cycle in the pipeline and not, as usual,
to the time required to complete a computation.

Definition 5.1: Let M be a set of m-assignments. A pipeline description of M is a pair (p,i)
where p is a function dom(M) — N, i is a function range(M) X dom(M) — N and for all z, y
such that y —as holds that i(y, z) < p(z).

For every assigned variable p(z) gives the total time necessary to compute it from the inputs
of the m-assignment computing z, and i(y,z) gives the time when y has to be provided to the
computation of z. Note the special case when i(y,z) = 0 for all y and either p(z) = 1 (z can be
computed in one time step, no pipelining) or p(z) = 0 (z is instantly computed and the result is
rippling through to other computations without passing any latches).

Example 5.1: Consider the m-assignment m:
¥~y
a — ay
' —z+ (a+ay).
Figure 5.1 shows a cell that can execute m. It is built out of one multiplier and two adders.
px is the number of pipeline stages for the multiplier and p; the number of stages for each of

the adders. If we assume that m is to be executed by such a cell we obtain the following pipeline
description:

i(y,9)=0 i(y,a’)=0 i(y,2") =0
i(a,a’) =0 i(a,z’) =0
i(z,2") = px + P+
p(y)=0 p(a') = px p(z') = px + 2p4

Definition 5.2: Let M be a set of m-assignments, let S be a space-time and let F be a function
M — S. Let (p,4) be a pipeline description of M. F is correct with respect to (p, 1) iff it is 1-1 and
for all assigned variables z and y

2=y = Fi(mg)+p(@) < F(m,) +i(z,y).

12

—p y'
y —1Lp
a___, Py L - 3’
Py
—
X > P . — X
Y, a must be
available, y' a becomes X must be X' becomes
becomes available available available available time
| | | | >
| | | |

R(m) RM+px F(m+2p, F(m)+2pup,

Figure 5.1: Cell executing m

5.2 Pipeline constraints and linear mappings

In the special case when the m-assignments are labelled with index vectors and the index vectors
are mapped linearly to a discrete space-time the correctness criterion with respect to pipelining
functions has a particularly neat formulation:

Theorem 5.1: Let M be a set of m-assignments and let G be an index function to an indez space
Z™. Let T be a set of times. Let L be a linear mapping Z® — Z* for some k > 0 such that
L(G(M)) C T x Z*¥-1. Let (p,i) be a pipeline description of M. F is correct with respect to (p,1)
“iff for all assigned variables ¢ and y such that x —pr y holds that Lidzy > p(z) — i(z,y).

Proof.
= : We prove the negated implication going in the other direction. Assume that there are some z
and some y such that L;dyy < p(z) — i(2,y). Then dyy = G(m,) — G(my), and
Li(G(my) — G(my)) = Li(G(my)) — Li(G(my))

= (Lo G)y(my) — (Lo G)y(mz) < p(z) - i(z,y),
that is:

(L o G)i(mg) + p(z) > (L o Q)i(my) + i(z, y).

<= : Assume that for all z and y such that 2 —p y holds that Lid,, > p(z) — i(z,y). Then
dgy = G(my) — G(my), and

p(z) = i(2,9) < Li(G(my) — G(ma)) = L(G(my)) — Le(G(my))

13

= (Lo G)(my) — (L 0 G)e(ma)
that is:
(Lo G)(mg) + p(z) < (L o G)e(my) +i(z, y).

Cf. [QG85], where a similar condition is formulated. Note that the pipeline constraint in
theorem 5.1 is a linear inequality and therefore qualifies as an external constraint. Thus the method
of section 4.3 can be used to find time-optimal systolic arrays with pipelined cells.

6. Applications

In this chapter we will show some simple examples of synthesis of systolic arrays with pipelined
cells. For a given indexing and for given pipeline constraints we will derive optimal solutions.

