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Abstract—

We present a simple algorithm for emulating an N processor CRCW
PRAM on an N node butterfly. Each step of the PRAM is emulated in
time O(log N) with high probability, using FIFO queues of size O(1) at
each node. The only use of randomization is in selecting a hash function
to distribute the shared address space of the PRAM onto the nodes of
the butterfly. The routing itself is both deterministic and oblivious, and
messages are combined without the use of associative memories or explicit
sorting. As a corollary we improve the result of Pippenger [8] by routing
permutations with bounded queues in logarithmic time, without the possi-
bility of deadlock. Besides being optimal, our algorithm has the advantage
of extreme simplicity and is readily suited for use in practice.

1 Introduction

Concurrent-read concurrent-write parallel random access machines (CRCW
PRAM) allow an arbitrary number of processors to read or write a common
memory location in one time step. Complex communications operations,
such as broadcast and multicast for example, can be implemented in one
step. The facility to succinctly express complex communication patterns
greatly simplifies the task of both designing algorithms and writing pro-
grams. For this reason, the CRCW PRAM model is favored over weaker




abstract models for which most, if not all, of the algorithmic and program-
ming effort is spent synchronizing the movement of data.

Unfortunately, it is unlikely that CRCW PRAMs will ever faithfully
model any real parallel machine. Any real parallel computer will most
likely consist of a large number of small processors, each connected to a
small number of other processors. For the network to scale in size, we
require that the complexity of the individual processors be independent
of the size (number of processors) of the network. More specifically, by a
realistic parallel computer we mean a network of N processors, with each
processor connected to no more than a fixed number (say 4) of processors.
Each processor in this network has its own local memory, and processors
communicate by sending messages over links to neighboring processors.
Finally, each processor can accomodate only a fixed (constant, 1ndependent
of N) number of messages at any time.

How can we reconcile the convenience of CRCW PRAMs with the lim-
itations of a real computer? The only alternative is to emulate a CRCW
PRAM on a real network. Such an emulation has two components:

¢ Address Map — Mapping the address space of the PRAM onto the
N memory modules of the network, and

¢ Message routing — Routing memory requests (read/write) from
processors to distant memory locations, and data from the location
back to the processors. Once we have fixed our address map, each
memory access is accomplished by sending a message from the pro-
cessor requesting the access to the processor holding the memory
location.

Three measures determine the efficiency of an emulation: time, the
number of steps on the network to emulate one step of the PRAM. Second,
queue—size, the amount of additional hardware per processor required to
hold messages in queues while in transit. The third factor is the complexity
of managing the queues at each processor: a first-in first-out queue is less
complicated than a priority queue, or a queue requiring associative lookups.
A simple queueing strategy is clearly preferable to one requiring complex
operations.

How much time must an emulation take? Because the diameter of any
bounded-degree network on N nodes must be at least Q2(log N), this is
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clearly a lower bound on the time to emulate one step of a CRCW PRAM.
Under fairly general assumptions, Karlin and Upfal [5], and independently,
Alt, Hagerup, Mehlhorn and Preparata [2] show that any deterministic em-
ulation must take time at least Q(log? N/ loglog N). For any deterministic
routing scheme that is also oblivious (the route of each message is com-
pletely determined by the source and destination) Borodin and Hopcroft
[3] give a worst-case lower bound of 2(v/N).

A number of emulations have been developed in recent years [2,5,6,11,
12]. The best known deterministic strategy [2] for emulating an N node
CRCW PRAM with M shared variables on an N node bounded-degree
graph takes time O(log? N ). Better time bounds are obtained with random-
ized routing schemes [1,10,13]. Using random hash functions, a randomized
routing strategy and Reif-Valiant [9] probabilistic sorting scheme, Karlin
and Upfal [5] presented a probabilistic emulation on an N node butterfly.
The time complexity of their emulation is O(log N) and the queue-size is
O(log N). Their queues are required to be built as priority queues, which
are expensive.

