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Abstract

A high radix FFT requires fewer arithmetic operations than a radix-2 FFT and has a
reduced need for memory bandwidth in systems with a storage hierarchy. We show two ways
in which high radix FFT can be used on Boolean cube networks. With several elements per
node in a Boolean n-cube, multi-sectioning of the data set can be used for full utilization
of the communications bandwidth. With 2"-way sectioning the number of complex element
transfers in sequence is 3 + (2 — 1)2"~? for an FFT on P complex points. Multi-sectioning
with a high radix FFT performed locally in each processor can benefit fully from a local
storage hierarchy with respect to storage bandwidth requirements. Pipelining successive
stages of a high radix FFT for the stages requiring inter-processor communication yields a
communication complexity approximately twice that of multi-sectioning. For the interpro-
cessor communication stages a pipelined FFT cannot fully utilize a local storage hierarchy
to reduce the need for storage bandwidth.

The storage required for twiddle factors is minimized for the combinations of normal
order input, consecutive storage, and decimation-in-time in-place FFT, or cyclic storage
and decimation-in-frequency FFT. For bit-reversed order input and consecutive storage
decimation-in-frequency FFT, or cyclic storage and decimation-in-time FFT minimizes the
storage needs. For these combinations the maximum storage required per processor is
% + % — 2 with no communication or computation of twiddle factors. For a radix of 2 and 4
a reduction is possible by computing 90-degree rotations on-the-fly, or by using symmetries.

For local FFT of size 64 or greater the local radix-4/radix-8 FFT achieves a performance
in the range of 7 - 9 Gflops/s on a 64k processor CM - 2. The performance of these kernels
is 2.5 — 3.5 times higher than that of the radix-2, local FFT.

1 Introduction

This paper describes the data mapping and control structures for high radix and multi-
sectioned Fast Fourier Transforms (FFT) on Boolean cube networks. We first review the
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Figure 1: A butterfly.

Cooley-Tukey FFT, then discuss the mapping of such FFT computations to Boolean cube
networks with particular emphasis on utilization of the communications bandwidth, storage
bandwidth, and coefficient storage [12]. The parallel computation of twiddle factors is also
considered. The implementation of local radix-4 and radix-8 FFT on the Connection Machine
are described last.

The Discrete Fourier Transform (DFT) is defined by

pilet ] s}
X(l) = E wg:z:(]), vi € [OaP - 1], wp = C—QF.
Jj=0

The Cooley-Tukey Fast Fourier Transform [1] is obtained by a fa,ctormg of P BP...P,

g"‘_l wP —( z),a.nd

P )
wf:s = (117_5'1)" In a radix-R FFT, P, = R,Vm € [0,u — 1], where u = logg P. For the
special case of R = 2, P = 2P and u = p. We first show the derivation of a radix-2 FFT,
then derive a radix-4 FFT.

and by using the following properties of the “twiddle factors”:

The sum defining the Discrete Fourier Transform can be decomposed by distinguishing
between even and odd indices of X:

x(@r) = 2 A @)+ +2)

XQ@r'+1) = Z (w}(x(J)—z(J-F—))

3=0

The two expressions consist in discrete Fourier transforms of size % of two different combi-
nations of pairs of input data, as shown in Figure 1. This combination of inputs defines a
butterfly. It is the basic computation in the FFT algorithm.

Figure 2 shows the decomposition into even and odd components through the butterfly
computations. The “o’s” represent complex multiplies by twiddle factors.

By applying the decomposition recursively the Discrete Fourier Transform of size % is

decomposed into Fourier Transforms of size £, etc, until the Fourier Transforms are of size
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Figure 2: Decomposition of the discrete Fourier Transform.

2 for P = 2?. A Fourier Transform of size 2 is exactly a butterfly computation with the
twiddle factor equal to 1. A complete FFT of size 16 is shown in Figure 3.

Note that the results are in bit-reversed order. The FFT algorithm derived above is called
the decimation-in-frequency (DIF) FFT. Another derivation produces the decimation-in-time
(DIT) FFT algorithm. The sum

X()= E pz(j)

3=0
is then decomposed into:
__1 —-l
X)) = Zw’p z(25") +“-’NZ“-’ z(25'+1)
'—-0 I-—O
P :
X(l+5) = Ew’lx(2]) wNZw z(25'+ 1)

3'=0

In this decomposition the complex multiplication is performed before the addition and
subtraction of arguments, and the twiddle factors are different from those in the decimation-
in-frequency butterfly. The decimation-in-time butterfly is shown in Figure 4. A complete
decimation-in-time FFT is illustrated in Figure 5 for a Fourier Transform of size 16.

The order in which the decimation-in-frequency FFT uses the twiddle factors is the
opposite from the order the decimation-in-time FFT uses them. If the stages of the FFT
are numbered from 0 to log, N — 1, then



K88888
HHHHHHGH&HHHHH&H

O~~~ v % 2%
3 N NUATL Kb
3 NN X0
3 N X k()
BNV AN 0
5 T N e AT Kiv)
7 X000 Xl

81 /0 Xl

o) 7N TN XX Xt

N 7N AT, k(o
N Z7ANN 00X X(3)
R/ SaVAD S N
N NN X0
5 A X(15)

Figure 3: Decimation-in-frequency FFT.
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Figure 4: Decimation-in-time butterfly.
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Figure 5: Decimation-in-time FFT.

e in stage q of the DIF FFT, twiddle factors w:% ,k={0,..., §'£—'T — 1} are used, each
twiddle factor being used 29 times.

e in stage ¢ of the DIT FFT, twiddle factors wk.:,k = {0,...,29 — 1} are used, each
twiddle factor being used 27’:—1- times.

The twiddle factors used in the last stage of the DIF FFT and the first stage of the DIT
FFT are all equal to w) = 1.

A radix-R FFT algorithm is a simple generalization of the radix-2 FFT algorithm. In-
stead of decomposmg the computation of the Discrete Fourier Transform of size P into 2
subproblems of size % 2 the computation is decomposed into R subproblems of size ﬁ The
integer R is the radix. For Cooley-Tukey type FFT it is usually a small power of 2, such as
4 or 8. For the derivation of a radix-4 DIF FFT j = j'+ k&, j € [0,£ - 1], k€ [0,3].

£

X() = zw;my+2wW+’u+—y+E *”)uwz;

I—O ’.—0

+2 I3 D) (5 4 3= ) Vie[o,P-1]

J'=0

Rewriting this expression with [ = r 4+ 4l',r € [0,3],1' € [0, £ — 1] yields
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__3 ) .
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e
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o
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These expressions can be reorganized as follows (15, 17)].

x(l) = —,z_Ew“([x 42+ 220107+ D)+ 2+ 35
X' +1) = Zw P (1(7) - 2!+ 25— ilai' + ) — o' +35))

X4l +2) = 2 W (o) + 2+ 220 = '+ 2) + 27 +37))
, £41 Nz ., P Y o
X0 +3) = 3 ool (2) — 2+ 290+ i+ ) =2+ 39D

The latter set of equations shows that a radix-4 stage can be organized as two radix-2

stages, as shown in Figure 6. The derived algorithm is a radix-4 decimation-in-frequency
(DIF) FFT.

