TupleScope: A Graphical Monitor and Debugger
for Linda-Based Parallel Programs

Paul Bercovitz and Nicholas Carriero

Research Report YALEU/DCS/RR-782
April 1990

This work was supported in part by National Science Foundation grant CCR-
8657615 and in part by Office of Naval Research Grant N00014-89-J-1906.

TupleScope: A Graphical Monitor and Debugger
for Linda-Based Parallel Programs

Paul Bercovitz and Nicholas Carriero*

Department of Computer Science
Yale University
New Haven, Connecticut

April 1990

Abstract

The Linda model of parallel programming lends itself to the develop-
ment of graphical, interactive monitoring and debugging tools. Several
of the characteristics of Linda which facilitate visual monitoring and de-
bugging are discussed. TupleScope, an X Window System-based moni-
toring and debugging tool for C-Linda, is presented. TupleScope effec-
tively provides a window onto tuple space. We also present a special-
purpose language for expressing debugging actions. The software architec-
tures of the run-time version of TupleScope, for shared-memory machines,
and the postmortem version of TupleScope, for both shared-memory and
distributed-memory machines, are described.

TupleScope currently runs on the Encore Multimax and Sequent Sym-
metry shared-memory multiprocessors, and on Sun workstations. Of the
distributed-memory systems supporting C-Linda, TupleScope has been
implemented on the Intel iPSC/2 hypercube.

1 Introduction

Parallel programming systems need adequate monitoring and debugging tools,
but such tools are often difficult to implement and difficult to use. The more
distributed the architecture of a system, the less one expects in the way of

*This research was supported in part by National Science Foundation grant CCR-8657615,
and in part by Office of Naval Research grant N00014-89-J-1906. Linda is a trademark of
Scientific Computing Associates, Inc. The X Window System is a trademark of MIT. UNIX
is a trademark of AT&T. Symmetry and Pdbx are trademarks of Sequent Computer Systems,
Inc. Multimax is a trademark of Encore Computer Corporation. iPSC is a trademark of Intel
Corporation. Sun is a trademark of Sun Microsystems, Inc.

debugging tools. One of the virtues of Linda, a model for parallel program-
ming in which a sequential language is extended by a set of operations on a
logical shared memory, is that it lends itself to the construction of powerful
monitoring and debugging tools across a range of machine architectures. Tu-
pleScope, an X Window System-based C-Linda monitor/debugger that we have
developed, provides many sequential-style debugging functions for both shared-
memory and distributed-memory Linda programming environments. While the
distributed-memory version of TupleScope performs only postmortem moni-
toring/debugging, it shares with the run-time version many useful interactive
features. TupleScope currently runs on the Encore Multimax and Sequent
Symmetry shared-memory multiprocessors, and on Sun workstations. Of the
distributed-memory systems supporting C-Linda, TupleScope has been imple-
mented on the Intel iPSC/2 hypercube.

We will describe Linda in the next section, and in section 3 we will discuss
some of the requirements for and possibilities of a graphical Linda monitoring
and debugging tool. TupleScope is presented in section 4. In the final section,
some directions for future development of TupleScope are outlined.

2 Linda

Linda is a model of process creation and coordination which relies on a logical
shared memory as the medium in which all interprocess communication and
synchronization occur [Gel82, Gel85, CG89b]. This memory is known as tuple
space, since it contains tuples, which are ordered sequences of typed fields, each
field consisting of either actual data (an actual) or a typed slot for data (a
formal). Tuple space is content-addressable: tuples are retrievable on the basis
of the values they contain. Linda defines a set of tuple space operations on tuple
space. The out and eval operations generate tuples, while the in and rd (read)
operations retrieve data from tuple space.

When an out is performed on a tuple, it is put into tuple space and becomes
accessible to any process by means of an in or a rd operation. An in or a rd
operation has as its operand not a tuple but a template. This template, like a
tuple, consists of an ordered set of typed fields. As with a tuple, the fields of
a template can be either actual or formal. For a template to match a tuple,
it is necessary that each field of the template have the same data type as the
corresponding field of the tuple. And, if an actual field of a template is to match
the actual field of a tuple, these fields must have the same value. A formal in
a matching template is filled with the value of the actual in the corresponding
tuple field. When an in or a rd is performed, it either completes immediately,
by successfully matching a tuple in tuple space, or it blocks, until a tuple that it
can match against is present in tuple space. An in removes the matched tuple
from tuple space, while a rd copies the matched tuple without removing it.