This paper presents a probabilistic emulation whose time complexity
is O(log N) and queue-size is O(1). The queues are first-in first-out, the
simplest possible. We adapt the random hash functions of Karlin and
Upfal [5] for the address map. In contrast, however, our routing scheme
on the butterfly is completely deterministic. In fact, the routing scheme is
also oblivious, which is rather surprising. Thus our scheme only requires
O(log® N) random bits, rather than O(N log N) as in [5]. Besides being
optimal with respect to time complexity, our emulation has the advantage
of extreme simplicity.

We also note that this is the first emulation of CRCW PRAMSs with
bounded queue-size. Pippenger [8] showed how to route permutations on a
butterfly with bounded queue-size in O(log N) time. His scheme allowed a
small probability of deadlock. We obtain a deadlock—free solution for per-
mutation routing as a simple corollary of our routing scheme. In contrast to
[8], our routing scheme as well as the accompanying analysis is considerably
simpler.

To summarize, we state the main result below:

Theorem 1 One step of an N processor CRCW PRAM can be emulated
on an N processor butterfly in time O(log N) with high probability. The
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Figure 1: Message paths to a common location form a tree

queue-size at each processor is O(1).

The key idea in this paper is a simple and optimal strategy for combin-
ing requests that access the same memory location (section 2). Section 3
presents the emulation. Sections 4 and 5 analyze the routing scheme and
the likelihood of large delays.

The address map used in section 3 and in [5] has some drawbacks.
Under certain conditions it does not distribute the PRAM address space
uniformly over the different memory modules in the butterfly. Further, it
only assigns PRAM locations to memory modules, ignoring the problem
of where the location is stored within the module. We overcome these
problems in appendix A. In appendix B we extend our results to emulation
of entire PRAM programs.

2 How to combine messages

Suppose that several processors request to read a common memory location.!
Suppose further that the routes of these messages intersect to form a tree,
as in Figure 1. Each message moves along the directed path from its source
to the destination. Different messages may, in general, traverse common
portions at different times.

1Concurrent write requests can be handled similarly, but for the sake of simplicity we
will only consider concurrent reads in this paper.



There is, however, no need to send more than one read request along
any branch of this tree. If a request simply waits at each tree node until
another similar request appears along the other incoming edge (unless it
“knows” that future requests along that edge must be for different memory
locations), then the two requests can be merged, and one forwarded along
the tree. Of course, the reply message must return backwards along each
edge of the tree so that each requesting processor receives a reply. To
accomplish this we only need, at each node, to store two direction bits to
direct the reply either along the top branch, the bottom branch, or along
both. This simple idea is more efficient than the associative memories
discussed by Pfister and Norton [7]. The idea of message combination is
not new [4].

How do we know that no future message arriving at a node will request
a particular memory location? The key idea is to keep the messages leaving
out of each processor sorted by destination. Figure 2 shows a snapshot of
processors in a network at some point in time. Each receives messages along
two incoming edges and places them into the corresponding FIFO queues.
At each step the processor checks the two messages at the head of each
queue and compares their destination addresses. The message with the
smaller destination address is transmitted along the appropriate outgoing
edge, and two direction bits are stored accordingly. If both messages are
destined for the same location, one request is sent out. Finally, if only one
queue has a message waiting and the other queue is empty, no message
is sent out. (If the message were sent, the next message along the other
edge could conceivably have a smaller destination, thus violating the sorting
requirement).

In our snapshot at time T', processor A in figure 2 selects the message
destined for location 35. Then it waits until the message to location 48
arrives, at which point it discovers that the messages at the heads of both
the queues are to location 48, and can be combined. Keeping messages
sorted by destination also simplifies the task of replicating the reply when
it returns (section 3.4).
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Figure 2: Combining Messages by Merging Streams

2.1 Ghost messages

The simple idea of keeping message streams sorted has one deficiency. Con-
sider Figure 2 again. At time T, processor B cannot transmit the message
it holds for location 25, because it must ensure that it will not receive a
message to a smaller location in the future. When A selects the message
to location 35 for transmission on one link, it can convey this information
to B by sending a ghost message labelled 35. As soon as B receives the
ghost message, it knows that future messages along that edge must be des-
tined for locations greater than 35. Therefore, at the next time step B can
forward the message waiting in the lower queue.