A decimation-in-time (DIT) FFT is derived by expressing the data index j as j = 45'+k,
j'€[0,£ —1], k € [0,3]. Then,

£ £

X Z w2 (45") + E W (45" 4+ 1), + E a'+2) 3 (45" + 2)
Jl= JI— JI_O
£

+ }: W45 +3)  Vieo,P-1).
§'=0

Rewriting this expression with [ = r% +U,rel0,3),l' e [O,{;i — 1] yields
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Figure 6: Factoring of a radix-4 DIF butterfly.
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As in the case of decimation-in-frequency FFT this expression can be rewritten such that
each radix-4 stage is implemented as two radix-2 stages.
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Figure 6 shows the factored form of a radix-4 decimation-in-time butterfly computation.
The multiplication by ¢ requires no arithmetic operations, only an interchange of real and
imaginary parts with the appropriate sign change. From Figures 6 and 7 it is clear that

complex multiplications are only required for every other radix-2 butterfly stage in a radix-4
FFT.

For a radix-8 DIF FFT the derivation is made by the factoring j = j'+ k%, J €lo, % -1],
kel0,7,and l=r+8I rel0,7,1'€ [0,-’;— —1]. A radix-8 DIT FFT can be derived
similarly. In a radix-8 FFT, complex multiplications are only required for every three radix-2
butterfly stage, as seen in Figures 1 and 1.

Different radix FFT are merely reorganizations of the arithmetic operations. The required
number of complex multiplications are reduced by combining the operations from several
stages. The number of complex multiplications is (p — l)P for a radix-2 algorithm, and (£ —

)3P for a radix-4 algorithm. A radix-8 algorithm requires internal complex multiplications
corresponding to 45-degree rotations. The number of real operations and memory accesses
for radix-2, -4, and -8 butterflies are given in Table 1. The total number of operations
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Figure 8: A Decimation in Frequency Radix 8 Kernel




Figure 9: A Decimation in Time Radix 8 Kernel

(considering higher order terms only) are summarized in Table 2. The ratios of the number
of real arithmetic operations normalized to the radix-8 FFT are i—g : % : 1. The total number
of arithmetic operations for the radix-8 algorithm is approximately 20% less than that of
the radix-2 algorithm. The exact number of multiplications and additions can be found, for

instance, in [17].

In most architectures the effective use of the memory bandwidth is more critical, with
respect to performance, than minimizing the number of arithmetic operations. With a local
memory of size M, a radix M FFT offers a reduction in memory bandwidth requirement by
a factor of log,,, which is optimum [3]. The ratios for memory operations are £ : 23 : 1
However, it should be noticed that if R = 2" registers (complex) are used for twiddle factors,
then r ranks can be computed with a single load of R — 1 twiddle factors by successively
computing all butterflies in a given rank requiring those coefficients. The adjacent set of r
radix-2 butterfly ranks require R loads of R — 1 twiddle factors, etc. The total number of
storage references for twiddle factors is P — 1. If the ordering of the computations is such
that P — 1 loadings of twiddle factors suffice, then the storage references for data dominates.
The ratios of the number of memory references become 3 : % : 1 for radix-2, -4, and -8 FFT.

The number of registers needed for twiddle factors are 2, 6, and 14, respectively.

10




Arithmetic Storage
FFT Operations References
Add/Sub | Mult | Total | Data | Twiddles | Total
Radix-2 6 4 10 8 2 10
Radix-4 22 12 34 16 6 22
Radix-8 66 32 98 32 14 46

Table 1: Arithmetic and memory operations for radix-2, -4, and -8 butterflies.

Arithmetic Storage

FFT Operations References

Add | Mult | Total | Data | Twiddles | Total
Radix-2 | 3Pp | 2Pp | 5Pp | 4Pp Pp 5Pp
Radix-4 | 2 Pp gPp TPp| 2 SPp =
Radix-8 | £Pp | 25Pp | £Pp | 22Pp| =%Pp | £Pp

Table 2: Arithmetic and memory operations for radix-2, -4, and -8 FFTs.

2 Data Allocation

Data motion often has a significant impact on performance in distributed memory archi-
tectures. With appropriate data allocation the need for data motion can be minimized.
A good (optimum) choice of data allocation requires knowledge about the data interaction
in the algorithm, the topology, channel widths, and channel rates of the network. In a
Boolean cube of N = 2" nodes every node u = (Up—1Up—2 .. Um - . . Up) is connected to nodes
v = (Up-1Up-2...Tm ... %), Vm € [0,n — 1]. Every node has n neighbors. The distance be-
tween a pair of nodes u and v is Hamming(u,v) = Y% (tm @ vy ). The maximum distance
between any pair of nodes is n.

Letting the n highest order bits encode processor addresses, and the lower order bits
encode memory addresses in each processor yields a consecutive assignment [5):

Consecutive assignment:

(?mxm—l e xm—n-}-l‘?m—nzm—n—l s xO)-

TP vp

The field denoted rp encodes real processor addresses as opposed to memory addresses.
For a data set of m complex points m + 1 address bits are required, n of which are processor
address bits. There are m — n + 1 local storage address bits. In cyclic assignment the lowest
order address bits determine the real processor address.

11




Cyclic assignment:
(gmmm_l e Tn Tpo1Tne2 - - :co).

-~

vp rp

All data elements with the same n low order bits reside in the same processor. In
the consecutive assignment the elements in a processor have the same n high order bits.
The cyclic assignment results in better load balance than consecutive allocation for certain
computations, but results in higher communication requirements for some [7]. We consider
both forms of data allocation for the FFT.

For multi-dimensional arrays each axis is often encoded separately, as for instance is the
case in the Connection Machine programming systems [20]. If each axis is encoded in a
unique set of address bits, then effectively each axis is extended to a length that is equal to
some power of two. The encoding of an axis length P requires [log, P| address bits. For the
FFT computations we consider here P = RP, where R = 2". In this case the address space
is used with 100% efficiency.

3 Cooley-Tukey FFTs on Boolean Cubes

3.1 Mapping Butterfly Networks to Boolean Cubes

A radix-2 butterfly network for P inputs and outputs has P(p + 1) nodes. These can be
uniquely encoded with a total of p + [log,(p + 1)] bits. Let the address be partitioned as
follows (yp—1Yp-2 - - - Yo|2t-12t—2 . . . 20), where t = [log,(p+1)]. Then, the butterfly network is
defined by connecting node (y|z) to the nodes (y ®2°~1~*|z+1) and (y|z+1), z € [0,p—1],
where @ denotes the bit-wise exclusive-or operation. For the computation of the radix-2
FFT the last ¢ bits can also be interpreted as time. The network utilization defined as the
fraction of the total number of nodes that are active at any given time is % By identifying all
nodes with the same y value and different z values in the butterfly network node y becomes
connected to nodes y @ 2°, Vz € [0,p — 1], which defines a Boolean p-cube. All nodes
participate in every step in computing an FFT on P elements on a p-cube. In step z all
processors communicate in dimension 2. Only %th of the total communications bandwidth
of the p-cube is used.