6.1 FIR filtering

FIR filtering can be seen as a special case of matrix-vector multiplication y = Az where A is banded
and all elements below the main diagonal are zero. We will treat this more general operation instead,
and the following set of m-assignments describes an algorithm to perform it:

1<1<n:

Yii < 0+ aiiz; (¢ %)
1<j<i+b:

Yij < Yij—1 + aijz; (i J)

n values are filtered. The bandwidth of the system matrix is b. The input values z; and the matrix
elements a;; are free variables. In the case of FIR filtering a;; = w;_; for all ¢, j of interest. The
outputs are ¥;;46-1, 1 < 7 < n. We have also provided an index function, the index vector of each
m-assignment is shown to the right of it. The set of index vectors is a polyhedron defined by the
following inequalities:

1<

1< n

i<j

j<i+b
or, rewritten to our standard form:

1

0
-1 0 2
-1 1 (a) 2

1 -1 1

This polyhedron has four corners: (1 1),(1 b),(n n)and (n n+b—1), and we define C
as the set of all differences between these corners.

The assigned variables above are the different y;;. They all yield the same data depedence
vector d = (0 1). Note that all z; are free variables whenever they are used. The interpretation
is that they are provided from outside the system every time they are needed.

Let us now find a time-optimal linear mapping L to some T X Z, that is: we consider linear
systolic array implementations. Before optimizing the time function L; we must select a suitable
space mapping L,. Assume that the number of input values n is much greater than the matrix

14

bandwidth b. If we want to achieve a high cell utilization this implies that L, = (la1 lg2) should
be chosen so that each diagonal of A always is mapped to the same space point. This gives the
condition l31 + lo3 = 0, [Li87]. For nearest neighbor communication L, should be chosen so that
|L,d| < 1 which, if L is to be nonsingular, implies lpp = +1, Iz1 = F1. If (arbitrarily) the flow of
y-operands is chosen to go to increasing points in Z we end up with L, = (-1 1).

Let us now consider the external constraints under which the optimization will be performed.
When b > 1 the polyhedron of index vectors has such shape that only integer-valued time functions
are valid. This can be used to simplify the constraints.

1. Injectivity of L follows if det(L) # 0. With L, = (I11 l12) and L, as above det(L) = l11 + li2
which implies
lhi+he>1 or ly+h2<-L

2. Pipeline constraints: Here we must make some assumptions about the internal structure of the
cells that will execute the m-assignments in our algorithm. We assume that the m-assignments
“of form y «— y + az are executed in the following way: first @ and z are multiplied in a unit
with py pipeline stages. Then the result of this is added to y in a unit with p4 stages. We end
up with the following pipeline description:

i(m,y') =0

i(a,y') =0 p(y") = px + P+

i(y,9") = px
a —»

Py
X —P
_.' '

y ., P, y

Figure 6.1: Inner structure of cell
This translates to the following pipeline constraint for the data depedence vector d = (0 1):
Led > py + P4 — Px, or hz 2 py
3. Broadcast avoidance: Consider again the free variables z;. Each x; is used by the m-assignments

indexed with (¢ 7). To avoid broadcast of z; these index vectors must be mapped to different
times. This is accomplished if for all ¢ # ¢

()4 ()
Lt<i5i') £0

15

or

or

l1n1 #0

or
lu Z 1 or 111 S —1.

Summing up, we have the following external constraints:

hi+h2>1 or lhi+h2L-1

lig > py
111 > 1lqquador Il < —1.

Next step is to find which elements j of C that will yield maximal L;j and where. It turns out that
there are only two possible candidates in the area defined by the external constraints. These are
(n—1 mn+b-—2) which is maximal when l;; > —lj3 and (1 —n b — n) which is maximal when
lin £ =ho.

b: (n-1 n+b-2) A|12
a: (n-1 n+b-2)

c: (1-n b-n)

Figure 6.2: External constraints, convex polyhedra.