Ghost messages simply notify a processor of the minimum location to
which subsequent messages can be destined. Ghosts are not used for any
other purpose , they “keep the system going.” In section 3.5 we specify the
mechanisms for transmitting ghosts precisely. This simple idea turns out
to be powerful enough to yield our main result.



3 The emulation

The bounded degree network on which we emulate CRCW PRAMs is the
butterfly (also called the FFT network). The number of nodes in a butterfly
with n levels is N = n2", and we will use this to emulate an N processor
PRAM. We assume that levels 0 and n are identified, so that the butterfly
is wrapped around. Each node in the butterfly is assigned a unique number
(c,r) where0 < ¢ < n,0<r<2"—1, and (c,r) is the binary representation
obtained by concatenating the binary representations of ¢ and r. Node {c,r)
is connected to nodes (¢ + 1 mod n,r) and to node (¢ + 1 mod n,r @ 2°),
where @ denotes bitwise exclusive or. Finally, we define column {¢c,r) = ¢
and row (¢,r) =r.

Each node in the butterfly has a processor, a memory module and a
small number (6 or 7) of switches, each with upto 2 inputs and 2 outputs.
Each input into a switch has a queue that can hold at most b messages. We
will specify b later, but it will be a constant, independent of N.

3.1 The Address Map

Suppose that we wish to emulate a CRCW PRAM with N processors and a
shared memory of size M, with memory locations 0,... ,M — 1. Following
[5], we will map shared memory location z into the memory module of
the butterfly node whose number is h(z). The function h(z) is chosen at
random from the following ¢-universal class of hash functions:

H= {h | h(z) = (( Z a;xi) modP) modN}

Each a; € Zp is chosen randomly, and the number P is a fixed prime no
less than the size M of the PRAM address space. The number ¢ will be
specified later.

3.2 Message structure

In each step of the emulation each processor (c,r) accesses a PRAM loca-
tion, say z, which is placed in memory module h(z) = (¢',r'). To accom-

2Also see appendix A.




plish the memory access, the processor sends a message to module h(z),
and the module returns the message to the processor with the required
data.

Each message has 3 fields: tag,type, and data. The tag for our message
is (h(z), z), ie., the number obtained by concatenating the number h(z) of
the memory module which contains the shared memory location z, with z
itself. The type field is one of REQUEST?, EOS or GHOST. We assume that
each node issues an end-of-stream message of type EOS in the time step
right after it issues a memory access message of type REQUEST. The tag
field of an end-of-stream message is always co. We will keep the messages
entering and leaving every switch sorted by the tag field. An end-of-stream
message arriving at a switch thus notifies the switch that no more requests
will be issued to it from the corresponding incoming edge.

3.3 Message path

Each REQUEST traverses a path from its source processor to the destination
module and back. This happens in 6 phases. As seen in Figure 3, each
phase is a traversal of the butterfly. In the first three phases, each message
traverses the butterfly in the forward direction. In the first phase, the
message issued at node (¢,r) is directed to node (0,r). In Phase 2, the
message follows the unique (forward) path in the butterfly from node (0, r)
to node (0,7'). This path can be determined by looking at the appropriate
bits of the message tag. In Phase 3, the message reaches the node (¢',r'),
where it acquires the required data from the memory module. It continues
to move forward through the row until it again reaches node (0,r').

In the last three phases, the message traverses its path in the reverse
direction and returns to the node that initiated the request. The data
requested has finally arrived.

For convenience, we describe the routing mechanism in terms of the
logical network of Figure 3 instead of the butterfly. The correspondence
between the two is clear and each butterfly node does the work of 6 switches
in the logical network?. The logical network has (6n + 1)2" switches or-

3For simplicity we assume that all requests are read requests. Write requests are
handled similarly.
4except nodes in column 0, which have 7 switches
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ganized in 6n 4+ 1 columns. These columns are numbered 0 through 6n
from the input side, the rows are numbered as in the butterfly. A switch
in column ¢ and row r is numbered (c,r).

