Algebraic Transformations of Objective Functions
Eric Mjolsness and Charles Garrett

Research Report YALEU/DCS/RR-686
March 1989

Algebraic Transformations of
Objective Functions

Eric Mjolsness and Charles Garrett
Department of Computer Science
Yale University

March 7, 1989

Abstract

A standard neural network design trick reduces the number of connections in the winner-take-all (WTA)
network from O(N?) to O(N). We explain the trick as a general fixpoint-preserving transformation applied
to the particular objective function associated with the WTA network. The key idea is to introduce new
interneurons which act to maximize the objective, so that the network seeks a saddle point rather than
a minimum. A number of fixpoint-preserving transformations are derived, allowing the simplification of
such algebraic forms as products of expressions, functions of one or two expressions, and sparse matrix
products. The transformations may be applied to reduce or simplify the implementation of a great many
structured neural networks, as we demonstrate for inexact graph-matching, convolutions and coordinate
transformations, and sorting. Simulations show that fixpoint-preserving transformations may be applied
repeatedly and elaborately, and the example networks still robustly converge. We discuss implications for
circuit design.

1 Introduction

Objective functions have become important in the study of artificial neural networks, for their ability to con-
cisely describe a network and the dynamics of its neurons and connections. For neurons with objective-function
dynamics, the now standard procedure [Hopfield 1984,Hopfield & Tank 1985,Koch Marroquin & Yauille 1986]
is to formulate an objective function (called the “objective” in what follows) which expresses the goal of
the desired computation, then to derive a local update rule (often a simple application of steepest descent)
which will optimize the dynamic variables, in this case the artificial analog neurons. The update rule should
ultimately converge to a fixpoint which minimizes the objective and should be interpretable as the dynamics
of a circuit.

In this paper we propose to modify the standard procedure by interpolating an extra step: the objective
should be formulated, then algebraically manipulated in a way which preserves its meaning but improves
the resulting circuits, e.g. by decreasing some measure of their cost. Then the improved circuit is derived
from the modified objective. We do not require that the algebraic manipulation be done automatically; we
just ask whetker and how it can be done. The answer is in the form of a short, non-exaustive list of very
general transformations which can be performed on summands of an objective, provided they are of the
requisite algebraic form, without altering the fixpoints of the resulting network. Often it will be clear from
the algebra alone that some savings in number of connections or neurons will occur, or that a previously
non-implementable objective has been transformed to a form (e.g. single-neuron potentials plus polynomial

This work was supported in part by AFOSR grant AFOSR-88-0240.

1

interactions [Hopfield 1984]) whose minimization may be directly implemented as an analog circuit in a given
technology. It also seems likely that many useful and general algebraic transformations await discovery.

Although we use the terminology appropriate to the optimization of objectives for dynamic neurons with
fixed connections, much of the theory may apply also to “learning” considered as the optimization of dynamic
connections in an unstructured net (e.g. [Rumelhart Hinton & Williams 1986]) or of some smaller set of
parameters which indirectly determine the connections in a structured net [Mjolsness Sharp & Alpert 1989).

In the remainder of this section, we will introduce the ideas by rederiving a well-known network simplifica-
tion: that of the winner-take-all (WTA) network. Section 2 develops the theory of our algebraic transforma-
tions, including the reduction of: squares and products of expressions; a broad class of functions of one and two
expressions; the minimum and maximum of a set of expressions; and certain matrix forms which retain their
sparseness as they are reduced. Implications for circuit design are discussed, and a major unsolved problem
related to the handling of sparse matrices is stated. The fixpoint-preserving transformations are cataloged in
section 2.6. In section 3, some of the transformations are excercised in design examples. Experimental results
are available for a graph-matching network, which is guaranteed to work if run slowly enough but also works
at reasonable speed, and for a sorting network, for which an illegitimate transformation step (encoding a
sparse matrix, as described in Appendices B and C) introduces spurious local minima which merely decrease
the accuracy of the final answer. The sorting network also involves a series of legitimate fixpoint-preserving
transformations which are guaranteed to work if the network is run slowly enough but which actually work
at reasonable speed. Finally, a discussion follows in section 4.

1.1 Reversed Linear Neurons in the WTA Network

Consider the ordinary winner-take-all analog neural network. Following [Hopfield & Tank 1985), such a net-
work can be obtained from the objective

Eua(?) = %(E v —-1) + %2 Z v(1—v)+ Z #(vi) (1 >0) (1)

where [Hopfield 1984,Grossberg 1988]

v
#(v) = [dag™(2), e)
using steepest-descent dynamics
v; = —0FE/dv; 3)
or Hopfield-style dynamics
u; = —90E/9v;, v; = g(u;). (4)

The resulting connection matrix is
T = —a1 + 26y,

which implies global connectivity among the neurons: if there are N neurons, there are N2 connections. It is
well known that the winner-take-all circuit requires only O(N) connections if one introduces a linear neuron
o whose value is always 3°, v;. It is not so well known that this can be done entirely within the objective
function, as follows:

L c c
Evia(0) = i v = D)o = 50 + 2 3ol -) + 3 6(vi) . (5)
i i t
where the steepest-descent dynamics, for example, is modified to become
’15,' = —rgaE/avg (6)
= -0FE/dv; (specialize to r; = 1)

2

& = +r,0E/d0 (ro >0) _
= are(—o+ ;v —1) (7)
= 0ife=3,v-1.

But if ¢ = 3;v; — 1 then one can calculate that dE/9v; = 9E/dv;; thus equations (1) and (5) have the
same fixpoints. The connectivity implied by counting the monomials in equation (5) is O(N) connections,
the minimum possible for this problem.

Note that the o linear neuron actually behaves so as to increase the objective E(V, o), while the v; neurons
act to decrease it; o may be called a reversed neuron. Reversed neurons introduce a new element of competition
into a network; indeed, two-person zero-sum games are usually modelled using objectives which one player
increases and the other decreases [von Neumann & Morgenstern 1953]. So in this network, and in the others
we will introduce, minimization is replaced with finding a saddle point and the problem becomes hyperbolic.
This follows immed.iately from the sign of 02 in (5), which eliminates all local minima. Fortunately there are
hyperbolic versions of such efficient optimization procedures as the conjugate gradient method; Luenberger
[Luenberger 1984] glves two examples.

For finite r,, o is a delayed version of the sum Y, v; — 1 and although the network dynamics are different
from equation (3), the fixed point is the same. Alternatively, the rate parameter r, may be adjusted to make
o move at a different time scale from the rest of the neurons. As r, approaches infinity, o becomes an infinitely
fast neuron whose value is always

g = Z Vi — 1
1

and the other neurons see an effective objective

Ewta(ﬁaa(m)‘ wta() (8)

so that their dynamics become identical to that of the original fully connected winner-take-all network. There
are very efficient serial and parallel implementations for networks with r, — co, which update the infinitely
fast neuron whenever its ordinary neighbors change; this is a standard trick in neural network and Monte
Carlo physics simulations. When it is applied to the simplify the simulation of the WTA equations of motion,
we arrive at the standard WTA trick.