Together with the external constraints these two areas form three convex polyhedra a, b and ¢
as shown in figure 6.2. Dependent on the value of p the shape of b will be slightly different leading
to different optimal corners:

polyhedron element j of C optimal corner L{ value of L{ 7

a (n=1 n+b-2) (1 p4) (P++n+pi(b-2)-1
b, p+<2 (n—-1 n+b-2) (-1 2) n+2b-1

b, p422 (n-1 n+b-2) (1-py py) n—1+pp(b—1)

c (1-n b-mn) (-p+—1 py) n-1+4ps(b-1)

A winner in all cases is Ly = (—p+ —1 p4), with execution time n — 1+ py (b —1). With
L, = (-1 1) the following time-optimal mapping L from index space to space-time is obtained:

(7)=(" %) (G)

16

% constant j, gives
movement of
x-operands

movement of
y-operands

Figure 6.3: Space-time diagram of L, p; = 2.

Since we selected the external constraints to exclude broadcast of the variables z; each z; can
be input once and reused instead of being input every time it is needed. This behavior can be
derived formally, [Li87].

An array that supports the schedule given by L is shown in figure 6.4. Cf. Quinton and Gachet,
[QG85], where similar arrays for FIR filtering are derived. Note, however, that the arrays of Quinton
and Gachet do not implement the same recurrence. They implement a similar set of m-assignments
where the summation is done backwards. If we had started with this recurrence rather than the
forward summation recurrence we would have obtained this family of arrays instead.

If we set px = 0 and p; = 1 we will obtain systolic solutions where the cells are not pipelined.
The optimal corner (1 1) of a gives the classical solution of Kung and Leiserson, [KLe80]. This
solution has asymptotic cell utilization 1/2 and no extra delays between the cells, which is reflected
in its execution time being 2n 4 b — 3. The optimal corner (—1 2) of b gives a solution with full
cell utilization after startup but where every intermediate result y;; is delayed an extra time step.
This is in accordance with its execution time n 4 2b — 1. The globally optimal corner (-2 1) of
d, finally, gives an array with full cell utilization where the z-operands are delayed an extra time
step. Since there are no extra delays for the y-operands this solution gives the superior execution
time » + b — 2. As a matter of fact this solution is implemented by exactly the same array as

17

N X3 REAE® X ol%7[¥s 1 %
Lx1 Xo L X4 | %5 L X7 | %8s
a - —
—f %11 | %22 Ayp B3 —| 34l %5 %35 %45 —» 57| %8 370%g
833X3 = 856 %6
44 7 10
0 >0 ™ Ve y e | T,
Y55 78 Yot1

Figure 6.4: Array supporting the schedule defined by L. py = 3, P+ =2.

the one proposed by Kung, [Ku82]. But the solution of Kung implements the same backwards
recurrence as the arrays of Quinton and Gachet and can in fact be seen as a special case of these
arrays. The difference to our solution lies entirely in the input pattern of the z-operands and the
matrix elements a;;. In our solution the z-operands are input “backwards”, with z; input before
x; if j > 4. In Kung’s solution it is the other way around.

This input pattern of the z-operands unfortunately makes our time-optimal solution not suit-
able when the z-operands form a time series. In order to find an optimal solution suitable for on-line
execution we form the linear constraints expressing this. Every z; is used by the m-assignments
indexed by { (7 j) |l << u;}, where I; = max(1,j — b+ 1) and u; = min(j,n). Every such
index vector can be written as a convex combination of (I; j) and (u; j). For every j these
two are possible candidates for being first. ({; j) is first if

Similarly (u; j) is first if [;3 < 0. Thus there are four possible pairs of first vectors to compare
for every j < k, giving four polyhedra for L;:

lk l; . lk l;
(k)’(;) 11120/\11120/\Lt((k)—(J?))>O
(’Z‘), lj) = luzO/\lnsOALt((’;f) - (l]?'))>0
(l]:;c) 7(?) : 11130/\11120/\14((%) - <1;.j))>0

(’;c’c),(‘;.f): lllSOAlug()/\Lt((’;:)—(’;?'))>0
The two middle polyhedra can be discarded since they do not comply with the no-broadcast con-
dition /11 # 0. Left are the two polyhedra Pi(j,k) and P,(j,k) defined by

l11>20

Pi(5,k):q l12>0
hi(max(1,k—b41) —max(1,5 - b+ 1)) + liz(k—5) >0

11 £0

Pu(], k’) { 112 >0
l11(min(k, ») — min(j,n)) + li2(k — 7) > 0

18

Since either of these conditions is to hold for all £ > j the allowed subspace for L; is