Since there is a unique (forward) path in the butterfly for any pair of
nodes, it follows that the path traversed by each request is oblivious (once
the address map is fixed).

Lemma 1 For any processor-memory pair {(c,r) ,{(c',r'), there is a unique
path in the logical network that starts at (c,r), passes through {(c',r') and
ends at (c,r). Furthermore, the sequence of nodes traversed in phases 4, 5
and 6 is the reverse of the sequence for phases 3, 2 and 1 respectively.

3.4 How messages are kept sorted

Using the simple idea of section 2, each switch in the logical network ensures
- that the messages leaving it are sorted by the tag field. This guarantees that
messages to a common memory location are combined as soon as possible.

How do we return the data to all requesting processors? Consider an
arbitrary switch s; in phase 5. Let s; be the phase 2 switch in the same
butterfly node as s5. For each request that passes through s,, two direction
bits are stored, which are used by ss to route the reply bearing the data.
This can be done because of the crucial observation that replies arrive in
85 in the same order that requests were sent out of s;. More precisely:

Lemma 2 The tth REQUEST selected for transmission in a phase 5 switch
s5 1s the reply to the 1th REQUEST selected for transmission in the corre-
sponding phase 2 switch s,.

With this observation, it is not necessary to store the identities of the
sources, a FIFO queue of the direction bits is adequate. This is also appli-
cable to the switches in phases 1 and 6. Thus, each butterfly node requires
additional FIFO queues between the phase 2(1) and 5(6) switches. It will
be shown that the total time required by the emulation algorithm is O(n)
with high probability, hence queues of O(n) bits are sufficient. This requires
no more storage than O(1) messages.
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3.5 How ghosts appear and disappear

Suppose that a switch determines that the message m selected for trans-
mission in switch s is required to be transmitted only on one of its outputs.
Suppose further that the other output connects s to switch s; which has
space in its input queue. Then, as described in section 2, a GHOST message
is sent to s; with its tag equal to the tag of m. Now, switch s; is informed
that no subsequent messages received from s can have a smaller tag.

This GHOST message might itself be forwarded by s; if it has the small-
est tag of all the messages at the head of the queues in s;. If, however, the
GHOST is not forwarded immediately, then it need not be retained by s;.
This is because s must send s; another message (GHOST or otherwise) at
the next step, whose tag cannot to be smaller. The information in the new
message is bound to be at least as strong as that in an old GHOST.

Lemma 3 A GHOST will never wait at any switch.

GHOSTs also help “keep the system going.” More precisely, after the
first time that any switch sends out a message, it will continue to send out
messages (ghosts or otherwise) along all its output edges until the time at
which it sends out the end-of-stream message. With this observation, we
have the following lemma.

Lemma 4 Every input queue in column ¢ holds at least one message at
time ¢, and at every subsequent time until the end-of-stream message leaves
the queue.

4 Message polarization and delay

We show that whenever message delivery takes a long time, there exists a
long polarized sequence of messages. In the next section, we show that long
polarized sequences are highly unlikely to occur. The notion of a polarized
sequence is similar to that of the delay sequence of [5,10] and the critical
path of [1].

A path S in the logical network is a sequence {S(7)} of switches with the
property that, for every 1, the switch S(7) is connected to switch S(s + 1),
and the switches S(7), S(i+1) are distinct. Note that not all switches along
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a path need be distinct, only adjacent pairs. A path which originates in
column O and ends in column 6n is called an tnput-output path.

Definition 1 Let M = mym, ... m, be a sequence of messages such that
tag(m;) < tag(mi;,) for 1 < i < a. Suppose that S is a path in the network
such that during delivery of all messages, message m; passes through the
Jith switch along S, ie., through switch S(3). Suppose, finally, that j; < 3;11
for all i, 1 <1 < o. Then the message sequence M is said to be polarized
along S.

The main result of this section is the following theorem, which relates
the emulation time and queue size to the length of polarized sequences.