Moody [Moody 1989] independently discovered an objective function equivalent to (5) and first simu-
lated its delayed Hopfield-style equations of motion (see (4)). But he remained unaware that the o neuron
acts to maximize rather than minimize the objective, driving the system to a saddle point. Platt and Barr
(Platt & Barr 1988,Platt & Barr 1987] performed constrained optimization (including multiple WTA con-
straints) by using a subset of neurons that explicitly increase the objective, and hence a network that seeks
saddle points rather than local minima. Indeed reversed neurons are a generalization of their analog Lagrange
multiplier neurons, which were found earlier in a non-neural context by Arrow [Arrow 1958].

Both reversed neurons and Lagrange multiplier neurons act to maximize an objective which other neurons
act to minimize. The difference is that Lagrange multiplier neurons must appear linearly in the objective.
General reversed neurons can have self-interactions; in particular, the potential of a linear reversed neuron
like ¢ in the winner-take-all network is

—3550% = [7 dzg7(2)
where g(z) = —goz

(9)

i.e. linear reversed neurons have linear transfer functions with negative gain. Thus in circuit language they
are just inverters, which happen to occur in a network with an objective function and to act so as to increase
E. Lagrange multiplier neurons, on the other hand, have no potential term and are not inverters. It is also

3

worth noting that Lagrange multiplier neurons work best in conjunction with an additional penalty term
h(7)?/2 (where h(¥) = O is the constraint) and the penalty term can be efficiently implemented using one
reversed neuron per constraint, as we will see.

If in addition to being reversed, a neuron is also infinitely fast, then it may be necessary to restrict its
connectivity in order to efficiently simulate or implement the network. One possible design rule is to entirely
prohibit connections between infinitely fast neurons; this prevents one from having to solve a system of linear
equations in order to update a set of infinitely fast neurons. We will not generally assume that reversed
neurons are infinitely fast.

2 Theory

The reversed linear neuron is applicable in many circumstances beyond the winner-take-all network. We can
begin to see its generality by considering objectives of the form

E(%) = Eo(7) + 3 X*(7)
where Eg and X are any algebraic expressions, and c is a constant of either sign. This may be transformed to
E(3,0)= Eo+ cXo - -;-az

and if X is a polynomial, this represents a reduction in the number and order of the monomials that occur in
E. The transformation technique used here is simple to state: find squared expressions (¢/2)X? as summands
in the objective function, and replace them with ¢Xo — (¢/2)02. ¢ must be a constant and ¢ is a new linear
interneuron, reversed if ¢ is positive. Most, but not all, of our reversed linear interneurons will be introduced
this way. The transformation may be abbreviated as

%Xz — Xo - %cr?. | (10)
We employ the steepest-ascent-descent dynamics
% = -—0F /0v;
= —8E0/3v,- - caaX/a’v,',
6 = +(rs/c)dE/8c
= r,(X-0)

which, at a fixpoint, has X = o and 8E/dv; + cX8X /8vi = OE/dv; = 0. Likewise a fixpoint of E can be
extended, by setting ¢ = X, to a fixpoint of E. So fixpoints are preserved by the transformation (10). The
argument also works if some of the v; are already reversed neurons, so that v; = +9E /0v;.

As an example of the transformation (10), one can robustly implement a constraint h(¥) = 0 using both
a penalty term ch?/2 and a Lagrange multiplier neuron. The ob jective becomes

Econsteaint(7, 0, A) = coh(7) — co?/2 + A(F). (11)

2.1 Products and Order Reduction

From the transformation (10) we may deduce two others, which transform a summand which is a product
XY of expressions X and Y. One transformation is

XY = HX+Y)P-1x2-ly?
(X+Y)o-X1-Yw- 102+ 12+ Lu2 (12)
X(o-1)+Y(0-w) - 02+ }r? + Lu?

4

—
—_

Here o is a reversed linear neuron, and 7 and w are ordinary linear neurons. If all three linear interneurons
are infinitely fast, which is easy to simulate since they are not directly connnected, then the transformation
does not change the dynamics of the rest of the variables in the network. Otherwise, the dynamics and the
basins of attraction change, but the network fixed points remain the same.

This transformation may be simplified, ! to

XY = X+Y)-(X-Y)]
- X +Y)o-§X-Y)r-1o?41r2 (13)
= 3X(o-7)+3Y(o+7) - jo% + 42

Compared to equation (12) this transformation results in the same number of monomial interactions and one
less neuron, which may be useful on occasion.

Reversed neurons allow one to transform a high-order polynomial objective, monomial by monomial, into
a third-order objective. Similar transformations on the neural networks or analog circuits are well known.
But it is easier to do theoretical work with the objective, and by transforming the objective first, and then
translating to a neural net, one can obtain novel third order neural nets.
-+ We may expand a high-order polynomial objective into monomials, each of which corresponds to one
connection or “synapse” of the associated neural network. We may reduce the order of an entire objective by
reducing the order of each monomial. Consider, then, a single fourth-order monomial:

Erono(2, 9, 2,w) = =Tzyzw (14)

~which by (12) may be transformed to

Broncl(2,9,,0,0,7,0) = Tlay(r = 0) + 20w = o) + 30° = 277 = 207, (15)
Here 0, 7, and w are linear neurons with gain 1/T. The order-reducing transformation is illustrated in network
language in figure 1.

The same technique may be used to recursively transform a monomial of any order m to a sum of third
order monomials, plus potentials for the new linear interneurons. The resulting number of new monomials
and interneurons is < O(m(logm)?) if the reduction is done in a balanced way and if expressions like X (o-7)
are not expanded out to Xo — X+ during the reduction.

Another order-reduction transformation, superior in some circumstances, will be developed in section 2.3.

2.2 Reducing F(X)

To build facility in the algebraic manipulation of objective functions, we accumulate a catalog of fixpoint-
preserving transformations which are recorded in section 2.6. In addition to transformation (10) and its
consequences, there is a major class of transformations associated with functions of a single expression, F (X):

X o
/ f(u)du — Xa—/ i wde (f invertable) (16)

Note that X no longer appears inside the function F = [f. The validity of this transformation (equation
16) may be proven by noting that the optimal value of o is f(X), and then either integrating by parts the

expression
X, X
[wdu= [T er e,

'as pointed out to us by P. Anandan

> -1 +1
+Xy

Figure 1: Order Reduction. Arbitrary fourth to third order reduction, using linear interneurons. Open
circles: original neurons. Open squares: ordinary linear interneurons. Closed squares: reversed linear interneu-
rons. Dots: connections, with strengths as indicated. Equilibrium values of the interneurons are indicated.
After the transformation, neuron w receives input zyz + z2w from the left and a compensating input of —z%w
from the right.

or else differentiating both pre- and post-transformation objectives with respect to X.

In this way one can treat functions exp X, | X|log|X|, log |X|, and |X|? of arbitrary algebraic expressions
X:
eX - (X+1)o-oclogo

1X|log|X| — |X|(c+1)-e
log|X| = Xo-log|o| (17)

T X[= Xo— ZholotVP (p # -1,0).

Thus, neural nets may be constructed from some highly nonpolynomial objectives.