N (PG, k) U Pu(4, k) = () PG, k)U () Pu(d, k)= PLU P,
i<k i<k i<k

since Pi(j, k) U Py(%,7) = O when ly1 # 0. P, is given by

l1 20
hz > 0 {11120
lll(k—b)+l12(k—j)>0 ,j<b<k lis>0
hi(k—j7)+ha(k—35)>0 ,b<ji<k
and P, is given by
110
o e ener o {50
hiln—j)+h(k—37)>0 ,j<n<k 112+l o
hi(k—7)+ho(k-35)>0 ,n<j<k 11 + 12 .

l12

Figure 6.5: P, U P,

This condition will, as seen from figure 6.5, rule out our previous solution (¥p+ -1 p3).
The new optimal solution becomes (1 —py py) when py > 2 and (-1 2) when p; < 2. The
execution time for (1 —p; py) is actually equal to the one for (—py —1 p4). It furthermore

has the advantage of using fewer delays for the z-operands.

6.2 Matrix multiplication

Our method of finding time-optimal systolic arrays with pipelined cells is by no means restricted to
synthesis of one-dimensional arrays. To exemplify that the method works also in higher dimensions
we will synthesize some time-optimal arrays for matrix multiplication. First we consider multipli-
cation C = AB where A is a dense m X ¢g-matrix and B is a dense ¢ X n-matrix. The following set

of m-assignments computes the elements of C:
1<i<m,1<j<m

19

X310 D Xg D Xg I I X,
L o | X L Xg | %7 L
—

*7 I%e
— — a =
W ®09| 88 %910%0—» 78| %7 %79 83— 57 | U6
a77%71 ol %6 %6%g | X5 %5%s| [x,
0 q %6) 85 . 824
0 Y y TV
Y55 44 Va4 23 Y3
Figure 6.6: Array supporting the schedule of L; = (1 — p; p,) when
px =3 and py = 2.
Cijo < 04 a;1by; (7, 7 1)
2<k<gq:
Cijk+1 < Cijk + Gikbi; (¢ 7 k)

The results are ¢;; = ¢;jg+1. With the indexing as above the index vectors form a polyhedron with
eight corners:

(1 1 1) (1 n 1) (1 1 q) (1 n q)

(m11) (ma1) (m1g) (mnq

With the indexing above the c-operands yields a single data dependence vector d = (0 0 1)
There are no other data dependence vectors. We assume that the m-assignments are carried out by
the same kind of cells as in the FIR example. Then we have the pipeline constraint L;d > P4, OT
l13 > p4. Further we want designs without any signals rippling through. This gives the constraints
lin # 0, l12 # 0 and l;3 # 0. Minimizing the maximal corner differences yields the following
expression for execution time as a function of L,:

lia| (m = 1) + |la| (n — 1) + l1a(g — 1)

This function obtains its minimum p4(g — 1) + m 4+ n — 2 for ly; = £1, l;5 = +1 and liz =py.
Dependent on the relation between the sizes of m, n and ¢ different mappings to space will
give the best cell utilization. The following are of interest:

100 100 010
L“:(o 1 0) L”:(o 0 1) L’3=(0 0 1)

L1 uses mn cells and is thus suitable when ¢ >> m,n. In the resulting array the elements of C
will be updated in place. L,y uses mgq cells and lets the elements of A stay in place. L, uses ng
cells and lets the elements of B stay in place. For a closer description of the properties of these
space mappings, see [Li87].

Interestingly these arrays show different behavior with respect to pipeline utilization and skew-
ing. Ly =(1 1 py)and L, = L,y gives skewing proportional to m + n, which is minimal. On
the other hand the pipelines of the cells will not be filled. A new computation will be initiated at
each cell every p; time. Selecting L, = L, or L,3 will give arrays with cells that have completely
filled pipelines, but where the skewing is proportional to p1(m + ¢) and py(n + ¢), repectively.
Thus it is no contradiction that they all use the same time.