In computing an FFT on P = 2P complex elements on N = N < P processors there are
{7 elements per real processor. If the cyclic assignment is used, then regardless of whether a
decimation-in-frequency or decimation-in-time FFT is used, the first p — n ranks of butterfly
computations are local to a processor. The last n ranks require inter-processor communi-
cation. For consecutive assignment the first n steps require inter-processor communication,
and the last p — n steps are local to a processor. If the data is allocated in a bit-reversed
order, then the order of the inter-processor communication and the local reference phases
are reversed. With a cyclic assignment the first p — n local stages decomposes the FFT
computation on P elements into % independent FFT, each with one element per processor.
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Similarly, with consecutive allocation the lower order p — n bits define -1% independent FFT,
each with one element per processor.

With multiple elements per processor, the communication efficiency can be improved from
m:p’n) to min,(f ) which for p > n is one. Multi-sectioning and pipelining independent FFT
computations [12, 13] are techniques that can be used for increased communication efficiency
through concurrent communication in as many dimensions as possible. Both techniques also
improve the load balance. In a pipelined radix-2 algorithm for an FFT with one element
per processor the complex multiplication is performed by one of the processors in a pair, if
a single exchange of data is performed. Splitting the complex multiplication between a pair
of processors such that each processor performs 5 real operations per butterfly computation
requires one more communication. The multi-sectioning technique achieves 100% arithmetic
load balance. In a radix-R FFT performed across the Boolean n-cube % processors perform

complex multiplications concurrently.

The embedding defined above is the binary encoding of array indices. Every index is
directly identified by an address in the address space. For arrays embedded by a binary-
reflected Gray code [19, 14] array elements that differ by a power of two greater than zero
are at a distance of two, i.e., G(¢) ® G(i + 27) = 2,5 # 0 [4]. Even though the elements to
be used in a butterfly computation are at a Hamming distance of two it is still possible to
perform an FFT with min(p,n) nearest neighbor communications [10].

3.2 Bi-section

By recursively partitioning the set of 7}:,- FFTs during the n inter-processor communication
stages, such that one half of the FFTs are computed in a half-sized Boolean cube, and the
other half of the FFTs in the other half sized cube perfect arithmetic load balance is achieved,
and the communication time reduced by a factor of up to two [12]. The recursive partitioning
doubles the number of elements per processor of a given FFT in every step. The number
of FFTs serviced by a processor is reduced by a factor of two for every recursion step. The
number of complex element transfers in sequence for this pipelined, recursive partitioning
FFT is % + n — 1, which is approximately half of the number of element transfers of the
straightforward pipelined algorithm. The recursive partitioning technique was used in [6, 8]
for Balanced Cyclic Reduction on Boolean cube networks.

The recursive partitioning strategy for computing a radix-2 FFT with two complex data
elements per real processor, p — n = 1, and cyclic allocation of elements to processors is
illustrated in Table 3, and below. The numbers in Table 3 denote the initial data indices.
The indices of the computed frequency components are obtained in bit-reversed order with
respect to the input ordering. The bit-reversal operation applies to the entire data set.

The n steps with inter-processor communication can be illustrated in terms of the address
space as follows, where the most significant bit is the leftmost bit.

13




Proc. id Po P1 P2 P3 P4 P5 Pe P7
initial o123 |4|5]|6]|7
alloc. 8 1910|1112 |13 (14|15
after 0|12 (3 |8]9|10}|11

1stexch. | 4 | 5 | 6 | 7 |12{13 |14 |15
after o|1]|4 5|89 ]|12(13

2ndexch.| 2 | 3 | 6 | 7 |10|11 |14 |15
after 0| 2/(4]|]6 |8 101214
3rdexch. | 1 | 3 |5 | 7|9 |11]13|15

Table 3: The data distribution for the recursive partitioning, radix-2, FFT for two virtual
PToCessors.

Initial allocation: (z, g:,,_lxn:z - :cQ (p—1=n).
vp rp
Step 1: (TasiTnn-2 ... To)-
——
vp rp
Step 2: (Tnz TnTn1Tn-3.-- x@
haVad ~~
vp p
Step n: (Zo Tn-1...T9).
-
vp Ty

The dimension representing the virtual processors is successively moved to the lowest
order bit position. The bits of the address space on which the exchange in each step takes
place are marked by a bar. Since one of the dimensions is a local memory address the
exchange is always an exchange between adjacent processors. The exchange sequence in the
illustration converts the cyclic allocation to consecutive allocation. It is also an unshuffle.
For p — n > 1 performing the recursive subdivision on the highest order local address bit
yields a final data ordering in which the processor address field is defined by (ap-1an-1...a1),
and the local memory order is (ao@,-2ap-3 . - - @,). By using successively lower order address
bits the processor addresses for p—n > n become (ap-18p—2. .. ap-n), and the local memory
addresses are (@n—1@n-2...@08p—n-1-..Gs). This ordering is of the consecutive type with
respect to processor addresses, but requires a local unshuffle of order p—2n — 1, or shuffle of
order n to establish a consecutive data allocation. In any step only one dimension is used,
and successive steps can be pipelined.

14



Initial allocation: (Tp-1Zp-2...Zn Tp-1... x@.

vp p
1st exch. (Ec,,_lz,,_g:cp_;, e TpTp_1Tnz .. xg).
vp p
2nd exch. (Ezn_la:n_gzp_3:tp_4 <+ Tn Tp_1Tp-2Tn—3. - - :v(l).
vp rp
nth exch. (icn_lx,,_g .. T0Tp-n—1-+Tn Tp-1Tp-2 - - :c,,_,i).
w rp

If the initial data ordering is consecutive, then the recursive partitioning of the data
set moves lower order, memory address bits into the real processor address field. If the
same memory address bit is used for the splitting in each step, say the lowest order bit,
then the processor address field after the first n steps is defined by (aoap-1ap-2. .. ap—n+1),
and the local memory address field is defined by (ap—n-1ap—n-2...@185—n). The remaining
butterfly computations are local, except for the last on bit ag, which requires interprocessor
communication. If again the lowest order address bit is used for the splitting, then the final
processor address field is given by (@p—n@p-1ap-2...ap-nt1), and the local memory address
field is (ap_,,_lap_n_z ... ay ao).

3.3 Multi-section

The recursive partitioning idea can be generalized to multi-way partitioning. A R = 2" way
partitioning implies all-to-all personalized communication [11] in r-dimensional cubes. After
each such partitioning step a radix-2" FFT can be performed locally. Table 4 illustrates the
idea for the inter-processor communication steps for p — n = 2 and n = 4. The numbers
in the table are the initial indices. The first partitioning step is an all-to-all personalized
commaunication [11] within each subcube of dimension 2 with respect to the 2 highest order
real processor dimensions. For instance, processors 0, 4, 8 and 12 are in the same subcube.
For the radix-4 algorithm, two bits are involved in every step. For a 2"-way partitioning
algorithm, r bits are involved. Successive steps involve consecutive blocks of r dimensions,
and the steps can be pipelined. The number of element transfers in sequence is % +([2] -
1)%. An N-way partitioning minimizes the number of element transfers in sequence. Next
to N-way partitioning a 4-way partitioning algorithm is the best choice with respect to
element transfers. A radix-2 algorithm is insignificantly inferior. The multi-way recursive
partitioning is illustrated below. As in the bi-section case there exist many ways in which
partitioning of the local data can be performed throughout the algorithm resulting in different
final orderings.
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Proc. id. Po P1 Pg P3 P4 P5 Pe P7 Ps Pg PlO Pu P12 P13 P14 P15
0 1123|456 |7 |8 |9 |10 11|12 |13 | 14 | 15
Initially | 16 | 17 | 18 [ 19 |20 {21 |22 |23 |24 |25 | 26 | 27 | 28 | 29 | 30 | 31
32 (33(34(35|36 |37 (3839|4041 | 42 | 43 | 44 | 45 | 46 | 47
48 |49 | 50 | 51 | 52 |53 |54 |55 |56 |57 | 58 | 59 | 60 | 61 | 62 | 63