The interneurons may still be reversed, but are no longer linear, in this kind of transformation. The
potential ¢(o) permits a possible efficiency technique. The dynamics of equation (4) is expected to be more
efficient than equation (3), since it may be viewed as a quasi-Newton method which takes into account the
potential but not the interaction part of a neural net objective (as shown by J. Utans [Utans et. al. 1989]).
A related update scheme for the o reversed interneuron is

o= f(s), $§=1,0E[/90 =1,(X — s)

v = gi(u), Ui = —-0E(¥,0)/dv (18)

which is an alternative to direct steepest-ascent-descent. This dynamics has the distinct advantage of a simple
interpretation in terms of analog electrical circuits [Hopfield 1984]. For example, F(X) = X (log X —1) requires
a special neuron whose transfer function is logarithmic. This can be provided, approximately and within a
mildly restricted domain of the input values, in analog VLSI [Sivilotti Mahowald & Mead 1987]. Similarly
F(X) = log X would require a transfer function f(s) = 1/s, and an exponential transfer function would lead
to F(X) = exp X. It might be possible to characterize a particular technology by a list of the basic forms

6

of objectives it makes available, with their respective costs and restrictions, and to compile general networks
into the desired forms by using a catalog of algebraic transformations.

It may also be worth noting that the linear programming network of [Tank & Hopfield 1986 can be
interpreted as an application of transformation (16) with r, — oo in the dynamics of equation (18).

Equation (16) generally may be used to transform a term F(X) in an objective by transferring the nonlin-
earity due to F from F(X) to the single-neuron potential ¢(¢’) = [° f~1(u)du. By transferring the nonlinearity
from an interaction term (i.e. a summand of the objective which involves several dynamical variables) to a
single-neuron potential term, one can not only decrease the cost of implementing a network which uses gra-
dient methods for optimization, but one can transform unimplementable objectives into implementable ones.
For example, one might regard the class of multi-variable polynomials as the “implementable” interactions in
a certain technology [Rumelhart Hinton & McClelland 1986). (In this case the word “interaction” is usually
reserved for a multivariable monomial, out of which polynomials are built by addition of objectives.) Then
one might use equation (16) to reduce other, far more general interaction objectives to the implementable
form.

Of course the required potential ¢(c) may itself be “unimplementable”, but approximating its gradient
with a small circuit is likely to be far more tractable than approximating VF(X) because ¢, unlike F, is a
function of just one dynamic variable. An approximation of ¢/(¢) might be formulated as

$(0) = $(0) = 3 cad(0)
[+ 4
where each &(a) is regarded as an implementable self-interaction and ¢, are adjustable coefficients.

2.3 Interacting Expressions: Reducing G(X,Y)

Until now we have attempted to reduce all interactions to the forms zy and zyz, but those may not be the
only cost-effective interactions allowed by a given physical technology.
From equation (16) we may derive a generalization to functions of two expressions, G(X,Y):

X du [1Y dvg(u, v)]-1 (u) [note function inverse]
- Xo-[7dufdvg(u,v) [by (16)]

= Xo-[Ydv[° dug(u,v)

— Xo-Y7+ [Tdv[[° dug(u,v)] (v) [by (16)].
Thus,

/X du [/Y dvg(u,v)] B (u) = Xo-Yr+ /T dv [‘/ﬂ dug(u,v)]-1 (v) (19)

Of course, there are complicated restrictions regarding the existence of the inverse functions used.
Taking
1

g(uvv) = 2\/@

we can derive the transformation ~Y/X — Xo - Y7 — o /7. Rescaling Y and ¢ by —1, then switching X for
Y and o for 7, this is equivalent to

XY - Xo-Yr+r71/0 (20)
which is linear in 7 but effectively nonlinear due to the optimization of .

7

From equation 19, Appendix A derives two transformations for the special form Y F(X):
YF(X)> -Xo+Yr+oF Y1) (21)
(which implies (20)) and . .
Y / f(u)du — XYo -Y / duf~1(u) (22)

assuming f = F' is invertable and f~! = (F')~! is differentiable.
Monomial order reduction can sometimes be accomplished more cheaply using zlogy interactions than
third-order ones. If v; are all restricted to be positive, then

[T2ivi = expY logv;
— o(X;logv;+1)—-oclogo (23)
=3 ;ologv; +0(1-logo).

This objective has O(m) interactions of the new type. The fixpoint value of & is []; v; at which point the
steepest-descent input to v; is —o/v; = — [];4; v;.
A product of expressions could be further reduced using equation (21) and ze? interactions:

II 1Xal = > (07 = | Xa| wa + wae™) + 0 (1 —log o). (24)

a=1 a

2.4 Min and Max

The minimum or maximum of a set of expressions {X,} can be implemented using a winner-take-all network
in which each expression is represented by a neuron o, which competes with the others and is constrained to
lie between 0 and 1. Indeed, }°, Xo0, attains the value min, X, when the correct representative wins, and
also provides inhibition to the representatives in proportion to the values of the expressions they represent,
so that the correct representative will win. The potential ¢(¢) that occurs in the WTA network must have
only one minimum, so that there is no hysteresis in the circuit, and must closely approximate a square well
i.e. must have high gain. Under these circumstances, we can transform

C
F = min X, Xa0oa+C o — 1A= =)\? ” 25
min -»Za: s+ (;0) 3 +Za:¢(0') (25)

(where C and the gain of ¢ are sufficiently large) and at any fixpoint of & the derivatives of E with respect
to all other dynamical variables will be preserved. So, fixpoints will be preserved.
Likewise

maxXo = > Xaoa - C(3_0a —1)A + %,\’- =Y #(0a). (26)

An alternate transformation for max proceeds through the identity

1/p
max X, = lim (;xg) (Xa > 0). (27)

These transformations have application in the design of certain “content addressable memories” for which
the ideal objective function, which must be translated to a form polynomial in its interactions, may be taken
as

- Ecam(8) = - max 58" — €5 Rinpue + 3 ¢a1(si)

memories m

8

with —1 < 8; < 1. Using the transformation (26) yields a CAM with one “grandmother neuron” (represen-
tative neuron) per memory, and a WTA net among them (a network described in [Moody 1989]). Another
efficient CAM design [Gindi Gmitro & Parthasarathy 1987,Moody 1989) is essentially an application of trans-

formations (27) and (17d), omitting the power 1/p and adjusting € and ¢ to compensate.

2.5 Matrices, Graphs, and Pointers

One can apply order reduction to objectives containing polynomials of matrices. For dense N x N matri-
ces, a typical term like tr[J=, AY contains NL scalar monomial interactions, but this can be reduced to
O(N3L(log L)?). (Here trA = trace of A = ¥_; A;;.) To show this we need only establish the matrix analog
of transformation (12), which upon iteration can reduce an L—th order matrix monomial to O(L(logL)?)
third-order matrix monomials like ABC. Each of these involves N3 scalar monomial interactions.