Eval is similar to out, the difference being that eval places an unevaluated

(a so-called active) tuple into tuple space, and its fields are evaluated by means
of separate processes. With an out, in contrast, the fields of the tuple are
evaluated by the same process that executes the out, before the tuple is put
into tuple space.

The inp and rdp operations are non-blocking versions of in and rd. They
return the value 1 if a matching tuple is found and the value 0 if no matching
tuple is found.

The approach to parallel programming in which process coordination and
computation are treated as orthogonal components has been contrasted with
the approach in which a single, unifying programming model is used [CG89a).
Linda is an example of the former approach. In C-Linda, the Linda implemen-
tation developed at Yale and SCA, C is the computation component and Linda
is the coordination component. An approach to parallel programming which
exploits this orthogonality leads to the adoption of a similarly orthogonal set of
debugging tools. Some of the advantages of providing the user with two axes
along which to attack the debugging of a parallel program are discussed below.

3 Monitoring and Debugging a Linda Program

A software tool for monitoring a Linda program will naturally center on tuple
space and the operations pertaining to it. More preclsely, the essential elements
to be monitored are:

1) the agents: the processes.

2) the events: the tuple space operations.

3) the field of activity: tuple space, divided into partztzons, i.e. regions where
tuples of the same type are stored and where templates match tuples of the
same type.!

A Linda dialect such as C-Linda is a high-level language, implementable
on a variety of parallel or distributed machines. Linda programmers deal not
at the level of individual physical processors or specific machine architectures
but at the higher level of individual threads of control or processes. A Linda
monitor/debugger needs therefore to deal with processes and their tuple space
operations rather than with processor configurations. There is no need to track
the flow of data between individual processing elements, since Linda processes
do not communicate with other processes directly, but only indirectly, through
tuple space.

A graphical Linda monitor/debugger should provide a representation of each
tuple space operation, including the tuple, the tuple space partition to which it
belongs, and the process which is performing the operation. Displaying a tuple
textually is non-trivial, since a tuple is itself a complex object, consisting of an
arbitrarily long sequence of data fields, each of which can itself be an aggregate
such as an array, structure, or union. By making good use of the graphical

1See [Car87) for a detailed treatment of tuple space partitions.

resources available in today’s workstations, the designer of a Linda monitor can
synoptically represent the data associated with a tuple space operation.

We will consider in detail four aspects of the Linda model which greatly
facilitate the complex task of constructing a usable parallel program moni-
tor/debugger:

1) A Linda program can be given a graphical representation: To represent
succinctly the great quantity of information of potential interest, the moni-
tor/debugger should use graphics wherever possible. Linda suggests mental
models or images which can form the basis of a graphical rendering of the pro-
gram.

2) Tuple space operations can be logically serialized: Monitoring and debug-
ging tasks are greatly facilitated if the events to be monitored can be serially
ordered. It is possible for a Linda monitor/debugger to focus on the activity of
one process at a time without altering the logic or the meaning of a program.

3) A Linda monitor can take advaniage of compile-time processing: C-Linda
uses a “pre-compiler” to analyze all of the tuple space operations, grouping
them into tuple space partitions according to the type of tuple they operate on.
These partitions are analyzed and an efficient data structure for implementing
the tuple space operations of each partition is selected. The pre-compiler can
also provide a Linda monitor/debugger with a variety of information about a
program.

4) The tuple data structure provides a uniform means for expressing debug-
ging queries: All tuple space operations operate on the tuple data structure.
Hence there is a ready-made way to express monitoring and debugging queries,
viz. by specifying the values of one or more fields of a tuple.

These properties of the Linda model permit the construction of tools which
greatly facilitate the task of developing, understanding and maintaining parallel
programs.

3.1 The Graphical Representability of a Linda Program

Among the images with which the Linda programmer is familiar are those having
to do with the partitioning of tuple space into disjoint regions where processes
exchange tuples of the same type; with the production and consumption of
tuples, which occupy tuple space; and with processes which are spawned to
evaluate tuples and then disappear as the evaluation completes. A graphical
Linda monitor/debugger can make use of these images, without having to invent
and import images which are extrinsic to the programming paradigm.