0| 123 |16|17|[18(19|32|33| 34 | 35| 48 | 49 | 50 | 51

1st 4 | 5|6 |7 |20]21]|22|23(36|37| 38|39 |52 | 53| 54|55
part. 8 | 9 10|11 |24 |25|26 |27 |40 |41 | 42 | 43 | 56 | 57 | 58 | 39
12 13|14 | 15|28 |29 |30 |31 |44 |45 | 46 | 47 | 60 | 61 | 62 | 63
0|48 ]12]|16 20|24 |28 |32|36| 40 | 44 | 48 | 52 | 56 | 60

2nd 1|59 (13|17 |21 |25|29|33|37| 41 | 45 | 49 | 53 | 57 | 61
part. 2 | 6 10|14 |18 22|26 |30 |34 |38| 42 | 46 | 50 | 54 | 58 | 62
3|7 |11|15|19 23|27 (313539 | 43 | 47 | 51 | 55 | 59 | 63

Table 4: The data distribution for the recursive partitioning, radix-4 FFT for 16 processors
and 4 elements per processor.

Initial allocation: (icp_la:p_g . Tn Tn—1--- :co).

~ v~

vp TP
1st part. (:'cn_l Tp-2 .- TnorTp-r—1Tp—r-2 -+ TnTp-1Tp-2 - Tp—rTn—r—1--- zcl).
vp rp
2nd part. (icn_lxn_g ce Tno2rTp-2r—1Tp-2r—2 -+ - Tn Tp—1Tp-2 - - - Tp—2rTn—2r—1 - - - Zo).
vp rp
Step 2: (?n..lxn_z .- T0Tpn—1 .. Tn Tp-1Tp-2--- xp_nl).
vp rp

3.4 Communication for high radix FFT.

Performing a radix-2" FFT involves r inter-processor dimensions. In unfactored form the
high radix butterfly computation requires all-to-all broadcasting [11] in r-dimensional cubes,
followed by a reduction during the butterfly computation. The all-to-all broadcasting re-
quires a time of £=1 for one radix-R butterfly, and a total of (% +2- I)RT'I- for the complete
FFT. This communication time is clearly inferior to the multi-sectioning technique. How-
ever, with the factored form of a high radix FFT, a butterfly computation and reduction is
associated with each dimension. Pipelining can be applied as in the radix-2 algorithm. The
pipelining of radix-2 stages is illustrated in Figure 10. The number of element transfers in

sequence for a pipelined high radix FFT is the same as for a radix-2, pipelined FFT.

Multiplication with twiddle factors is only associated with every r inter-processor com-
munications in a radix-2" FFT, ignoring internal multiplications (of which there are none for
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Figure 10: Pipelining of radix-2 butterfly stages.

-radix-4 FFT). A radix-4 algorithm only requires half as many complex multiplication steps
as a radix-2 algorithm. In the inter-processor communication phase % of all processors per-
form a multiplication, whereas only half of the processors perform a complex multiplication
in the pipelined radix-2 case. For the factored radix-8 FFT § Processors perform a complex
multiplication every third step. In addition, in one out of every three steps £ processors
need to perform a rotation by 45-degrees, or a multiple thereof. Higher radix FFT improves
the arithmetic load balance, and arithmetic efficiency.

3.5 Twiddle Factors

The total number of twiddle factors needed for a radix-R FFT of size P is (R —1)£. For
the computation of an FFT on a distributed memory machine, it is important to minimize
the need for either redundant storage of twiddle factors, or communication of twiddle factors
should they be required in a processor different from the one in which they are stored. The
- order in which the set of twiddle factors are used is different for decimation-in-time and
decimation-in-frequency FFT.
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3.5.1 Decimation-in-frequency

A radix-2 FFT performed by a decimation-in-frequency algorithm on data in normal order
allocated cyclically requires % + n — 2 twiddle factors per processor [13]. Of these twiddle
factors -]}% — 1 are required for the local FFT. By computing 90-degree rotations on-the-
fly the number of twiddle factors for local computations can be reduced by a factor of
two. Consecutive data allocation, input data in normal order, and decimation-in-time FFT
has the same property with respect to twiddle factor storage. Consecutive data allocation
and decimation-in-frequency FFT, and cyclic data allocation and decimation-in-time FFT
requires (n — 1)% twiddle factors per processor. Here, we only consider cyclic data allocation
and decimation-in-frequency FFT, and consecutive data allocation and decimation-in-time

FFT.

For a radix-2 DIF FFT the set of twiddle factor exponents required after the first rank is
defined by (ap-1) X (ap—2a5-2 . .. ao), where (ay_1a,_3...ao) is the address of a data location.
Data is assumed to be in normal order, and the algorithm an in-place FFT [18], as depicted
previously. The twiddle factors associated with an address can be derived from the recursive
decomposition, and may be intuitively justified by Figure 3. The twiddle factors may also
be directly derived from the following iterative formulation of the decimation-in-frequency
FFT. The radix-2, in-place, DIF FFT can be formulated as

:i..;(a,,_;,...,ao) = z(ap_l,...,ao)
- - - Gp—1 = (ap~3,---,80)ap-1
Zo(ap—1,..-180) = (£-1(0,ap-2,...,80) + w, :co(l,ap_g,...,ao))wp
Z1(ap-1,...180) = (%o(ap-1,0,ap-3,...,a0)+ w;"’ 5°(ap_1,1’ap_3““’ao))wgp—s,-...no)a,_g
:Eq(a,,..l yeesy@0) = (i:q_l (a,,_; veee10p—g=1,... ,a0) + w;'-'-! Lg-1 (ap_l yeerslpmge1yeeey ao)) w%,_q_g,...,ao)a,_q_l
3
Zp-1(ap-1,.-.,80) = (Zp—2(ap—-1,..-,81,0) + w3® :F:,,_z(ap..l,...,al,l))w(z)a'0
X(ap-1,..-,80) = Zp-1(a0,-.-18p-1)

The iterative formulation can be generalized to radix-R FFT. With s € [0,u — 1] (u =
logg), and (dy—1dy—2...do) the addresses expressed in base R, the radix-R, in-place, DIF
FFT can be written as

5_1(du._1, . .,do) = :L'(du_l, caey do)

= du-a-— geeey du-—a-— = . du—a— j
Bo(dumtyeydo) = Wl IR N By (ducn s s o ey s o) R
=0
O0d doj
5u—1(du—1, oo ’dO) = W_p Z iu-2(du—1’ sy dhj) wRJ

Ru= =0

X(du-1,..-rd0) = Ey-1(doy...,du-1)
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where the bit-reversed value of a digit d; is d..