Using equation (12) (one could also use (13)), one can reduce trXY, where X and Y are now matrix-valued
expressions. This form has exactly the same generality as trXY7 (where Y7 = transpose of Y).

tr XYT = Eij Xi;Yi;
= Ty (X (035 = 73) + Y5 (035 — wij) — ho¥ + 73 + Jwd) (28)
= trX(e-1)7 +tr Y (0 -w)T = YtrooT + Ltr 777 + Ltr wwT

This transformation preserves the sparseness of X and Y in the following sense: if X;; = Y;; = 0 at a fixed
point, then 0;; = 7;; = w;; = 0 and the contribution of these neurons to the gradient of the objective is also
zero.

A major problem in neural network research (c.f. [Feldman 1982]) is to reduce the cost of networks which
manipulate graphs. Usually [Hopfield & Tank 1985,Hopfield & Tank 1986,Mjolsness Gindi & Anandan 1989)
objectives for such problems involve dense matrices of neurons representing all the possible links in a graph.
But the graphs that arise in computer science and in computer programming usually have a relatively small
number of links per node, and are therefore representable by sparse matrices. (If a sparse matrix’s entries are
all zero or one, it is equivalent to a set of “pointers” in many current computer languages. Pointers are used
ubiquitously, wherever some fluidity in data representation is required.) Since we have just shown how to
reduce a wide class of matrix objective functions to summands of the form trABC while retaining sparseness,
it becomes important to reduce this form further by exploiting the sparseness of the matrices involved:

trABC — ?

where A, B, and C are sparse-matrix-valued dynamical variables. We do not yet know how to do this correctly.

One approach to this problem is through the use of codes, like the binary code, which can concisely name
the pair of nodes connected by each nonzero matrix element. Zero matrix elements are not explicitly encoded
and this is the advantage of the method. A disadvantage of such codes, for objective functions, is that the
configuration space is altered in such a way that new local minima may be introduced, though the old ones
will be preserved. A code which allows order reduction to proceed most advantageously is used in the sorting
networks of section 3.3.

Another approach is used by Fox and Furmansky [Fox & Furmansky 1988]. Their load-balancing network
involves binary encoding, but the network evolution is divided into a number of phases in which different
classes of neurons are allowed to vary while most neurons are held constant. The connections are different
from one phase to the next, and do not recur, so that the network is not directly implemented in terms of
a circuit but rather requires “virtual” neurons and connections. A virtual neural network can be provided
by suitable software on general-purpose computers, or perhaps by further objective function transformations
leading to a real (and efficient) neural circuit; the latter alternative has not been achieved.

9

2.6 List of Transformations

Let X and Y be any algebraic expressions, containing any number of variables. We list the following fixpoint-
preserving transformations of objectives, or summands thereof:

11 1x? Xo - 102

1.2 XY X(o-1)+Y(0—w)— 102+ 172 + 102

1.3 XY IX(o-7T)+3iY(o+7)- 102+ ir?

2.1 X f(u)du Xo—-[°f~Yu)du (f an invertable function)
2.2 eX (X+1o-oclogo

2.3 | X|log|X]| [X|(oc+1)-€°

24 log | X| Xo -log|o|

2.5 X[Xo - 1—’1117;|a|‘1+1/1° (p # -1,0).

3.1| [Xdu [fy dvg(u, v)]—1 (u) Xo-Yr+ [Tdv[f° dug(u,v)]"! (v)

(If function inverses exist.)

3.2 YF(X) ~Xo+Yr+oFY(r) (If (F')~') exists.)
3.3 Y [X f(u)du XYo-Y [“duf-l(u) (If (f~!) exists.)
34 X/Y Xo-Yr+71/o
4.1 ming X, YuXa0a+ C(Ta0a— 1A= SX2+ 3, ¢(0a)
(Large C, and high-gain hysteresis-free
barrier function ¢ which confines o, to (0,1).)
4.2 maXqy Xa Za Xdaa - C(Za Oa — 1))‘ + %’\2 - Za ¢(aﬂ)
(Same conditions.)
4.3 Mo 1 Xl 2oa(0Ta = | Xo|wa + wae™) + 0 (1 -logo).
5.1 tr XYT tr X(o-7)T +tr Y (0 —w)T

—3trooT + Ltr 77T + Ltr wowT
(All matrices, possibly sparse.)

JyY

(29)

The variables o, 7, w, and A are assumed not to occur elsewhere in the original objective. Note that each
transformation may have restrictions on its applicability, in addition to the particular form it matches.

We will report experiments only with transformations 1.1, 1.2, and 5.1 on this list. The rest are still
theoretical. '

These transformations may be iterated, at the expense of creating interactions between the added vari-
ables. They can be used to reduce the nonlinearity of the interactions in a neural network, transferring such
nonlinearity to single-neuron potentials or distributing it among several simpler interactions.

3 Design Examples

3.1 Convolutions and Coordinate Transformations

Discrete convolutions
0; =) Ki_ ;I
J

(where index subtraction is defined appropriately) and linear coordinate transformations

T = ZA,'J':BJ' + b;
Jj

can both be expressed as sums of squared penalty terms in an objective:
c
Econv = 5 Z(Ot - § :Ki-jIj)z (30)
: J

or
[+
Ecoord = '2' E(x: - E :Aijzj + bi)za (31)
i J

with ¢ > 0. (Equation (31) subsumes equation (30.) Alternatively the convolution or coordinate change could
be turned into a hard constraint by using Lagrange multiplier neurons, but those procedures still work best
when a penalty term exactly like equation (30) or equation (31) is added to the objective [Platt & Barr 1988,
Luenberger 1984]. As they stand, these objectives expand into very expensive networks due to the spurious
squaring of the matrix. That is because convolution kernels, which are usually constant but sparse, have
their fanout squared; and coordinate transformations, which are usually dense but variable, have an excessive
number of new (high-order) interactions created when A is squared.

Of course, equation (31) is of the type which we know how to transform using reversed linear neurons.
We obtain the modified objective

Ecoord =c Z(I: - Z Aijzj - b.’)d’,’ - %ZU? (32)
i E] f

which doesn’t square A. If A is constant then there is no order reduction, since both Ecoorg and Eegorq are
second order, but there are fewer connections unless A is also dense.

An alternative objective, not using reversed neurons, is also available for convolutions and coordinate
system transformations. The objective : "

2 c
Ecoord = 7 E Ayj(zh - b; = z;)? (33)
i3

11

is minimal with respect to z’ when

T = Z Aijz;/ EA.'J' + b;. (34)
J

7

This type of dynamic normalization may be desirable, or if A is constant and already normalized then it does
not hurt. Equation (33) also preserves any sparseness of A, and does not square the matrix.

3.2 Graph Matching and Quadratic Match

Consider the following objective for inexact graph-matching [Hopfield & Tank 1986],
c.f. [von der Malsburg & Bienenstock 1986]:

Egaph = —¢1 X qpij GapgijMaiMp;
+e2 Lol Ti Mai — 1)* + €2 Ti(To Mai — 1)?
+¢3 2 gi Mai(1 — Moy;)
+ Zai JMe dzg V()
where G and g are connection matrices (each entry is zero or one) for two graphs, and M,; is one when node

a of G maps to node i of g, and zero otherwise.
The problem may be generalized slightly to “quadratic matching” by replacing the GgM M term with

> GapgijAaiBs; (36)
afiy

(35)

and altering the other constraints to reflect the fact that 4 # B. What we have to say about graph matching
will apply equally well to this generalization.