Theorem 2 Suppose that a set of memory requests takes time 6n + 6. If
each queue is of size b, then there exists an input-output path S of length
8n and a sequence M of min(6,bn) distinct REQUEST messages which is
polarized along S.

Before we proceed to a sketch of the proof of this theorem, we need a
few definitions that will be used to analyze how messages are delayed in
the logical network.

Definition 2 If message m is in switch s at time t, then the lag of m at
time t, is defined as lag(m,t,s) =t —column(s). The lag is an upper bound
on the time spent by a message waiting in queues.

Definition 3 Suppose that message mo entered a switch s at time tg, and
left at time ty, > tg + 1. There are three possibilities:

1. Attimetr—1, another message m; was selected by s for transmission.
Then (my,t;—1,s) is said to m-delay (mq,t,s) fortg <t < t. Note
that lag(my,tr — 1,s) > lag(mo,t, s).

2. At time tp — 1, mg was selected for transmission, but not transmitted
because the queue which it next entered, say in switch s;, was full.
Since myg left s at time t;, s; must have had space for it at that time.
But this means that a message m; must have left s, at time t; — 1
to create that empty space. In this case, (my,t; — 1,s1) 1s said to
b-delay (mo,t,s) for tg <t < ty. Note that lag(my,tr — 1,s1) >
lag(mo, t,s) — 1.

12



>
'
7 M
M‘NKM‘ “\ ﬁ%,\ S~ ~ 1 2

N AN T

(% i ‘&\ N T SO

M ey any M’ \:\W M,

N _ ! “
B-delayers A,
—— Path § - --- Message Path
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3. At time t; — 1, no message was selected for transmission because the
other queue in s was empty. (This can happen only in Phase 1) By
lemma 4 column(s) >ty — 1, i.e. lag(my,tr,s) <O0.

4.1 Constructing long polarized sequences

We will first construct a sequence {(u},t},¥})} such that tag(u}) > tag(ui,,)-
This will give us a path S and a (possibly short) sequence {u}} that is
polarized along S. Next, we augment the sequence to get a longer sequence
polarized along ths same path S.

To describe how we construct our initial sequence, suppose that a set of
memory requests takes time 6n + 6. Let po be an EOS message that arrives
in column 6n at the last time step 6n + 6. Suppose that it arrives at switch
Yo (in column 6n) at time o, so that lag(uo,%0,%0) = 6. Let us follow o
back in time until it last waited in a queue, say in ¥, at time t;. Then
there is a triple (ui,t1,%;) which delayed (ug,th,¥5) (k6 = po). Now we
follow the path of u; back in time to the point at which it was first delayed,
and so on (Figure 4).

In general, given (u;,%;,%;) with lag(u;,t;,v;) > 0 it is possible to con-
struct (Wi41,%i+1, Yiv+1) as follows. We follow u; back in time starting from
t;. If p; is a ghost or a combination and we reach the switch at which y;
was created, then we continue following one of the messages which caused
i; to be created. We continue this process until we reach a time at which
an ancestor of u; was last delayed. Unless lag(u;,ti,%;) < 0, we are certain
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to reach some ] at which some g} (which might be p; or an ancestor) is
forced to wait at some time ¢!.

Thus there must exist (pit1,%ti41,%i+1) Which delayed (u!,ti,%!). But
there is no waiting between ¢; and t; + 1. Thus we have lag(u;,t:,¢:) =
Iag(“:"t:‘a "p:) + 1.

We repeat this process until we have a message py, with lag(uz,tz,¢r) =
0 for some L. Let u} be any ancestor of uy at time t;, = 0 and p} be at
switch ¢} at time O.

We first estimate L.

Lemma 5 Let b; denote the number of b-delayers in the segment (1o, t0, o)
through (pi,t;, ;). Then L > 6 — by.