For a radix-27, in-place, DIF FFT with normal order input the required twiddle factor
exponent for data in location (ap-1a,—2...a0) = (dy—1du—2...uo) is dy—1 X (dy—2dy—3...do)
after the first radix- R stage. For the second radix-R stage the set of twiddle factor exponents
are dy—» X (dy—3dy—4...dp)2". The first factor in a twiddle factor index is the bit-reversed
value of a radix-R digit defined by r consecutive address bits. For the first radix-R stage
the digit is defined by the r highest order address bits, for the second radix-R stage the
next r address bits, etc. The second factor in the twiddle factor index is defined by all
address bits of lower order than the radix-R digit used for the first factor. The twiddle
factor index is obtained by multiplying the product of the two factors obtained from the
address by 2" as many times as corresponds to the radix-R stage, with the first stage being

~stage zero. In general, for a radix-R in-place DIF FFT algorithm the twiddle factor index
required for the data item in location (ap-1a,-2 ... ao) after the sth radix R stage is d,—,—1 X

(dus—gdums_s ... do)2" .

If the FFT of size P is computed on a Boolean n-cube, the data allocation is cyclic,
and the input is in normal order, then the computations corresponding to the first p —
n radix-2 stages, or &~ radix-2" stages, only involves local data. The indices of the
twiddle factors required for radix-2" stage s in processor (an—1@n—z...ao) are {du:_l} X
({du—s—2du—s-3 .- .dg}dg_l ...dp)2*". The notation {...... } denotes the set of all values
that can be assumed by the digit string within the braces. When % is a multiple of R, then
(% — 1) twiddle factors are needed for the local stages.

After the local stages the remaining computation corresponds to 1% independent FFTs

of size N, each with one element per processor. All -]}% FFTs require the same set of twiddle
factors. A total of [2] — 1 twiddle factors are needed maximally per processor for the inter-
processor communication stages, one for each radix-R butterfly stage, except the last stage.
Hence, for cyclic data allocation, normal input order, and a radix-2" DIF FFT of size P
computed on N processors, N < P, the maximum number of distinct twiddle factors needed
in a processor is %-{— [2]—2. Allocating twiddle factor storage uniformly across all processors
yield a total twiddle factor storage of P 4 ([2] — 2)N, which for P > N is about twice the
storage required on a sequential computer. For P = N the uniform twiddle factor storage
across processors yields a total storage of ([2] — 1) N, which exceeds the sequential storage
by a factor of approximately ([2] — 1)z2.

3.5.2 Decimation-in-time

Higher radix FFT of the decimation-in-time type requires complex multiplications for the
input to stages ¢ mod r, where ¢ is the radix-2 stage. As in the decimation-in-frequency
case we consider an in-place algorithm, and express the twiddle factors needed for the data
in a given location (an-1an-2...4o) in terms of the address, and stage number. Using the
iterative formulation for the radix-2 case yields
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Z_1(ap-1,-..,80) = =z(ap-1,...,a0)
.‘E‘o(ap_;'...,ao) = 5:_1(0,ap_2,...,a.o)+w°"l w25_1(1 Qp-2,- ..ya0)

Gp-32 <°r—l )=

Z2(ap-1,.--130) = Z£1(ap-1,0,ap_3,...,80) + w, #1(ap-1,1,ap-3,.--,00)
- - - - [- 3oy, -
xt(ap—ly"‘iao) = zo—l(ap—l,“-yop-a-l» 1‘10) +“J i W;,:.l‘ ner ‘)zl—l(a’p—lr ,lp—l—l)"'vao)

. a, (a1,...,6p-1) -
Zp—2(ap-1,...,01,0) + w3 wp 4

ip-] (ao, ceey a,_l)

Zp—1(ap-1,..-,80) Zp_2(ap-1,---,01,1)

X(ap-1,.-.,80)

A radix-R, in-place, DIT FFT can be written as

i—l(du—l’ s ’dO) = 2(du_1, s ’dO)

R-1 —_ —_ -
= du—s-1]  (du—s)erdu=-1)J = .
zs(du-l, R ) uO) = § : wR“ -t wﬁg:‘-p’l‘ w-) zs-l(du—l, fee ,du—u.77 du—s—Z; LR ) dO)
=0
. R-1 Io ((T d,\)
= } : yeenGu—1)7 = :
zu—l(du—la-“aUO) = wRJwNI v zu-—Z(du—l"'-’dI’J)
s

X(d:h .. ’33) = 5u—1(d07 e ',du—l)

The indices of the twiddle factors for normal order mput are all one for the first stage,
§ X dy_127~% for the second radix-R stage, and j x (dus . ..dy_1)2P~ (41" for an arbitrary
stage s. Note, that the address is bit-reversed and shifted for the proper exponent. If the
P complex data points are allocated consecutively and are in normal order, then the data
in address location (a,,_lap_g ..ap) = (dy-1dy—2 .. . do) requires twiddle factors with indices
UGYx({duss .. du_p._l}d -n .dy_1)2P~(e+1) for stage s of an in-place DIT algorithm. With
a consecutive data allocation the processor address bits form the high order bits of the element
index. The first 2 radix-R butterfly stages correspond to £ & independent FFTs of size N. All
these FFT requlre the same set of twiddle factors. The local addresses do not enter into the
index computation. Moreover, the first stage does not require any twiddle factor. The last
u — 2 radix- R stages are loca.l to a processor. The maximum total number of twiddle factors
requlred in a processor is 5 £+ [2] — 2, the same as for cyclic data allocation, normal input
order, and in-place decimation-in-frequency FFT. The set of twiddle factors required in a
processor is the same as for cyclic data allocation, bit-reversed input order and a decimation-
in-frequency, in-place FFT. The load balance and arithmetic efficiency for a radix-R in-place
decimation-in-time FFT is the same as for the in-place radix-R decimation-in-frequency
algorithm.
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3.5.3 Bit-reversed input

With the input in normal order the FFT computation proceeds from the highest order bit
to the lowest order bit with respect to data being paired for a butterfly computation. With
the input in bit-reversed order the traversal of the bits in the address field is from the lowest
order to the highest order bit. With the data indices being bit-reversed with respect to the
addresses the decimation-in-frequency FFT requires addresses in bit-reversed order instead
of normal order for the twiddle index computation. Similarly, the decimation-in-time FFT
requires addresses in normal order instead of in bit-reversed order for normal order inputs.
With these differences the consecutive ordering yields the smallest requirements for twiddle
factor storage for the decimation-in-frequency FFT, and cyclic storage for the decimation-
in-time FFT. The preferred combinations of data allocation and FFT type is the opposite
compared to normal order input.

3.5.4 Inverse FFT

The Inverse Discrete Fourier Transform (IDFT) is defined by
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P-1
#(j) =Y wp'X(), Yi€[o,P-1], wp=eF.
=0

It is easy to show that #(j) = Pz(j). For the computation of the IDFT we notice that
w;lj = w};P_I)j . Hence, the IDFT can be computed by using P —1[ as the index of the twiddle
factors used for a DFT. The scaling can either be made by /P during both the DFT and the
IDFT, or by P during either the DFT, or the IDFT. With exception of the twiddle factor

index the computations are identical.