The GgM M term is superficially the expensive one since it involves four sums. If each graph is constant,
there are O(N) nodes in each graph, and both graphs have fanout f, then the number of monomial synapses is
O(N?f2). We can reduce this to O(N2f). Also if one of G or g is variable, with N nodes in the variable graph
and m in the constant graph, as in the “Frameville” networks of [Mjolsness Gindi & Anandan 1989], and both
graphs are represented densely, then the number of synapses is reduced from O(N?mf) to O(N%m + Nmf).
The reduction uses linear interneurons, both reversed and normal:

Ev = - Xapij GapiiMaiMp;

= —921- Zg; [(Ea GopMai + Zj gi_‘i‘Mﬁj)z
~(Ca GapMai)? = (T 055Ms;] (37)

Ey = -q [Eaﬁi GapMaiopi + Lpij 9iiMp;0p

= L api GapMaiTsi — 3 pi; 9ii Mpjwpi
1 1 1

—30% + 375 + 3wh

E; and E; are illustrated in Figure 2.

12

M]

Figure 2: Graph Matching Networks. E; is a sum over the indices a, 3, i, and j, which are connected
by neurons (line segments) in the shape of a “rectangle”. This objective can be transformed into E, which is
a sum of triangles, while preserving fixpoints. The triangles are obtained from the rectangle by introducing
linear interneurons along a diagonal, as shown. Only three indices are summed over, resulting in a less costly
network.

The reduced graph-matching network works in simulation, for five out of six small (N = 10 nodes) hand-
designed graphs with low fanout (from 1.8 to 2.5). The sixth case is not solved by the original, untransformed
network either. The parameters we used were

N=10 ¢ =1.0 c2=1.0 c3=0.5
go(M)=20 go(c)=10 go(WTA)=100 r,=1
At = .004 sweeps = 1000

and for the original network:

N=10 1 = 1.0 C = 1.0 C3
go(M)=20 go(0)=1.0 go(WTA)=10.0 At
sweeps = 1 000

0.5
.004 .

Here go(M) is the gain ¢’(0) of the transfer function g(M) for M, and similarly go(o) is the gain for the
linear neurons that were introduced through transforming E;, namely o, 7, and w. Also go(WTA) is the gain
for the infinitely fast linear neurons which were used in both reduced and control experiments to implement
the WTA constraints; this parameter effectively multiplies ¢;. sweeps is the number of iterations of the
forward Euler method used in simulating the continuous update equations. Each iteration advanced the time
coordinate by At.

There is only a little parameter-tuning involved here, concentrated on r,, At, and sweeps. The product
At x max(rs,rp = 1) should be held fixed to maintain constant resolution in the discrete simulation of
continuous update equations. But holding At and the other parameters fixed at the quoted values, the rate
parameter 7, can be varied from unity to 100 without altering the network converzence time, measured in

sweeps, by more than 30% or so; network performance remains the same in that the ~.ine 5 out of 6 graphs
are correctly matched. This would suggest, and other experiments confirm, that for I + rhere is some room
for increasing At and decreasing sweeps (r = 10, At = .016, and sweeps = 300 resp. 11 ely); this saves time

whether time is measured in simulation sweeps or in circuit time constants.

13

3.3 Sorting

Sorting may be described in a manner very similar to graph matching. One requires a permutation matrix M
which sorts the inputs into increasing order, so all terms in the objective remain the same except for GgM M.
The objective becomes

Ewore = —c1) Mijziy;
te T (i M - 1)+ e T;(X; Mi; — 1)?
+e3 25 Mij(1 - M)

+ 3 [M deg=1(z).

Here z; are a set of input numbers to be sorted, and y; are a constant set of numbers in increasing order, e.g.
¥; = j. M will become that permutation matrix which maximizes the inner product of z and y, i.e. maps
the largest z; to the largest y;, the next largest z; to the next largest y;, and so on.

After using the winner-take-all reduction on the row and column constraints of M, this network has O(N?)
connections and neurons. One cannot do better without reducing the number of match neurons M. But M
is sparse at any acceptable answer, so it may be possible to keep it sparse throughout the time the network is
running by using a different encoding of the matrix. For example, one might encode indices i, 5, or both.in a
binary representation as would be done in an ordinary computer program. The resulting objectives generally
still have O(N?) connections (monomial interactions), but a well-chosen matrix encoding, supplemented by
suitable reversed neurons, can drastically reduce the number of connections.

In Appendix B it is shown that any permutation matrix M of size L2 x L? can be represented in the
following form:

(38)

1 2 1 2
Miyir i = E Aslt)z. Sz;)kxkz A.Sl.)n,h Agz?hkz (39)
ki k2

where i € {1,...N = L?},ix € {1,...V/N = L}, and i = i, L + i3 = (41, 2), and where two constraints apply
to each nonsquare matrix:

(1) = (2 — 1(1) = '(2) -

2 i1 Au 2.5 1 2'2 Atz Jijz — Z‘l A 192,51 1 2'2 i2.J1d2 (40)
(1) 4D AN 2y AT

Zjl f162,01 = J2 tzm]a = E.n 192,01 2.72 12,0152

The matrix form (39) contains only 4N3/2 variables, and is our proposed encoding of M.

As explained in Appendix C, equation (39) is a course version of another expression for M which contains
O(N log N) variables. That expression codes index pairs (, j) using the “Butterfly” connection topology that
arises in the Fast Fourier Transform (FFT) and in many other parallel algorithms. The advantage of the
Butterfly is that it allows one to make a gradual transition from one space (e.g. index) to another (index
J). There has been little success in transforming objectives based on the much less gradual binary or base-b
encoding of 7 and M;;. 2 An example similar to equation (39) is the base VN code obtained by listing all N
links in the permutation matrix, indexed by k, and encoding their starting and ending locations as i = (1y, i3)
and .7 = (jl?j?)' Then

‘1'2»]1]2 = EA:(:,) A:(f,kA(l) A(z) (41)

le J2 k

%A partial exception is the load-balancing network of Fox and Furmansky [Fox & Furmansky 1988], in which the crucial
“histogram” may be understood as a set of reversed linear interneurons which simplify their load-balancing objective. But the
result is a virtual neural net, not a statically connected circuit.

14

subject to obvious constriants on the A’s.

Since any permutation matrix can be expressed using equation (39), any (approximately quadratic) local
minimum of Esore (M) (equation (38)), for which M is sufficiently close to being a permutation matrix, should
be a local minimum of Eyore(A(M), AR); A1), A(?)); but there may be local minima with respect to A and
A which would be unstable in the larger M space. Thus, making the substitution (39) into equation (38)
may expand the set of fixed points, or alter it entirely if the original objective is not yet tuned to produce
permutation matrices. By contrast, the objective function transformations used heretofore have exactly
preserved the set of fixed points. Nevertheless the transformation is worth trying out to decrease cost.

The problem now is to reduce the number of monomial interactions to O(N3/2). This is easy for quadratic
penalty terms corresponding to the constraints (40), which consist of 8N winner-take-all constraints each
involving N1/2 variables. The remaining interaction —¢ Y. Mzy can be reduced in two stages: substitute
M = AAT with no reduction in connection costs; then substitute the O(N3/2) forms for A and A.