The partitioning of tuple space into regions where the matching of tuples
with templates of the same type occurs has an obvious graphical interpretation:
the presentation of a separate window for each partition. The user’s attention
can focus on these partitions as separate spheres of activity. For example,
processes can be given sequential access to a critical section by having them
successively take and release ownership of a tuple associated with the section.

All of the tuple space operations (ins and outs) involving this tuple can be
viewed in a single window. Another example is that of a process which has
blocked when doing an in because there are no matching tuples. The user can
observe at a glance that this partition is indeed devoid of tuples, even while
other tuple space partitions may be populated with tuples. Separate windows
provide the requisite functionality for monitoring the activity occurring in a
tuple space partition.

Tuples are persistent data structures. They are not modifiable in place.
Once a tuple is in tuple space it can only be read or removed as a unit. Because
of these properties, a tuple can be graphically represented as a thing which, by
analogy with physical things, has a position and occupies space. A tuple space
partition, implemented as a two-dimensional window, can be filled with tuples,
no two of which “occupy the same space.” Tuple space and its partitions are
bags or multisets. Hence there is no requirement that a particular tuple occupy
a particular position in a partition or in the window representing it.

The graphical capabilities of current workstations make it possible to con-
struct levels of abstraction in the representation of tuples. At the top level, they
could be given uniform representation in the form of an icon appearing in a tu-
ple space partition. The user would in many instances not need more specific
information: useful information is already being conveyed by its occupying this
and not a different tuple space partition. Should additional information about
the tuple be needed, the user would descend to the next level of representation
by clicking on the tuple icon. A window containing the text of the tuple in
detail, field by field, would then pop up. The sheer amount of information to
be monitored dictates that this kind of encapsulation take place.

A graphical Linda monitor/debugger should show the occurrence of each
eval, out, in, or rd, always making clear which process is performing the
operation. Each time a process is created, by means of eval, or terminated,
there should be a depiction of that event. The appearance of a new tuple in tuple
space should coincide with the execution of an out, just as the disappearance
of a tuple should coincide with an in. The in and rd operations sometimes
block, as discussed above. The monitor should show that a process is blocked
and show its transition from a blocked to an unblocked state. This is essential
to the adequate monitoring of a Linda program. One error in program logic
that the monitor should help detect is deadlock, by showing that each process
is blocked, and, further, by showing on what type of tuple, i.e. in which tuple
space partition, each process is blocked.

The principle of levels of abstraction can also apply to the representation
of process activity. A process could be represented at the top level by an icon.
The process icon could change as the process goes from one type of tuple space
operation to another, or as it goes from the state of being blocked to that of being
unblocked. More detailed information regarding the state of a process, such as
the line of source code corresponding to the last tuple space operation performed,
could be obtained by clicking on the process icon. An even more detailed level

of information would become available if a conventional symbolic debugger were
tied in to cover the specifically computational aspect of the program. It would
be essential that the user be provided with the capability to examine or even
modify the state of a process at the lowest level. The design challenge is to
incorporate low-level debugging as one among several levels of abstraction.

8.2 Tuple Space Events Are Logically Serializable

One design option for a monitor/debugger for a MIMD machine is to use a single
monitoring process to display the states of multiple processes. This approach
facilitates the implementation of debugging functions such as single-stepping
which are commonly found in sequential debuggers. The issue that must be
faced with this approach is the extent to which distortion is introduced when
a serial ordering is imposed on events which, resulting from multiple partially
asynchronous processes, have in some cases no inherent temporal ordering.

Consider the approach in which a monitoring process presents at every in-
stant the tuples that currently occupy tuple space, the processes that are exe-
cuting, and some indication of the status of each process with respect to tuple
space, such as the most recent tuple space operation performed by each process.
At each instant, what is in effect a global state is presented, and a program is
represented as the sequence of such global states. But such a global state of the
program does not depend on a total ordering of the tuple space operations, since
Linda does not require that a temporal ordering be maintained for every pair
of tuple space operations. It requires only that such an ordering be maintained
for some pairs of tuple space operations. In other words; Linda requires only
a partial, not a total, ordering of events. A correct ordering is maintained for
those events which do require a certain temporal ordering. Functions such as
single-stepping which presuppose the serialization of events can consequently be
implemented without altering program logic. A utility to reconstruct the tuple
space aspect of a Linda program from a number of event streams, such as that
used in the postmortem version of TupleScope, can also be implemented.