Proof: By the construction of the short polarized sequence, lag(u;,¢;,%:) =
lag(ui, t;, ¥i)+1. By definition of delay, lag (it 1, tir1, Yir1) > lag(ul, ¢, ¥})—
z where z is 0 or 1 depending upon whether (p;y1,%ti41,%i+1) is an m-
delayer or a b-delayer. More specifically, £ = b;,; — b;. Therefore we have,
lag (ki 1, Bit1, Yir1) > lag(ufs th, ¥)) — (biys —b;). Thus, lag (s, tis1, Yiv1) >
lag(pss, ti, i) — (biv1 —bi) — 1. Thus lag(ur, L, ¥r) > lag(ko, to, %) — b — L.
But lag(pr,tr, %) = 0 and lag(uo, to, %) = 8. Thus the result follows. I

Proof Sketch of Theorem 2: Let I'; denote the path passing through o, ¥,
Y1, Y] ... ¥, Yl Let |T;| denote the number of edges in T;.

We shall first identify some T'; along which a messages are polarized.
We know that for all j |T';| = 6n + 2b; — column(%}) and we will ensure
b; < n. Then we can always construct an input—output path T' of length
8n that contains I';. We need to consider two cases.

In the first case, by < n. Assume that (u!,t!,9!) is b-delayed by
(Kit1sti41,Yit1)- Let pyy through p;_; be the other messages present in
Yit1 at tiq. Clearly, tag(ui) > tag(pa) > ... > tag(pa-1) > tag(uly,)-
Thus the sequence pj...ps}, fi1... his—1, Yiyy... 4y, of messages is I'z polarized,
and has length L 4+ b — 1. Similarly, we can include messages that were
present in the queues when each of the by b-delays occured, giving a 'z
polarized sequence of length L + by (b —1) > 6 + br(b — 2) > 6 provided
b—2 > 0. Thus in this case we choose 7 = L.

In the second case when b > n, choose j such that b; = n. Then we
have at least the b; b-delayers and b;(b — 1) other message present in the
queues at the times of the b-delays i.e. at least bn messages.

14
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Figure 5: Number of ways of choosing rows of source processor and desti-
nation module of message m; is 2'2"~! = 2»

We now show that the polarized messages identified above are distinct,
and of type REQUEST. Because each (u;,t;,s;), ¢ > 0 delays (p!_q,ti_;,si_,),
it follows that p; cannot be of type EOS. But tag(u;) = tag(u!), thus u!
cannot be of type EOS. Also, u! waits, and hence by lemma 3 it cannot
be a GHOST. Thus these messages must be REQUESTs. None of the mes-
sages waiting in queues can be GHOSTs. All are ahead of other messages,
hence none can be EOSs. Distinctness follows because the tags are strictly
sorted. 1

5 Large delays are unlikely

Theorem 3 For every f, there exists a queue—size b independent of N such
that every message ts routed in time bn with probability at least 1 — N—7,
with ¢ = 8n.

Proof: The proof has two steps®:

Step A: We first estimate the total number of times arbitrary sequences
of ¢ REQUESTs are T polarized for some input-output path T of length
8n, over all possible choices of the hash function h. This can be done by
counting the choices for T', the choices for switches on T where REQUESTs
touch, the choices for touching REQUESTs (i.e. the choice of their source
processors, which determines z;, and the choice of the destination mod-

®No attempt has been made here to obtain the smallest value for b, and the value
obtained can be substantially improved.
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ules which determines h(z;)), and the hash functions consistent with these
choices.

1. The path T can originate at any switch in column 6n, and consists of
8n displacements, n of which are forward. Each forward or backward
displacement can be along any of two edges. Thus the total number

of possible choices is 2" (8:) 28n — 2% (8:) .

2. Let my,...,m, denote the sequence of messages that is T polarized,

with m; touching T at s;. All s; can together be chosen in at most

(8":‘ ) ways.