3.5.5 Multi-dimensional FFT

In general, each axis has its set of twiddle factors. The twiddle factors are a function of the
axis length. The twiddle factor for an axis is a subset of the twiddles for the longest axis.
With axes of length P, x P, X ... Py the minmum number of twiddle factors is max,(R— 1)%.
With separate storage of the twiddle factors for each axis the total storage is 3_,(R — 1)%,
which is less than the required storage for a one-dimensional FFT of size II,P;.

3.5.6 Reduced twiddle factor storage

For radix-2 FFT a reduction in twiddle factor storage needs by a factor of two is possible by
performing 90-degree rotations “on-the-fly” [13]. The reduction is based on the observation
that for consecutive data allocation, normal order input, and decimation-in-time radix-2
FFT, the set of twiddle factor indices in the last stage is {aja;...@n-1}|@n...ap-1. The
highest order bit a; corresponds to bit position p — 2. Hence, {laz...@n-1}|@n...ap_1 =

21




2 +{0az...as-1}|an...ap_y. But, wﬁ = —1. In the radix-2 case half of the twiddle factors
can be obtained from the other half without any arithmetic. This property is true for all
on-processor stages. In the case of a radix-4 FFT the highest order bit position corresponds
to position p — 3 representing a difference between the indices {0as...an-1}|@xs...a,-1 and
{las...an-1}|an...ap-1 of £. The relationship cos(e) = sin(§ — @) can be used to save
storage in this case (as well as an additional savings in the radix-2 case). For a higher
radix than four additional compaction of the table for {a;@,41...Gn-1}|an...ap_; requires
arithmetic operations.

3.6 Summary of algorithmic and data layout issues

The communication efficiency can be improved from % in the naive implementation of Cooley-
Tukey FFT on a Boolean n-cube to 1, if —f,— > 1. N-way multi-sectioning yields full utilization
of the communications bandwidth. R-way multi-sectioning for R < N can be pipelined to
achieve full utilization of the communication bandwidth. The second best value of R with
respect to communication time is 4, and the third best value is 2, which only requires one
more communication compared to 4-way sectioning. All multi-sectioning algorithms yield
perfect load balance. With cyclic data allocation multi-sectioning only requires communica-
tion once in each of the n processor dimensions. With consecutive data allocation at least one
additional inter-processor communication is necessary. For bit-reversed input order the data
allocation shall be consecutive for optimum effectiveness of the multi-sectioning technique.

A higher radix FFT can be pipelined in the same way as a radix-2 FFT, if the high radix
FFTs are factored into radix-2 butterfly computations. A high radix FFT performed in
this way yields no reduction in the communication complexity compared to a radix-2 FFT.
Performing a radix-2" FFT in unfactored form by all-to-all broadcasting in r dimensional
subcubes results in a higher communication complexity. For % > 1 the communication
complexity of the pipelined algorithm is approximately twice that of the multi-sectioning

algorithm.

The number of complex multiplications is reduced by a factor of two for a radix-4 FFT,
and by a factor of approximately three for a radix-8 FFT. Multi-sectioning yields perfect
arithmetic load balance. The arithmetic load balance improves as 5}-}1 with increasing radix
for an FFT across processors. The demand for memory bandwidth is reduced in proportion
to log, R. The multi-sectioning technique benefits fully from the reduced need of memory

bandwidth of a high radix FFT.

The twiddle factor indices required in a processor and the total storage requirements are
summarized in Tables 5 and 6. The storage requirements for on-processor twiddles can be
reduced by a factor of two for radix-2 FFT by computing half of the twiddles by performing
90-degree rotations “on-the-fly”. An additional factor of two reduction in twiddle factor
storage is possible for radix-2 FFT, and a factor of two for radix-4 FFT by using the relation
cos(e) = sin(§ — a).

The inverse Discrete Fourier Transform can be computed as a Discrete Fourier transform
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FFT | Data Twiddle Max. number
alloc. index of twiddles
stage s per proc.
DIT | comsec. | {5} X ({dus...du_n_1}dy_n...dyy)2p=Ct)r [ B 40 _9
DIF | cyclic. | {du-s-1} X ({du—s—2du—_s_3...da}da_;...do)2" | f+2-2

Table 5: Radix-2" twiddle factor storage, normal input order.

FFT | Data Twiddle Max. number
alloc. index of twiddles
stage s per proc.

DIT | cyclic. | {du-s-1} X ({du—p-2du—s_3...dz}dn_y...do)2* | {F+2-2
DIF | consec. | {j} X ({du—s...dy_n_s}dy_n...dyy)20~C+D) | B pn_

Table 6: Radix-2" twiddle factor storage, bit-reversed input order.

by replacing the twiddle factor index ! by P — I for a transform of size P, or by using
conjugated twiddle factors.

With the exception of the twiddle factors there is no essential difference between a multi-
dimensional FFT and a one-dimensional FFT. Pipelining can be extended across axes of
the array on which the FFT is performed, as long as there are no on-processor dimensions
inter-mixed with inter-processor dimensions.

4 A Connection Machine implementation of local high-
radix FFT.

Consecutive data allocation is used by all programming systems on the Connection Machine.
A decimation-in-time FFT is used for data in normal input order, and a decimation-in-
frequency FFT for bit-reversed input order. This combination of data input order and
FFT minimizes the requirements for twiddle factor storage. The inverse Discrete Fourier
Transform is computed using the conjugated twiddle factors.

The FFT routine described below is a complex-to-complex local FFT with input and
output data in local memory. The inter-processor communication part can be accomplished
though multi-sectioning, or pipelining of a high radix FFT, or a radix-2 as described in [13].
The data is assumed to be mapped into the global address space by a binary encoding. For
normal order input the output is in bit-reversed order. If the output is desired in normal
order a reordering is made after the FFT is computed.
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The standard form of data storage on the Connection Machine is field-wise storage. The
bits of a word are stored in successive memory locations of a processor. But, groups of 32
processors share a floating-point unit that can access the memories of the 32 processors in
parallel, slice-wise. The FFT routines are developed for data stored in this form. In the
“slice-wise” view of the Connection Machine there are up to 2048 floating-point processors,
each with a 32-bit wide data path to memory. Each such unit has 64k 4 byte words in the
512 Mbyte total memory option, and 256k 4 byte words in the 2 Gbyte memory option.
The floating-point units are interconnected as an 11-dimensional Boolean cube with two
communication channels between every pair of units.

The conversion from field-wise to slice-wise storage is performed before the actual FFT
computation starts. The change of data storage form affects the stride along any axis. The
set of strides for an axis depends on how it is mapped to the memory, on-chip, and the
lowest order bit of the off-chip address fields. For programming convenience a reordering of
the local memory is performed after the change of storage form such that the stride for the
first axis is one, the stride for the second axis is equal to the length of the local part of the
first axis, etc. The strides for each axis are therefore constant. The memory reordering is a
k-shuffle, which can be performed using the techniques in [2, 9, 16].