3.3 Compile-Time Support for Monitoring and Debugging

A Linda pre-compiler can be an important source of data needed by a moni-
tor/debugger. A Linda monitor/debugger which uses the tuple space operation
as its basic unit is necessarily a source-level debugger. If the monitor/debugger
can rely on the pre-compiler to provide the source file name and line number of
each tuple space operation, then it can give the user immediate access to the
text—and context—of any tuple space operation.

As indicated, the pre-compiler does a pre-match over all the tuple space oper-
ations, partitioning them into sets where the matching of tuples and templates
takes place. The results of this analysis can be made available to a graphi-
cal monitor/debugger, enabling it to depict a program’s complete tuple space

partitioning prior to the start of program execution. In unpacking the tuples
for display in textual form, a monitor/debugger can rely on detailed compiler-
generated information regarding the structure of a tuple, such as the number of
fields it has and the data types of the fields.

3.4 The Tuple as a Uniform Data Structure for Debugging Queries

In Linda, interprocess communication and synchronization are accomplished by
producing, consuming and reading tuples. Tuples and their fields will naturally
figure in many debugging queries. Tuple space could function as a kind of
database to which queries could be addressed. Queries could be expressed as
conditionals which determine whether the fields of a tuple have certain values. A
variety of monitoring and debugging actions could be triggered upon satisfaction
of such queries: breakpointing, filtering, highlighting or differentiating tuples by
means of color, saving the contents of tuple space to a file, etc. Since the Linda
programmer already thinks in terms of tuples and their fields, forming queries
in such terms would be easy.

4 TupleScope

In the previous section several of the features that one would expect a graphical
Linda monitor/debugger to provide have been discussed. In what follows, one
implementation of a graphical monitor/debugger for C-Linda programs, Tuple-
Scope, is presented. C-Linda consists of a compile-time component, where the
parsing, tuple analysis, optimization and code generation take place, and a run-
time component, which is essentially a library of routines to implement the tuple
space operations. When the user wants to use TupleScope with his application,
he uses a command line option to the compiler which causes it to generate data
structures required by TupleScope and to link in an alternate run-time library.

4.1 User Interface

A program that uses TupleScope is invoked in the same way as a program lack-
ing TupleScope support. But instead of beginning execution immediately, a
group of windows appears on the display—a control window, where a variety
of options and functions can be selected, and a window for each of the tuple
space partitions. These windows can be moved anywhere on the display, stacked
and iconified. Execution of the C-Linda program begins when the “Run” func-
tion button is clicked. Processes are numbered according to the order of their
creation, and are represented by icons bearing the process number. While exe-
cuting, a process can be mapped to the tuple space partition of its most recent
tuple space operation. In TupleScope, this mapping is expressed by the ap-
pearance of each process icon at the top of the window representing the tuple

|Modes| [Block Format] Ereak| |Continue] [Debug| [Save| [Quit] m

INTLINT Jhisner irpam Joimmr resuleJlisne sorootmmr dure [atmmer traan]
=] <“lister input®, LONG) (S ¢"summer result®, LONG) [&] (*lister done®) ("summer done") ("summer input”, LONG(]

9 o ' ©
(J

Figure 1: Process 1 outs a tuple containing user input.

space partition which it most recently operated on. The process icon changes
to reflect its most recent tuple space operation: a black down arrow for the out
and eval operations, both of which produce a tuple; a black up arrow for the
in operation; and a white up arrow for the rd operation. When the in and rd
operations are in a blocked state they are represented by black and white dia-
monds, respectively. Suspension of execution at any moment provides a view of
the most recent tuple space operation performed by each process on some tuple
space partition. Source code is integrated into the TupleScope display: clicking
on a process icon causes a scrollable window containing the text of the source
file, with the line containing the tuple space operation pinpointed, to pop up.
This is an example of a debugging function that relies on pre-compiler support.