3. Let z; denote the PRAM location to which message m; is destined.
s; lies on the path of m;, hence the row in which m; originated and
the row in which module h(z;) lies can together be chosen in 2" ways
(figure 5). This is independent of what phase s; belongs. The column
in which m; originated can be chosen in n ways. Notice that this fixes
z;. Because of the polarization property, h(z;) > h(z;) > ...h(z,),
and hence column(h(z,)) > column(k(z;)) > ...column(h(z,)). But
column(h(z;)) can only take on n different values. Thus column(h(z;)),
... column(h(z,)) can together be chosen in at most (”;'") ways.

row(h(z;)) is already known. Thus the total number of choices is

(M) () = 0 (1)

4. The previous step fixed h(z;) for ¢ distinct z;. We know that for
1 <1< ¢and 0 < z;,y; < P, there is at most one polynomial p of
degree ¢ — 1 over the field Zp such that p(z;) = y; for all <. Thus
in order to keep the above choices of h(z;) consistent, we need to
consider y; = h(z;) (mod N). Thus each y; can be chosen in P/N
different ways, i.e. there are at most (P/N)¢ different polynomials
which allow this.

Therefore the total number of times sequences of ¢ REQUESTs are polarized

is at most
¢
29n(8n> (Sn + §')Ng (n + §) <£> < (6P)f (2§)
n ¢ ¢ N Y
assuming ¢ = 8n, and using (Z) < (ne/k)*.
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Step B: Let N,, be the number of hash functions for which the total
routing time is at least bn. For each such function it is possible to find
b'n = bn — 6n polarized messages. But each subset of size ¢ of these b'n
messages contributes to the above estimation. There are (b;") ways of

choosing the subset. Thus

() <62

Because the coefficients a; can each be chosen in P ways, there are a total
of P¢ hash functions. Thus the probability of requiring time bn is

Niw _ 6P)(%)  (12¢
be = P (b;"s = (b'n

Thus for arbitrary f, there exists a constant b such that the probability of
requiring at least bn time for routing is less than N=7. 1

[y
) < N-—4log b?—sﬁ

5.1 Permutation Routing

These ideas can also be used in routing permutations with constant queue—
size [8], and without deadlocks. Suppose processor ¢ wants to send a mes-
sage to processor 7(7), where 7 is a permutation on {0,...,N — 1}. We
use the 6 phase scheme discussed above. In the first 3 phases, processor 4
sends its message to location ¢. In the last 3 phases, instead of returning
to processor ¢, the message is moved to 7 (7). For all the 6 phases (h(1),1)
is used as tag. The construction of the polarized sequence and the analysis
presented above are applicable with minor modifications.

Corollary 1 Suppose every processor i is to send a message to processor
7(¢) ‘where m is a permutation. Then for every f, there exists a queue-
size b independent of N such that every message is routed in time bn with
probability at least 1 — N7,
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Appendices

A Memory module sizes and local address-
ing

The address map of section 3.1 only specifies the butterfly memory in which
a particular PRAM location is to be placed. It does not specify the location
within the memory that will hold the address. The map also has the draw-
back that it might cause too many PRAM locations, as many as ¢ = 8n
to get mapped onto the same memory. This is not acceptable if the size of
the shared memory is small, i.e. if M = kN, for some constant k. Here we
briefly sketch a scheme in which each shared memory location is assigned a
unique location in the butterfly memory, and further, the memory required
at each node is O(M/N).

Given the polynomial coefficients a;, define the hash address of z to be:

a(z) = (( > a,-x‘) mod P) mod M

0<i<y¢

The hash address a(z) is interpreted as a global address in the butterfly, i.e.
it corresponds to location a(z)/N of module h(z) = a(z) mod N, assuming
M is a multiple of N. The function a thus maps the PRAM location z in the
range 0,...,M —1 onto a butterfly address a(z) in the range 0,...,M — 1.
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We shall call this region of the butterfly memory the hash table area. The
butterfly location a(z) cannot in general be used to store the contents of
PRAM location z, because as many as ¢ = 8n PRAM locations may have
the same hash address. To handle this, we use the butterfly memory above
address M — 1 as an overflow area.

Every location a(z) in the hash table area points to a group of locations
in the overflow area. These locations hold the PRAM locations that get
mapped into a(z). Each location in the overflow area holds pairs of the
form (z, data in PRAM location z). Thus PRAM location z is accessed
by searching through the overflow locations associated with the hash table
location a(z). We now describe how to allocate overflow area for each hash
table location.