Thus we may replace E; = —c; > Mijziy; with

Ey(A, A) = —a Tk AiAjrziy;

= -% [Ek(E; Auzi + T Ajry;)?
- Te(Ti Aizi)? = Th(S; Ajny;)?] (42)

E(AAabb) = - [Ek(ak = bie) i Az + Telar — b) T Ajny;
—iTiad + ISt + E T
which may be interpreted as four interacting sorting problems, with linear interneurons a interpolating between
z and y and with reversed neurons b and b cancelling echos as in equation (15). So far there is no reduction

in number of neurons or connections.
If we substitute the special forms for A and A, we find

a

El = [2‘1'2 Ehkz z’At,q Atzk(ak - bk) + 211]3 Zklkz Y; ;kl zk(ak - bk)
EEE I TR SN

= Ta [2‘2’“ [(E'x A:m kTit Zkz Ata %k, (0 = Dk))?
~(Zi AGL 120" = (ks Ak, (a6 = B0 (43)

+ 2.72171([(2]1 AJ:[]: ky yJ + z:kg 32 k] kz(ak - bk))2
—(zll JlJZykl y1)2 - (z:kz Jz.k1k2(ak - bk))z]

—3Zkaf + 3 k00 + %&132]

15

and finally

Py

1 2
El = _cl [Ztkl 513)2,k1 x‘(aﬂkl T'2k1) + Eizk At('g,)kl kg (ak - bk)(aizkl - wi2kl)
1 2
-2 2‘2"1 a!zk; + Z‘le 12k1 2 Zizh wizkl

1
+ :Ejkx ,(11322,/:1 yJ(ankx Tnh) + an Ag, ky kp (ak - bk)(a.nk: - ""’Jzkx) (44)
EJz k1 Tk, +3 2.12 ks J:’u +3 thl Jak1

~iTial + 3T+ 1T b

which has O(N3/2) neurons and connections.
In Appendix C we show how to extend this result to a series of successively cheaper approximations of
the original sorting network, down to O(N log N) neurons and connections.

3.4 Sorting: Experiments

The O(N?3/2) sorting network only sorts in an approximate way. The reversed neurons work correctly at finite
r, which is nontrivial since they are connected to each other, but the encoding scheme is prone to trapping
by local minima. We used the following parameter values for the O(~N3/2) sorting network:

N =16 c1=0.6 Cz=6.0 C3=0
go(A) =20 ra=1 r,=3 At=
sweeps = 20 000
N =25 c1=44 ¢c3=6.0 ¢3=0
go(A) =20 rq=1 r,=3 At=.01
sweeps = 20 000

and for the O(N?) network:

N =16 ¢ =06 ¢ =6.0 c3=0
go(A) =20 At=.01 sweeps= 5000

N =25 1 = .44 c2=6.0 c3=0"
go(A) =20 At = .01 sweeps =5 000

As in the graph-matching example, most of the parameter-tuning was concentrated on r,, At, and
sweeps. Here, 7, is the rate parameter appearing in the update equation (7), and it applies to neurons
a,b,b,0,5,1,7, w,@. Likewise 4 applies to the update equations for A and A. As in equation (38), ¢; mul-
tiplies the strength of the permuted inner product of ¥ and 7 in the objective. Also ¢ is the strength of the
syntax constraints, and c3 is the strength of a term penalizing intermediate neuron values. go(A) is the gain

g'(0) of the transfer function g(A) for A and A, which obeyed steepest-descent dynamics. The constant y
values are y; = =(N —1)/2,y, = —=(N - 3)/2,...yn-1 = (N = 3)/2, yv = (N = 1)/2. sweeps is the number
of iterations of the forward Euler method used in simulating the continuous update equations.

For input size N = 16 we find an average placement error of 1.4 out of 16 possible output places. Eight
would be random. For N = 25, which is the first size (with integral v/N) for which there are fewer neurons
in the asymptotically smaller network, the average placement error is 1.7 out of 25 places. The errors can
be characterized by a histogram showing the frequency with which placement errors of different sizes occur.
(The size of a placement error is the difference, in the permuted output vector, between the desired and
actual positions of an element.) Histograms for N = 16 and N = 25 are presented in figure 3 and they show

16

Percentage

Mistakes in 16 Element Sort

. T r T v T r "
ok d oFr T
c- - 3- o
k) g - g‘
§ of .
&
PR o o
m- -
or p
of ~—— S W U ot " i N
‘ d . . 4
P 2 4 6 8 [} 2 4 6 3 e} 2

Figure 3: Histogram of placement errors. Sorting network with butterfly encoding, O(N?3/?) connections.
(a) Size N = 16. Average and standard deviation (upper or lower half of an error bar) for 62 runs. (b) Size
N = 25. Average and standard deviation for 39 runs.

that small mistakes are far more likely than large ones, and that the frequency falls off as roughly the -2.1
(respectively -2.0) power of the size of the placement error, with correlation r = .90 (.93). In addition, 17.7%
(respectively 21%) of the experimental runs failed to meet our convergence criterion, which was that exactly
one element in each row and column of the computed matrix M must have a value greater than .5.

Iterating the sort can improve the score marginally, but not to the perfect sorts achievable with the O(V 2)
network at these sizes.

4 Discussion and Conclusion

There are algebraic transformations of objective functions which not only preserve the set of fixpoints of the
resulting analog neural network, but alter the number and nature of interactions requiring physical connections
between different neurons. These transformations generally require the network to find a saddle point rather
than a minimum of the objective, but that can be arranged. A set of such transformations was derived,
together with their conditions of validity.

Several design examples were given, along with experimental results to show convergence with reasonable

- parameter values. A reduced network for sorting converged to approximately correct answers despite the use

of an illegitimate transformation which introduced spurious fixpoints. This design also involved legitimate
but repeated, interacting product-reduction transformations. A reduced network for quadratic matching
was simulated without difficulty. Reduced-cost designs were presented for convolution and linear coordinate
transformation.

Although much research now focuses on expressing new computational problems using objective func-
tions and then deriving neural networks which solve them, we would like to suggest that when such efforts
are successful there may be an additional advantage to be obtained. If the solution can be regarded as a
novel algebraic transformation of an unremarkable objective function, then the transformation may also be
immediately applicable to other objective functions and problems.

17

Acknowledgements

We wish to acknowledge discussions with P. Anandan, Christian Darken, Wojtek Furmansky, Gene Gindi,
John Platt, and Joachim Utans.

18

Appendices
A Reducing YF(X)

The problem is to use equation 19 to reduce expressions of the form Y F(X). We will derive two versions: the
first, from stopping after the first step in the derivation of (19); the second, from carrying the transformation
all the way through.

Now
Y [Xduf(u) = 1% du [fY dvg(u,v)]-—1 (u)
-1
= Y(X) = [f¥dvg(u,v)] (X) (45)
= [Ydvg(X,v) = fHX/Y)
> g(u,0) = (d/dv)f~ (ufv) = —(u/v?) (f71)' (u/v).