Most of the tuple space partition window is reserved for the display of tuples,
represented by sphere-shaped icons. The user can select from three sizes of tuple
space partition windows. If a window becomes filled with tuples, the tuples are
redisplayed on a smaller scale. When a tuple icon is clicked, a scrollable window
containing the text of the tuple, field by field, pops up. In C-Linda, these fields
can consist of scalars, having any of the scalar data types of the C language, or
aggregates, i.e. arrays, structures, or unions.? The iconification of tuples helps
in managing the potentially large quantity of tuple data.

Figures 1 through 5 depict TupleScope in five stages of the execution of a
simple program in which the user is prompted for an integer, and the sum of the
integers from 1 to the given integer is calculated. The Linda processes are given
specific tasks: process 1 is responsible for handling the terminal I/O; process 3
is responsible for creating the list of integers to be summed; and process 2 is
responsible for calculating the sum. In Figure 1 process 1 has just received the
user input and is outing a tuple containing this data. Process 3 is blocked on
an in, waiting for this tuple. Process 2 is also blocked, waiting for the tuple to
be produced by process 3. In Figure 2 process 3 is ining the tuple containing
the user input. A window has been opened indicating the line of code which is
being executed by process 3. Figure 3 shows process 3 outing a tuple consisting

2In the current implementation, structure and union fields are displayed as arrays.

[Modes| [Block Format| [Ereax] [Continue] [Debug| |save | [Quit]| m

INTLINT [Giater irean, [otemmr resuln Jlister dore | scmsmsr dore | stmmme irqar. |
S summer result*, LONG) [RI] (*lister done®) F(-w done") (*summer irput”, LONGL))

("lister input®, LONG)

L4

®

long rum;

/% Initialize the linda block data pointer, &/

vhile (1) {

in{"lister input®, ? mm};

Figure 2: Process 3 ins the tuple outed by process 1.

[Foass]

|Block Format| [Run Ereak| [Continue] [Debug] [Save] [Quit] m

INTJINT [iister droan, [otmmesr resuls [llsner dors st dore Jatmesr irgin |

("lister input”, LONG)

L 2

(“summer result®, LONG) ("lister done") ("summer done”) ("summer input”, LONGL]

Figure 3: Process 3 outs a new tuple containing a sequence of integers to be

summed.

[raes]

|Block Format|: @ [Ereax] [Continue] [Debug] [Save]| [Quit] m

INT [INT [Risner drpam Jomeer resule Jlister dore ot dors Lot irean |

("lister input”, LONG)

("summer result®, LONG) ("lister done®) (“summer done”) E ("summer input®, LONG[]X
f
printf{"rumber in 1 ¢ 100 (0 to quit).\n"); e
N continue;

2

out{"lister input®, mm):
in("summer result®, 7 sum);

Figure 4: Process 2 ins the tuple outed by process 3.

[Modes] [Block Format] [Run] [Ereax] [Continue] [Debug] [Save] {Quit]

INT JINT [ater drgan, Jouser rosule [iister dore Jotmcer dorw Jatamr irgar | (
("lister input®, LONG) [S]f ("sumeer result®, LONG) [&i] (“lister done*) ("summer done”) ("summer input®, LONGL])

© L 44

Q
T|("summer result® 4350)

Figure 5: Process 2 outs a tuple containing the result of summing the integers.

of the list of integers to be summed. A window displaying the contents of the
tuple (a character string followed by an array of long integers) has been opened.
Figure 4 shows process 2 ining the tuple outed by process 3 and shows the line
of code containing the in operation on which process 1 is blocked. Figure 5§
shows the result tuple produced by process 2. Process 1 is waiting for the tuple
so that it can write the result to the terminal and prompt the user for the next
integer.

4.2 Breakpoints, Single-Stepping, Speed Control

As pointed out above, a special monitoring process can be used to sequentially
focus on the activity of each Linda process without affecting the program logic.
Scanning the processes round-robin, TupleScope updates the status of each pro-
cess with respect to tuple space. Each tuple space operation serves as a potential
breakpoint. When a breakpoint has been reached, the monitoring process com-
municates to the other processes that they are to suspend execution. Thus the
entire Linda program halts, albeit with a degree of latency, since a breakpoint
is only detected prior to the execution of a tuple space operation. Besides being
settable interactively and at arbitrary times, by clicking the “Break” button,
a breakpoint can also be set under the control of a program written in the
TupleScope Debugging Language, which is described below.