A.1 Preliminary Scheme

In this scheme every location a(z) in the hash table is assigned 8n locations
in the overflow area whether or not there are 8n PRAM locations mapped
onto it. These 8n locations consist of 8 locations from each memory in
the row of of the butterfly to which a(z) belongs. Thus if location a(z) is
assigned memory locations ¢ through ¢+ 7 in each memory in its row, then
a(z) is set to 1.

Figure 6 shows the memory layout for some row in the butterfly, for
the case n = 3, and M/N = 2. Thus locations 2 through 9 are alloted
to location 0 of memory Mj, locations 10 through 17 to location 1 of Mj,
locations 18 through 25 to location 0 of M; and so on. The starred squares
indicate the locations that are actually used. The figure shows that 4 shared
memory locations are mapped onto location 0 of Mj, 1 onto location 1, and
2 onto location 0 of M,.

Memory access: In order to access shared memory location z, it is
sufficient to search 8 locations in every memory in the row of a(z). Which
locations to search is indicated by a(z). This only requires a minor modi-
fication to the access scheme described in section 3.3: the location a(z) is
read in phase 3; and the search through the overflow area takes place in
phase 4. Thus, at each node in phase 4, the 8 locations specified by a(z)
are searched. Eventually the message reaches a node that holds PRAM
location z, at which point the data field of the message is updated. The
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Memory  M; M, M,

Address
0 2 18 34
1 10 26 42 | Hash Table
2 * * * Overflow
3 *
10 *
18 * %

Figure 6: Memory layout for a row in the Butterfly
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message movement is not affected, since each memory needs to be accessed
a constant number (8) of times per message.

A.2 TImproved Scheme

It is possible to show that the empty spaces in the layout of figure 6 can
be eliminated. The memory required per row is now proportional to the
number of PRAM locations that get mapped into it. This is bounded by
the following theorem stated without proof.

Theorem 4 For any constant f, there exists a constant ¢ (independent of
N ) such that the probability of mapping more than cMn /N PRAM locations
into any row of the butterfly is less than N—7.

Thus with extremely high probability it is sufficient to have a total
memory of O(Mn/N) in every row. Thus O(M/N) memory is sufficient in
every module, as desired.

A.3 Address computation

The hash function has ¢ = 8n coefficients, and just storing all the co-
efficients on each processor requires O(n) memory. However this is not
necessary. The node in column ¢ need only hold coefficients 8; through
8¢ + 7. The polynomial evaluation can be pipelined, requiring O(n) cycles.

B Emulating sequences of instructions

Our results can be extended to the emulation of multi instruction programs,
as done by Karlin and Upfal [5]. For emulating multiple instructions, the
same protocol is used, but now we must guard against the possibility that
a particular instruction might not complete in the alloted time. If this
happens, a new hash function & is chosen, all the variables are sent to their
new locations, and the emulation process resumes. We must also consider

the time required to initialize the hash table area as described in appendix
A.2.
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Theorem 5 Consider an N processor CRCW PRAM with M shared mem-
ory locations, M polynomial in N. Then an arbitrary T instruction pro-
gram, T > M/N, can be emulated on an N node butterfly in time O(T log N)
with probability tending to 1 as N and/or T tend to co. Further the size of
the memory required at each butterfly node is O(M/N).

Proof: (Sketch) Initializing the hash table area and rehashing require time
O(X log N) with high probability. Because M is polynomial in N, we
see from theorem 3 that any PRAM instruction completes in time c¢log N
with probability at least 1 — M/ for every f and some ¢ independent of
M. Thus the interval between successive rehashing operations is at least
M7 with probability % Thus with high probability no more than 8T /M7
rehashing operations are needed. The time required for these is o((1 +
37) 3 log N). Because T > M/N, the total emulation time is O(T log N)
with high probability. 1

The restriction T' > M/N is not serious because M /N instructions are
required just to access all the M locations.
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