To use the first step in the derivation of equation (19), we must evaluate

/a du /Y dvg(u,v) = /a duf~'(ufv) = Y‘/‘G/Y duf~(u)
N % / ¥ fw)du— XYo - ¥ / ” duf1(u) (46)

since o may be rescaled by Y. This shows that both sides of the transformation (16) may be multiplied by
any expression Y.
To carry through transformation (19) we must calculate

J7dv[f7 dug(u,v)]' (v) = [Tdv [f’ du(—u/v?) (f~1)' (u/v)] ~ (v)

[o[- ;77 dun (1Y)] (0)

f1do [77 dzfa)] () (47)
7 dv [-F(f~Y(a/v))] " (v)

[dv (o] f(F-(=v))] = =0 [F7) duw
—oF-1(-1)

nn

from which we deduce that
YF(X)—= -Xo+Yr+oF7Y(r). - (48)

(r and o have been rescaled by -1). The algebra can be checked by optimizing with respect to o. Note that
the derivations of (46) and (48) assume that f = F” is invertable and that f~! = (F")~ is differentiable (i.e.
((F")~1Y exists).

B Butterfly Networks
B.1 Back-to-back Butterflies

By a recursive induction argument, any permutation matrix of size N = 2" (n an integer) can be expressed
by setting switches in two back-to-back butterfly networks independently, as shown in Figure 4. If we label
the corresponding connection matrices A and A, then the entire network represents a permutation matrix M

19

in the form of a matrix product M;; = (AAT);; = Tx AixA i, with A and A being of the special “butterfly”
form. Butterfly networks are best analyzed by introducing binary notation for all indices, e.g.

t—= (p1,...Pn)~P1...Pn,

. 49
J=(q1,--@)~q1...qn. (49)
In this notation, the outer column of switches in the A butterfly has the form
1
Bgl?"pﬂvql E [0’ 1] (50)
with constraints
ZBI(JR-pqu =1and ZBz(ai?.-pqu =1 (51)
P N
as illustrated by the “butterfly” (p<) highlighted in Figure 4. Likewise the I’th column of switches has the
form
! . 1 —1 — l
B;(n)...p,..,q, ool € [0’ 1] with Z BI(’I?--Pmthmq{ =1= E B;(;,)...p,,,q1...qp (52)
2)

for 1 <1 < n. With constraints, each of the log N layers contains N /2 bits, which is one reason that A is also
needed to specify an entire permutation matrix.

The entire permutation matrix is obtained by finding all the possible paths through the network from
i to j, of which there is only one since each stage irrevocably decides one bit of j. This is equivalent to a
conjunction of switch settings:

n
!
Aij = Hl: Bigz)---pququ' (53)

It is easy to check that this is a permutation matrix, using the constraints on A(. (In what follows the terms
of a product [] do not commute because they contain summations Y that extend over subsequent terms in

the product).
Lidii = TggnAigrgn
N OO —
[(S B omnar)] (Sam Btsan = 1) (54)

- i
?:11 (Eq, B;(n)...pmn...q,)
1, by induction on n.

Likewise
Z% A'J = Zpl...p Aivpl-('i)pn
= nll=n(] BP!---Ple~-~9:)
= [Men (o B pmtsar)] (T B s = 1) (55)

n?=n (Zm B}’Q'-Pmﬂ--oq{)

1, by induction.

B.2 Coarse Butterflies

A less restrictive form for A may be derived as follows. Let k be roughly n/2. Then
9 = P1..-Pky 12 = Prt1 Py U= Q- Gk J2 = Gkt G

20

ANEVAAN
\\/ /XX

\ 3
N A SSZ S SR
\\\!/IIeI(OIOIWA S\
AN ==) YN\
N7 AR RSN
VI ARNZANS S eo=<ZANVARN (/A
........ XX
RN 7N 7o S S 2\ /000
RN/ SIS/

IINRXXL 7 NS S/ N NXKAN,

IIIA\\\!IOIOIOIWA XXJ/INN

(IANVY ANZ=o=A) YA/ [A\¥

/R /NSO ~v/A\Y/
N/ N\ N>\ \{

A4 A A4 A4 7 ~

Figure 4: Butterfly switching networks. Any permutation of N = 2" elements can be represented by
appropriately setting the switches in a pair of back-to-back butterfly switching networks, as can be shown
recursively by induction on n. Highlighted: one 2 X 2 permuation matrix or “butterfly”, and one path through
the the entire switching network.

from equation (53),

n?=l Bgi:-;)’nvql Qi (')
Hf:l Bpx-..pn,tu...m) (n?=k+1 BP(...mel...q;)

T B omastn) (TTheisr BSys.comar.ntn)
= A(.l) . A(z)

$192,01 ‘M1 fa
and as in equation (54) one can derive the constraints

I
1 Ag 33,]] - Hlk=l (qu B £3--Pn-ﬂl-~-ﬂ)

[nf;ll (zﬂ BIS’?--PM‘!!---GI)] (:Qh Bi(’lk)m?mqlm% = 1) (57)

- I
Hf:xl (Zq; BI(’I)---PmQI-“Ql)
1, by induction on k.

A;j

(56)

Likewise

251 A:(':s);,jl - n}=k (Zp; B}(’?"Pmih---ﬂ)
[nlz=k (Em Blg?--pqu---qz)} (Zp, Bz(’ll)---pqu = 1) (58)

!
n12=k (Zp; Bl(’l!uanQI-uql)
1, by induction.

The constraints on A?) and A are similar. Thus the constraints on B(") imply the less restrictive constraints
on A() and A(), which we then adopt as the only constraints operating on A.

21

This completes the proof that any permutation matrix M can be represented by O(N3/2) variables in the
form of equation (39) with constraints as in equation (40).

C Full Butterfly Neural Nets

The arguments of Appendix B can be generalized to yield a series of reduced objectives interpolating between
O(N3/?) and O(NlogN) variables, each having about the same number of connections as variables. In
Appendix B the idea was to express each index i in base VN = 2n/2=k by dividing the indices p;...p, of
i’s binary expansion in two groups. We may instead divide the n binary indices into m groups of size k,
with n = km, deriving the base 2* expansion i = i;...ipn,. (We have dealt with the special cases k = n and
k =~ n/2.) Then '

n
!
Aij = HBgt)um 91..q1

=1 N
Ir
H Bz(n,r?--pn. qx---qz,r) (59)

- B

=1
T 40
= HAia---im,jz---ic
=1
as in equation (56). The constraints on A are, as usual,
1 1
ZA$¢.)..im,j1...j; =1= ZAgg.)..im,jl...jl (60)
1 J ’
which are generally less restrictive than the original constraints on the butterfly switches B.
From equation (42), our problem is to reduce

El(A) = —-C Z A,'J‘:t.,'ej (61)
ij

(where e; is any expression) upon substituting equation (59).
If we take e; = e{™. | 4;; = c(™ , and Ey(4) = EM™(C(™), then we may use induction on a to