TupleScope’s single-stepping function is simply an extension of the break-
point function: in single-step mode a breakpoint is automatically inserted at
each tuple space operation. By clicking the “Continue” button the user can
proceed from one tuple space operation to the next.

Another useful TupleScope function, similar in design to the single-step func-
tion, is the speed control function. Rather than causing each process to suspend
execution when the monitor detects a new tuple space operation, execution is
merely delayed, for a duration selectable by the user. By sliding the Speed
Control bar to a position along a range of settings, the user can slow down the
execution of the program to a speed suitable for the debugging or monitoring

10

task at hand. When a program with TupleScope support is running full speed,
the user’s grasp of what is happening in tuple space is generally restricted to a
perception of general patterns of data movement and process activity.

4.3 The TupleScope Debugging Language

We have discussed how a Linda monitor/debugger could utilize the tuple as a
common data structure for formulating debugging queries. Expressed as condi-
tionals, such queries could control the triggering of a range of debugging-related
events. While there are several ways in which such functions could be realized,
in TupleScope this is accomplished by having the monitoring process execute an
auxiliary program written in a Linda-specific debugging language. The debug-
ging programs can be written, translated, revised and cancelled during execu-
tion of the C-Linda program. The TupleScope Debugging Language is a simple,
high-level notation for expressing a set of debugging actions, each triggered by
the satisfaction of a condition. A Debugging Language program is translated,
using the UNIX utilities lex and yacc, into code interpretable by TupleScope.
When a program is in effect, each monitored tuple space operation is exam-
ined to determine whether one or more of the conditions exists, and if so, the
associated action is taken.

A TupleScope Debugging Language program consists of one or more state-
ments. Each statement has the form:

if condition then action

A condition consists of one or more tests. The tests are separated by one of the
logical operators, and or or. A condition is enclosed by parentheses and a test
is enclosed by square brackets.

There are three kinds of tests: tuple field comparison tests, tuple space
operation comparison tests, and process number comparison tests. Each test
evaluates to true or false, and contributes to the truth value of the condition in
conjunction with any logical operators.

A tuple field comparison test detects tuples, based on the values of one or
more of the tuple fields.3 A tuple field comparison test has the form:

field N [equality-operator | relational-operator] constant

N is an integer greater than or equal to 1. An equality-operator is either
== (equals) or != (does not equal).

A relational-operator is either

< (less than) or > (greater than).

3In this preliminary version of the TupleScope Debugging Language elements of aggregates
such as arrays or structures are not specifiable.

11

Enter Parameters:
[Print ...][File ...][List ...][Stop Process|[Continue Process | [Other] [Stop-Other—Continue | [Quit]

Select Current Process
El 2 3 456789 101112131415161718132021 222324252627 28 29 30 31 32
| %4 Stopped ot breakpoint 1 in find_shortest at line 200 in file “tsp.cl®

{

X2 ‘Stopped at breskpoint 1 in find_shortest at line 200 in file “tsp.cl®
{

Stopped at breakpoint 1 in find_shortest at line 200 in file “tsp.cl®
{

X3 Stopped at breskpoint 1 in find_shortest at line 200 in file “tsp.cl”
{ .

gugngng

Linda initialization complete,

Figure 7: The ldbx window. Processes 2, 3, 4 and 5 have reached a breakpoint.

ging approaches in the future. Instead of a single, ever-present window for the
low-level debugging of all processes, there could be an individual window for
each process which pops up only when there is a specific low-level debugging
task (e.g. to display the value of a program variable). While clicking the process
icon with the left mouse button would open a window for displaying the text of
the last tuple space operation, clicking it with the right button would open a
window for the low-level debugging of that process. With the low-level debug-
ger integrated in this way, TupleScope would come closer to implementing the
levels-of-abstraction approach to debugging.