20

12 7 a5
13 a21b12

L] .

\ 4
|
oF
\ 4

L B3y L b2y
a - p—
13 a5,b,, L > o)
83
‘;;1
0 — 0 1 —
_l 412 l »0 ‘-l
y'\ ¥y
b, .
32 >D b, -
L b2 [02n Lb22 bia
al,la — : -
-_’ 12 12 L] v ——’azz .
a,, TP 2, P21 310y
L o
0 81| — 0 -
0 _l _l
b31 r_l b31
L >_] "
by (b, _ l"b'm byq
>33 (3}, a.b ay, |2 | T
' 12 21722 al bl
al, 21 a5, 1291
bi‘ by1
o: | ! » 21| - %1
0 —|°112 Y

Figure 6.7: Array with pipelined cells for matrix multiplication. C
is updated in place. px = 3, p4 = 2. Non-interleaved and interleaved

execution.

21

27 [] 26 .
Lbzs B2s Lbzs bas
a a = a -
=122 ay5b,, -a;—D 22 %22 332053
12 2
ba3 bao
2 ‘123 22| _| | o
"1%32 T %222
byg] byg
>_! >
L big|Py7 Lbﬂ bis
— 211211 T ay1byg —p 221 P21 a5,b,g
a
11 a21
B
by 3;4
—af o o —»lo c
0 0 Cy42 232

Figure 6.8: Array with pipelined cells for matrix multiplication. A
stays in place. py = 3, py = 2.

The pipeline utilization of the L,j-array can be increased by interleaving. py independent
matrix multiplications of the same size can be performed on the array, each offset one time step with
respect to the previous one. The correctness of this can be formally verified by extending (L; L)
to a correct mapping Z* — Z3, where the new index enumerates the different multiplications. Cf.
[Li87]. Thus p; independent matrix multiplications, each consisting of mngq steps, can be performed
on the array in time py g+ m + n — 2. Interleaving is not possible on the other two arrays.

As our last example we will consider matrix multiplication C = AB where A and B are banded
nXn-matrices. Assume that A has us upper and /4 lower diagonals that are non-zero, and similarly
for B. Then the m-assignments involving zero operands can be pruned away, and we obtain the
following additional linear constraints on the set of index vectors:

1—k<ly k—j<lp
k—i1<us j—-k<up
This will cause a number of new corners to appear, and some old will be cut away.
A space mapping that gives a good cell utilization for multiplication of banded matrices must
fulfil the following condition, [Li83], [Li87]:
laa+la+1lsa=0
l31+1324+133=0

If we want nearest-neighbor communication the matrix elements should be 0, 1 or —1. If the matrix
of the total mapping to space-time is to be non-singular two of the columns in the space mapping
must be linearly independent. A solution that fulfils this is

-1 0 1
(300).

22

Nonsingularity of the total space-time mapping L is now assured if det(L) # 0, or
lin+lig+lis #0.

If we in order to minimize the number of cases assume that [4 = u4 = I = up = b we obtain
the following time-optimal solutions for L;:

Py >2: Lon=(-1 2-py py)
Py <2 Lz =(-1 —-py+ p4)
b b b,
43 '|_||| 54 'IL_|| 65 >
Foe L AR C
4 54 %5 P76 | cros10] 4 LofPes |Pre |bgy | Stoots bsg [Pa7 [bg | 101012
%65 [%76 (287 |_p|Pa7 [| %6 |777 |2 | | Pgg | |
54 g9 55 g9
g %89
443 %44
/'Y 4
P22 [] /] Paa ‘ I
| o P33| a4 |05 °878(Lb44 bss |66 Cgg9 Lbss Peg [P77 | Cset0
a a a a a a a a
—» 43| %54 %5 |_y| by, | p| %44 |%5 |66 | b, | (%5 |56 (267 | |bgs | |
32 as a3 877 834 asg
0o —P®o 777 788
21 %2]
4 J Y y ¥
1 l—o (|—>
C C,
P12 P2 P34 666 ba3 |Pag | P45 677 ba4 |Pas [osg “e88
%21 a2 P43 |yl b —1 %22 |33 [244] pl by [| F=pi22s |74 as | P67
45 a a 312 a
agy 11 55 56
0 >0 o—P 0 0o—» 0