4.1 Organization of the local kernels.

For a data set of P = 2P complex data points it is necessary to use kernels of different
radices. The current floating-point unit in the Connection Machine has a register bank of
32 registers, and three temporary registers. All twiddle factors for a radix-4 kernel can be
stored in these registers, but for a radix-8 kernel there are too few registers for temporary
variables and all twiddle factors. A higher radix than eight is not feasible. The following is
a list of dichotomies that classify all cases that might occur:

[a—ry

radix-2/radix-4/radix-8
decimation-in-time/decimation-in-frequency
direct FFT /inverse FFT

normal order input/bit-reversed order input

A

load twiddle factors from memory/twiddle factors already in the register file/no twiddle
factors

The following observations reduce the number of required radix-4/radix-8 kernels from 48
to 12.

e Due to the global organization of the FFT computations, only 2 subcases of the 4
defined by items number 2 and 4 will occur: normal input order and decimation-in-
time FFT, and bit-reversed input order and decimation-in-frequency FFT.
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m mod 3 number of number of
radix-8 kernels | radix-4 kernels

pia 0
] 12 1 2
2 i 1

Table 7: Decomposition of a local FFT of size —f,— into radix-4 and radix-8 kernels.

e For a radix-2 FFT the inverse FFT is the same as the direct FFT, except that the
conjugates of the twiddle factors are used. For the high radix FFT algorithms the
factoring of the kernels must account for the fact that the twiddles for the inverse FFT
are the conjugates of the forward twiddle factors. But, the direct and inverse kernels
can still be merged together, with conditionals handling the differences.

e Most operations are in common to the kernels enumerated in point five. The first and
second subcase are the same, with the exception that no twiddle factors need to be
loaded into the floating-point unit in the second case. The third subcase in addition
avoid the complex multiplication with twiddle factors.

An FFT algorithm is typically expressed in terms of three nested loops. The outermost
loop ranges over the stages of the FFT. The two inner loops are spelling out the number
of times a given butterfly kernel (with twiddle factors) is used in a stage, and the number
of different kernels in a stage. The decomposition of the FFT into stages of radix-4 and
radix-8 kernels is such that as many radix-8 kernels as possible are used. For example, a
local FFT of size 128 is decomposed into 1 stage of radix-8 kernels followed by 2 stages of
radix-4 kernels; an FFT of size 4096 is decomposed into 4 stages of radix-8 kernels. The
number of stages of radix-8 and radix-4 kernels used to perform a size 2™ local FFT, for any
m greater than 1, is given in Table 7.

The outermost loop is called the “stage loop”. The set of kernels using the same twiddle
factors form a “group”. The kernels in a group are executed consecutively in order to
minimize the number of twiddle factor loads. The middle loop ranges over groups, the
innermost loop ranges over kernels in a group. The number of groups (and the number of
kernels in a group) changes from stage to stage. The product of the number of groups and
the number of kernels in a group is the total number of kernels in a stage, which is equal to
the FFT size divided by the size of the current kernel. Table 8 gives the number of groups
and the number of kernels of size R per group, for a given radix-2 butterfly stage q. The
loop structure is as follows:

for q:=0 to p—n—1 step r
for g:=0 to nb_groups(q,r)
for k:=0 to nb.kernels(q,r)
call kernel of size 2" on the appropriate data
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FFT type radix-2" | number of number of

stage groups | kernels per group
DIT, normal order input s 207 AR
DIF, bit-rev. input S E»T?%Tr'ﬁ 2°7

Table 8: Number of groups and kernels per group.

For example, an FFT of size 128 computed by decimation-in-frequency, consists of 3
stages:

e a first stage of 16 groups each with 1 radix-8 kernel
e a second stage of 4 groups each with 8 radix-4 kernels

e a third stage of 1 group with 32 radix-4 kernels

In the last stage, only the first radix-4 kernel needs to load the twiddle factors from memory
to the register file; the other 31 kernels will use these twiddle factors already in the register
file. Performing the FFT by decimation-in-time instead yields the same stages, but in reverse
order.

Each kernel requires a starting address and stride for data and twiddle factors. For
instance, if we call a radix-4 kernel with pointer value p and stride value st for the data
array, then the kernel will operate on the complex data points p, p+st, p+2*st, and p+3*st.
The pointer in the twiddle factor table indicates where the kernel will find the twiddle factors
it needs (R — 1 of them at once for a radix R kernel). Each stage has its own twiddle factor
storage, so the stride for the twiddle factors is always one. Moreover, since the twiddle
factors used by all the kernels in a group are the same, the twiddle factor pointer needs
to be updated only once for each group. The storage of the twiddle factors in the table is
contiguous, so the pointer is incremented by R — 1 for each group.

For the data array and normal order input (DIT), the stride in stage s is :g%); (with
radix R kernels). For the bit-reversed input order (DIF), the stride to use is 2°". The
management of the pointer into the data array is more complicated. It is reset to 0 at the
beginning of each “stage” iteration, then incremented by a certain quantity at each “group”
iteration. Each “kernel” iteration also increments it (by a different quantity), but at the end
of the last kernel iteration in a group, it is restored to the value it had before the first kernel
iteration. The loop structure is

twiddle_pointer:=0

for q:=0 to p—n-—1 step r
data pointer:=0
data_stride:=stride(q,r)
for g:=0 to nb_groups(q,r)
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data pointer 2 := data pointer
for k:=0 to nb.kernels(q,r)
kernel(2",data pointer 2,data stride,twiddlepointer)
twiddle_pointer := twiddlepointer + 2" —1
data pointer 2 := data_pointer2 + dp_-inc.2
data_pointer := data_pointer + dp_inc

dp-inc has the value 5}% in the normal order case (DIT), and the value 2(**V)7 in the
bit-reversed order case (DIF). In both cases the value of dp_inc.2 is 1.

4.1.1 Description of a Kernel

As an example we describe the radix-8 decimation-in-frequency kernel, which assumes the
input data to be in normal order. The kernel can be used for both direct and inverse FFT
(but the direct case is only of interest if the input is in bit-reversed order). The kernel
exists in three versions: one that loads the twiddle factors from memory to the register file
in the floating-point unit, one that assumes the twiddle factor are already in the register
file ( the “no load” kernel), and one that does not multiply by any twiddle factor (the “no
multiplication” kernel).

The kernel is decomposed into 5 logical steps:

1. Load the data into the register file of the floating-point unit
Perform the internal butterflies (3 stages: 2.1, 2.2, 2.3)
Load twiddle factors into the register file

Multiply outputs of step 2 by the twiddle factors

ok W

Store the results in place of the data in memory
Remarks:

e Steps 4 and 5 are merged together, since store and multiplication operations can be
overlapped.

e Direct and inverse versions differ in the middle stage of the internal butterflies, step
(2.2), and in the multiplication step.

e The “no load” kernel actually does load some twiddle factors, in step 3, because of
lack of space in the register file. Three twiddle factors out of seven do not need to be
reloaded, but four do.

o The “no multiplication” kernel skips steps 3 and 4.
The kernel microcode is called with 4 arguments (3 for “no multiplication” kernel):
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e data-start: the address in CM memory of the first of the 8 input data needed by the
kernel.

e data-stride: the difference between the addresses of two consecutive input data of
the kernel.

e coeff-start: the address in CM memory of the first of the 7 twiddle factors needed
by the kernel; not used in the “no multiplication” kernel. The 7 twiddle factors are
stored in consecutive memory locations.

e inverse: an integer that is non-zero if an inverse FFT is required.