4.5 The Postmortem Version of TupleScope

Our discussion has thus far been limited to the run-time version of TupleScope,
which provides monitoring and debugging capabilities for a C-Linda program
as it is executing. Our implementation of the run-time version of TupleScope
requires that the host machine be a shared-memory machine, or, in the case of
uniprocessor machines, provide a simulation of shared memory. Besides being
used to implement tuple space, shared memory is used for communicating mon-
itoring information between the individual application program processes and
the monitoring process. The postmortem version of TupleScope was developed
to address the need for monitoring and debugging tools for implementations of

14

C-Linda on distributed-memory machines, such as the Intel iPSC/2 hypercube
[Bjo89], or a local area network of workstations [AB89]. The postmortem ver-
sion of TupleScope provides only an after-the-fact replay of a Linda program, or
more precisely of the tuple space operations performed in a Linda program. Yet
it has proven to be useful not just for debugging distributed-memory programs
but also for providing additional flexibility when monitoring and debugging pro-
grams on shared-memory machines.

The postmortem version of TupleScope does not make use of an auxiliary
monitoring process. The bottleneck that can result with the run-time version
when the various application processes simultaneously request servicing by the
monitoring process is eliminated. Instead of writing the information needed
for monitoring to shared memory and waiting for a monitoring process to re-
trieve and process it, the postmortem version of TupleScope has each application
process immediately write this information to a per process file. Tuple data,
generated by the out operation, are written to separate files. Since output to
the files is buffered, the file system overhead incurred is not prohibitive.

After the program has executed, the files generated during execution need

to be reduced to a single file in which the various output streams of tuple
space operations are merged into a single stream of tuple space operations that
i can be-executed sequentially. The utility that accomplishes this, par_order,
uncovers the partial ordering that is implicit in these per process data streams,
and generates a single stream based on this ordering. par.order depends on
each tuple having a unique number, known to every process dealing with the
tuple, so that each in or rd operation that succeeds in getting a tuple can be
. associated with the correct tuple.
’ The method used by par_order to create a partial ordering of tuple space
~ operations can be described briefly. Data which encode tuple space operations
are read sequentially from the files produced by the Linda processes. They
are immediately written to the file of the merged operation streams unless the
partial ordering requires that the tuple space operation data of another process
be written first. In that case, writing the operation data and reading the next
data from the process file are delayed until the logically antecedent operation
is found. Tuple space operations are identified in part by the tuples associated
with them. par_order consequently needs to maintain a table of the tuples
associated with the operations that it has processed. It also relies on informa-
tion provided at run time concerning the blocking or unblocking of in and rd
operations.

Using a single merge file as a source of tuple space event data and multi- -
ple files for the associated tuple data, the postmortem version of TupleScope
reconstructs an execution sequence of a Linda program in its tuple space di-
mension. The postmortem replay has no requirement for shared memory or
for any other parallel computing resources since it executes as a single process.

15

References

[AB89)

M. Arango and D. Berndt. TSnet: A Linda Implementation for Net-
works of Unix-based Computers. Research Report 739, Yale Univer-
sity Department of Computer Science, August 1989.

[ACMS89] ACM. SIGPLAN Notices, January 1989. Proceedings of the ACM

[Ber]
[Bjo89)

[Car87]

[CG89a)

[CG89b)

[Gel82]

[Gel85)

[Gel89)]

[MHs9)]

SIGPLAN and SIGOPS Workshop on Parallel and Distributed De-
bugging.

P. Bercovitz. TupleScope User’s Guide. Available from the Yale
University Dept. of Computer Science.

R. Bjornson. Experience with Linda on the iPSC/2. Research Report
698, Yale University Department of Computer Science, March 1989.

N. Carriero. Implementation of Tuple Space Machines. Research Re-
port 567, Yale University Department of Computer Science, December
1987. Also a 1987 Yale University PhD Thesis.

N. Carriero and D. Gelernter. Coordination Languages and their
Significance. Research Report 716, Yale University Department of
Computer Science, July 1989.

N. Carriero and D. Gelernter. Linda in Context. Comm. ACM,
32(4):444-458, April 1989.

D. Gelernter. An Integrated Microcompuler Network for Ezperiments
in Distributed Processing. PhD thesis, State University of New York at
Stony Brook, Stony Brook, New York, 1982. Department of Computer
Science.

D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80-112, January 1985.

D. Gelernter. Multiple tuple spaces in Linda. In Proceedings of the
Conference on Parallel Architectures and Languages Europe (PARLE
89), volume II, pages 20-27, 1989.

C. E. McDowell and D. P. Helmbold. Debugging Concurrent Pro-
grams. ACM Computing Surveys, 21(4):593-622, December 1989.

18