Figure 6.9: Time-optimal array for banded matrix multiplication,
Px =3, py =2

23

As a matter of fact any L; for which 2 — py < lj1,li2o < =1, lis=pyand lin+ho+lhiz =1
is optimal when py > 2. When py < 2 any L; for which —py < li1,l12 £ =1, l13 = p4 and
l11 4 l12 + 113 = —1 is optimal. These solutions have execution time 2(b— 1)(p4+ — 1)+ n —1 and
2(b — 1)py + n — 1, respectively. They both have skewing proportional to 2bp; and utilize the
pipelines of the cells fully.

7. Conclusions

We have presented a powerful method to optimize the execution time for indexed sets of m-
assignments when the time function is linear and the constraints on the design can be expressed
as systems of linear inequalities. Constraints that can be expressed in this way include causality,
nonsingularity of the total transformation matrix, broadcast avoidance and suitability for process-
ing time series. Constraints arising from the inner structure of pipelined cells used to build the
resulting array can also be expressed as linear inequalities. Thus the optimization method enables
us to find solutions superior to pure systolic arrays when the cells are built of pipelined functional
elements. Once the constraints are defined the method can automatically find a time-optimal array.
The reason why so many constraints fit into this scheme is that every time we demand that an
execution time must differ from or be greater than another execution time by a certain amount a
new linear constraint of the form L;(i' — %) > ¢ or L;(¢' — i) # ¢ appears.

A crucial point is that the number of inequalities must be kept within a reasonable limit.
Some of the constraints described here can potientially generate very many inequalities. If the
set of m-assignments and the indexing shows a certain degree of regularity, however, it is very
likely that many of the inequalities will either be the same as other or dominated. A typical
example is when potentially very many causality constraints reduces to constraints regarding a few
data dependence vectors. Also the number of possible maximal corner differences will usually be
reduced when combined with the external constraints. In the FIR example the number of non-
trivial corner differences boils down from 12 to 2. A system that implements the method presented
here must however be capable to detect that inequalities are dominated by others and that systems
of inequalities may have no solutions and take advantage of this to keep the number of systems
and inequalities down. If systems of inequalities are naively generated a combinatorial explosion is
likely to take place. If some care on the other hand is taken it seems certain that the method can
be applied to synthesis of systolic arrays for more non-trivial algorithms than the simple examples
presented here.

8. Acknowledgements

I would like to thank Lennart Johnsson for his helpful comments at an early stage of the creation
of this paper. This work has been supported in part by the Office of Naval Research under contract
N00014-86-K-0564. Part of this work was done when the author was with the Royal Institute of

Technology, Stockholm, and then it was in part supported by The Swedish Board for Technical
Development (STU).

24

References

A82] W. B. Ackerman, “Data Flow Languages”, Computer, Vol. 15 (Feb. 1982), pp. 15-25.
guag

[C86] M. C. Chen, “Transformation of Parallel Programs in Crystal”, in Kugler, H.-J. ed. IN-
FORMATION PROCESSING 86, Elsevier Publishers B.V. (North-Holland), 1986, pp. 455-462

[CF84] K. Culik II, I. Fris, Topological Transformations As a Tool in The Design of Systolic
Networks, Report CS-84-11, Dept. Comput. Sci., University of Waterloo, April 1984

[G79] G. Gritzer, Universal Algebra, Springer—Verlag, New York, 1979

[HDI87] P. Hudak, J-M. Delosme, I. C. F. Ipsen, ParLance: A Para-Functional Programming En-
vironment for Parallel and Distributed Computing, Research Report YALEU/DCS/RR-524, Dept.
Comput. Sci., Yale University, March 1987