All the memory addresses are physical slice-wise addresses. The data and twiddle factors
being complex single-precision numbers require two consecutive memory locations: real part
followed by imaginary part.

4.2 The Twiddle Factors

In stage s (as defined above), a radix-R FFT (R = 27) needs R— 1 twiddle factors per kernel.
Since all the kernels in one group use the same set of twiddle factors, the number of twiddle
factors used in one stage is the number of groups multiplied by R — 1. This means that in
stage s, the DIT FFT needs (R — 1)2*" different twiddle factors, and the DIF FFT needs

2}?:11, £ twiddle factors.

The DIT FFT is performed on data stored in normal order, with consecutive processor
assignment. At stage s of the FFT, processor N; needs the twiddle factors

w;(x'ﬂ)"rg, J € [l)R - 1]3

for the kernels in group g, where z||y is the concatenation of z and y. For the DIF FFT with
cyclic data allocation and the input in bit-reversed order (that is, consecutive assignment
of the bit-reversed array of elements), the twiddle factors used by the kernels in group g in
processor N; at stage s are

wixhile je[1,R~1].
The values of ¢ in the DIF and the DIT FFT’s are such that the two expressions above are
exactly the same, if the substitution s «— u —s—1 is made in one of them. The DIF and the

DIT FFT’s are using the same set of twiddle factors, but are using them in reverse orders.
The implementation is only using one table of twiddle factors for the DIT and the DIF FFT.

The following pseudo-code reflects how exactly the table of twiddle factors is stored in
the processor memory. It generates them in the order used by the decimation-in-time FFT.

twiddle_pointer:=0
for q:=0 to p—n—1 step r
for g:=0 to nb._groups(q,r)
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for d:=1 to 2" -1 _
twiddle[twiddlepointer] := wg(’:iv,‘)",g
twiddle pointer := twiddle pointer + 1

The twiddle factors are computed in the field-wise representation, such that the twiddles
are in the correct place after transposition to the slice-wise representation. The computation
is subdivided among the 32 processors sharing a floating-point unit, such that each Connec-
tion Machine processor computes % of the table. Each Connection Machine processor is

represented by its binary expansion (@n4s,...,a0) and the address within the part of the
table located in the processor by (€p—n—s,- .., €0). All processors execute the following code:
index := (@nt4,...,85)||(€p-n-s6,---,€0)||(as,...,a0)

for ¢q:=0 to p—n—1 step r
if (2?9 —-1) < index < (29" —1)

then j := (index - 27 + 1) mod (2"—-1) + 1
.= |index - 27 + 1
g = l, 2T =1 J
t =g
endfor
N,‘ o= (an+4,..;La5)
twiddle := wﬁfﬂl,;qff

4.3 Performance measurements

The implementation of the local kernels as described above have been performs as presented
in Table 9 and Figures 11 and 12. The measured timings do not include the time for twiddle
factor computation. The timings only include the computation of the data local to the
processors, and assumes that the data is already in the slice-wise representation. The result
is in slice-wise form. The stride for the data is assumed to be one, i.e., any need for memory
reordering due to the change of representation from field-wise to slice-wise is not included.
The execution rates are scaled to a 64k processor Connection Machine model CM - 2. The
number of floating-point operations for an FFT of size P is counted as 5P log, P. The
expected performance gain through tuning of the kernels is at most 10%.

5 Summary

Multi-sectioning (all-to-all personalized communication) can be used to achieve full band-
width utilization in FFT computations on Boolean cubes. On an n-cube 2" sectioning is
optimal. Pipelining the butterfly stages in a factored high radix FFT also achieves full band-
width utilization for at least n data points per processor. However, the multi-sectioning only
requires half the data motion. The number of element transfers for an FFT on P points
is % + (2 - )% for r-way sectioning compared to -]1—:,- + n —1 for a pipelined high radix
FFT. With consecutive data allocation, normal order input and decimation-in-time FFT,
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FFT Size

Direct, Norm

Time (Gflops)

Direct, Bit-rev
Time (Gflops)

Inverse, Norm

Time (Gflops)

Inverse, Bit-rev

Time (Gflops)

4

8

16
32
64
128
256
512
1024
2048
4096
8192

.000053 (1.5)
.000060 (4.1)
.000148 (4.4)
.000259 (6.3)
.000461 (8.5)
001244 (7.4)
.002539 (8.3)
.005195 (9.1)
.013409 (7.8)
027621 (8.4)
057607 (8.7)
134013 (8.1)

.000044 (1.9)
.000064 (3.9)
.000149 (4.4)
.000243 (6.8)
.000489 (8.0)
001241 (7.4)
.002543 (8.2)
.005199 (9.1)
013442 (7.8)
026535 (8.7)
053574 (9.4)
134192 (8.1)

.000050 (1.6)
.000058 (4.2)
.000157 (4.2)
.000256 (6.4)
.000499 (7.9)
.001290 (7.1)
.002643 (7.9)
.005428 (8.7)
.013938 (7.5)
.028667 (8.0)
059617 (8.4)
134090 (8.1)

:000046 (1.8)
.000055 (4.5)
.000138 (4.7)
.000253 (6.5)
.000490 (8.0)
.001243 (7.4)
002551 (8.2)
.005196 (9.1)
.013420 (7.8)
027580 (8.4)
055651 (9.0)
134363 (8.1)

Table 9: CM time (in seconds) and execution rates for a 64k processor CM - 2.

Time (msec)
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Figure 11: Execution time for 2048 direct DIT FFT (normal order input) on a 64k CM - 2.
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Figure 12: Execution rate for 2048 direct DIT FFT (normal order input) on a 64k CM - 2.

and bit-reversed order input and decimation-in-frequency FFT a twiddle factor storage per
node of -}}:7 2 — 2 suffice. No computation, or communication of twiddle factors is necessary
with this amount of storage. For radix-2 FFT a reduction in storage by a factor of two is
possible by computing 90-degree rotations “on-the-fly”. For a radix-4 FFT, as well as for
radix-2 FFT, the symmetry relation cos(a) = sin(§ — ) can be used to reduce the storage
requirements.

An FFT algorithm based on multi-sectioning of the data set fully benefits from the
reduced memory bandwidth requirement of a high radix FFT. Such an FFT algorithm also
achieves 100% arithmetic load balance. A high radix, pipelined FFT fully benefits from
the reduced memory bandwidth requirements for the local stages, but will not require any
lower memory bandwidth than a radix-2 FFT for the inter-processor communication stages.
The arithmetic load balance for the local stages is 100%, and %}'—1 for a radix-R pipelined,
inter-processor FFT.

The performance of the current Connection Machine implementation of the local mixed
radix-4/radix-8 FFT is in the range of 7 - 9 Gflops/s for local kernels of size 64 or greater.
The performance advantage of the radix-8 kernels over the radix-4 kernels is significant.
Compared to a local radix-2 FFT [13] the performance gain is approximately a factor of 2.5
- 3.5.
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