J1eedm? f1...8m, J1.-dm
reduce © © @
a a
E(C®) = —¢, > i ieedaTiteim gy i i e (@ 2 2), (62)
i3 nion
J1eeJa
where .
(a) - U]
Cil...im,j1 wJa = IIII Ai[...im,jl...j(‘ (63)
Then (e) (a-1) (a)
a a—- a
Gl imiiroda = Ciy iy i1 oy Aoy 17

22

8%

whence

Ela—l)

—a . (a=1) L
2 Z [(Zuu-ta-x Cu-.-tm,Jx-uJa-xz‘l"-'m

ta.dm

jl---ja-l

(a) (a) :
+ Xja Agrims it o Ciap ims jl...j..)
(a-1))2 (a) (a) 2
- (Zil---ia-x Ci:-uim.jx.-.jadz'l'"'M) - (z:jo Aiamim.jl--~jaeia+1~~.im,j1---ja)]
(64)

(a-1) . (a=1) _ pla-1))
- A [Z z Cfx-.-im,jl...jg..;x'l-"‘m Ui¢...im,j1...j¢_1 Tia-.-l‘m']‘lm]‘a-l

11..3m J1...Ja=1

(a) (a) (a-1) (a-1)
E Z Al i, it iaCiasteimeitda \Tiamimsitoiamt ~ Piarim jiojant

iaorim J1rda

+% Z Z [— (at(:--—-}vzu.1'1---.1'«-1)2 + (Ti(:tiln)njxmjo—l)z + (w‘(::}:njl -~~j¢—1)2]] :

faeetm J1-ooJa=1
Note that, upon identifying
o(8-1) _ p(a=1) _ ,(a=1)
- 9

we have an induction step a — a — 1,Va > 2, which decreases the number of neurons and connections in the

23

network. By induction on @, one may reduce equation (42) to:

— (1) .. (1) (1)
Ewort = -1 [Zi,...im.jx Ajyimy i1 Tiveim \Figoim, s = Tigorimsin

m-1
(a) (a-1) (a=1)
+3 T inin Aarim, i1 oda Tigoim d1da — Wiaoimy j1.odai
a=2
J1e-Ja
(a) (a))
X ("a’.ﬂ...im.jx...j. Tiat1.wim1 i1 wdami

(m) (m=1) (m-1) . .
+E.‘,,.,j,...j,.. A.',,., J1eedm \Tim, Gt vdmet — Pim, J1eedmet (@y...jm = bjy...im)

m-1

T [- ("s(:lx...im.ﬁ...j.)z (65)

a=1 . .
Neda

+ ("5(31...;,,,, j,...j,)2 + (w.‘fll...;,,., j,...j.)zl

T—Yy O0—0
B-B r—7%
bob w—d
a—a

+ 4 same, with

3 iim [— 0 O3 B2]]

The number of variables and connections for this objective is O(mN1+1/ ™), 1 < m < n, which takes on
values N2, 2N3/2 3N4/3, NlogN.

24

References

[Arrow 1958] K. J. Arrow, L. Hurwicz, and H. Uzawa, editors. Studies in Linear and Nonlinear Programming.
Stanford University Press, 1958.

[Feldman 1982] J. A. Feldman. Dynamic connections in neural networks. Biological Cybernetics, 46:27-39,
1982.

[Fox & Furmansky 1988] G. C. Fox and W. Furmansky. Load balancing loosely synchronous problems with a
neural network. Technical Report C3P363B, California Institute of Technology, February 1988.

[Gindi Gmitro & Parthasarathy 1987] Gene Gindi, Arthur Gmitro, and Kannan Parthasarathy. Winner-take-
all networks and associative memory: Analysis and optical realization. In Proc. of First Interna-
tional Conference on Neural Networks, volume vol. III, pages 607-614. IEEE, 1987.

[Grossberg 1988] Stephen Grossberg. Nonlinear neural networks: Principles, mechanisms, and architectures.
Neural Networks, 1:17-61, 1988.

[Hopfield 1984] J. J. Hopfield. Neurons with graded response have collective computational properties like
those of two-state neurons. Proceedings of the National Academy of Sciences USA, vol. 81:3088-
3092, May 1984.

[Hopfield & Tank 1985] J. J. Hopfield and D. W. Tank. ‘Neural’ computation of decisions in optimization
problems. Biological Cybernetics, vol. 52:141-152, 1985.

[Hopfield & Tank 1986] J. J. Hopfield and D. W. Tank. Collective computation with continuous variables. In
Disordered Systems and Biological Organization, pages 155-170. Springer-Verlag, 1986.

[Koch Marroquin & Yuille 1986] Christof Koch, Jose Marroquin, and Alan Yuille. Analog “neuronal” net-
works in early vision. Proceedings of the National Acadamy of Sciences USA, 83, June 1986.

[Luenberger 1984] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.

[Mjolsness Gindi & Anandan 1989] Eric Mjolsness, Gene Gindi, and P. Anandan. Optimization in model
matching and perceptual organization. Neural Computation, 1989. To appear.

[Moody 1989] John Moody. Optimal Architectures and Objective Functions for Associative Memory. Tech-
nical report, Yale University Department of Computer Science, March 1989. In preparation.

[Mjolsness Sharp & Alpert 1989] Eric Mjolsness, David H. Sharp, and Bradley K. Alpert. Scaling, machine
learning, and genetic neural nets. Advances in Applied Mathematics, 1989. To appear.

[Platt & Barr 1987] John C. Platt and Alan H. Barr. Constrained differential optimization. In Dana Z.
Anderson, editor, Neural Information Processing Systems. American Institute of Physics, 1987.

[Platt & Barr 1988] John C. Platt and Alan H. Barr. Constraint methods for flexible models. Computer
‘ Graphics, 22(4), August 1988. Proceedings of SIGGRAPH ’88.

[Rumelhart Hinton & McClelland 1986] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general
framework for parallel distributed processing. In Parallel Distributed Processing, pages 73-74.
MIT Press, 1986.

25

[Rumelhart Hinton & Williams 1986] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In Parallel Distributed Processing, pages 318-362. MIT
Press, 1986.

[Sivilotti Mahowald & Mead 1987] Massimo A. Sivilotti, Michelle A. Mahowald, and Carver A. Mead. Real-
time visual computations using analog CMOS processing arrays. In Advanced Research in VLSI:
Proceedings of the 1987 Stanford Conference. MIT Press, 1987.

[Tank & Hopfield 1986] David W. Tank and John J. Hopfield. Simple ‘neural’ optimization networks: An
a/d converter, signal decision circuit, and a linear programming circuit. IEEE Transactions on
Circuits and Systems, CAS-33, May 1986.

[Utans et. al. 1989] Joachim Utans, Gene Gindi, Eric Mjolsness, and P. Anandan. Neural networks for object
recognition within compositional hierarchies: Initial experiments. Technical Report Center for
Systems Science Report No. 8903, Yale University Department of Electrical Engineering, February
1989.

[von der Malsburg & Bienenstock 1986] Christoph von der Malsburg and Elie Bienenstock. Statistical coding
and short-term synaptic plasticity: A scheme for knowledge representation in the brain. In
Disordered Systems and Biological Organization, pages 247-252. Springer-Verlag, 1986.

[von Neumann & Morgenstern 1953] John von Neumann and Oskar Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1953.

26