[JKNM86] H. V. Jagadish, R. G. Mathews, T. Kailath, J. A. Newkirk, “A Study of Pipelining
in Computing Arrays”, IEEE Trans. Comput., Vol. C-35 (May 1986), pp. 431-440

[JWCD81] L. Johnsson, U. Weiser, D. Cohen, A. L. Davis, “Towards a Formal Treatment of
VLSI Arrays”, Proc. Second Caltech Conf. on VLSI, Jan. 1981, pp. 378-398

[KMW69] R. M. Karp, R. E. Miller, S. Winograd, “The Organization of Computations for Uni-
form Recurrence Equations”, JACM, Vol. 14, No. 3 (July 1969), pp. 563-590

[KLe80] H. T. Kung, C. E. Leiserson, “Algorithms for VLSI Processor Arrays”, Ch. 8.3 in C.
Mead, L. Conway, Introduction to VLSI systems, Addison-Wesley, Reading, MA, 1980

[Ku82] H. T. Kung, “Why Systolic Architectures?”, Computer, Vol. 15 (Jan. 1982), pp. 37-46.

[KLi83] H.T.Kung, W. T. Lin, An Algebra for VLSI Algorithm Design, Technical Report, Dept.
Comput. Sci., Carnegie-Mellon Univ., PA, 1983

L.S81 C. E. Leiserson, J. B. Saxe, “Optimizing Synchronous Systems”, Proc. of 22nd Ann.
g
FOCA Symposium, 1981, pp. 23-36

[Le83] H. Lev-Ari, Modular Computing Networks: a New Methodology for Analysis and Design
of Parallel Algorithms/Architectures, ISI Report 29, Integrated Systems Inc., Dec. 1983

[Li83] B. Lisper, Description and Synthesis of Systolic Arrays, Technical Report TRITA-NA-
8318, NADA, KTH, Stockholm, 1983

[Li85] B. Lisper, Hardware Synthesis from Specification with Polynomials, Technical Report
TRITA-NA-8506, NADA, KTH, Stockholm, 1985

[Li87] B. Lisper, Synthesis of Synchronous Systems by Static Scheduling in Space-time, Ph. D.
dissertation TRITA-NA-8701, NADA, KTH, Stockholm, 1987

[MaWa85] 7Z. Manna, R. Waldinger, The Logical Basis for Computer Programming, Volume I:
Deductive Reasoning, Addison-Wesley, Reading, MA, 1985

[MiWi84] W. L. Miranker, A. Winkler, “Spacetime Representations of Computational Struc-
tures”, Computing, Vol. 32 (1984), pp. 93-114

[Mo82] D. I Moldovan, “On the Analysis and Synthesis of VLSI algorithms”, IEEE Trans. Com-
put., Vol. C-31 (Oct. 1982), pp. 1121-1126

[Q83] P. Quinton, The Systematic Design of Systolic Arrays, Research Report RR 216, INRIA,
Rennes, July 1983.

[QG85] P. Quinton, P. Gachet, Automatic Design of Systolic Chips, Research Report RR 450,
INRIA, Rennes, Oct. 1985.

[RPF86] S. V. Rajopadye, S. Purushotaman, R. Fujimoto, On Synthesizing Systolic Arrays from
Recurrence Relations with Linear Dependencies, Detailed Summary, Dept. Comput. Sci., University
of Utah, 1986

25

[RFS82A] I. V. Ramakrishnan, D. S. Fussell, A. Silberschatz, Towards a Characterization of
Programs for a Model of VLSI Array-Processors, Technical Report TR-202, Dept. Comput. Sci.,
University of Texas at Austin, July 1982

[WD81] U. Weiser, A. L. Davis, “A Wavefront Tool for VLSI Design”, in H. T. Kung, B. Sproull
and G. Steele eds. VLSI Systems and Computations, Springer-Verlag, Berlin, 1981, pp. 226-234

26

