On the Power of Applicative Languages
R. J. Lipton and L. Snyder

Research Report #94

Department of Computer Science
Yale University
New Haven, Connecticut 06520

This work was supported by the Office of Naval Research
under grant N00014-75-C-0752.

Abstract: The expressive power of applicative structures is investigated
(particularly APL one-liners) with the result that all "practically" com-~
putable functions are "one-liner" expressible. In particular, the class

of funétions computable by one-liners contains the elementary functions.

" The problem of reducing the intermediate storage requirements for

evaluating applicative structures is shown to be solvable with only mod-
est execution time degradation. The prospect of improving these results
is discussed in connection with an outstanding conjecture concerning a

time-space relationship.

0f the volumes of research published in recent years on programming
language desigh and compiler construction and optimization, most of it has
concentrated on the "comgon core" shared by the majority of the several
hundred extant programming languages. The constituents of this common

core are a set of control structures (goto's, while, if-then-else, etc.)

gnd a set of data types (real, integer, boolean, array) and they are
often referred to by the collective term Aléol—like. These languages have
cleafly been immensely éuccessful both for their pratical utility as well
as for the large body of theoretical work that they have inspired.

~ We belive, however, that there are a‘few languages that have the
virtue of being sufficiently different from the Algol-like languages that
they'raise many new and different questions. Such languages include, for
example, SETL [1]; MADCAP [2], and APL [3]. We plan to study several
questions thaﬁ arise in the applicative structure of'a language like APL.*

As ﬁith many languages, APL has both advocates and adversaries and

since thg latter group is probably larger than the former group, we feel
compelled to comment on our interest in APL prior to proceeding to the
technical material. Although we refuse to take sides in the discussion as

.

to the merits of APL, we ‘address the criticism:

Since APL is "clearly" the "wrong difectiﬁn," any results
on such a language are uninteresting.

There are several arguments against this view. First, there is already a-

large and growing APL user community EQ], ‘Any language with such a large

Although our development will focus on a general applicative

structure, we restrict our attention here to APL to simplify
the exposition. :

e

fbllowing cénnot be discussed without some consideration of its special
problems. For example, it seems reasonable to study the efficient imple-
mentation of ﬁhis language, both from a practical standpoint as well 58
for the new issues raised by the language. Efficient implementation of
APL 1is quite different from efficient implementation of Algol. Secondly,
. topics such as programming style, "structuring," use of gg;g]é, verifica—
fion, all take on a different emphasis in the context of APL. Thirdly,
one would hope that the study of programming languages - as basic as it
'is to computer science - is broad enough to includg languaée studies not
squarely in the "mainstream" on the presumption that ﬁhey will ultimately
enhance our understanding of programming in géneral.

The first question which should be asked of any language 1is
Ql: How expressive is the languége? ¢

- We know from Turiné that the answer here - unless qualified = is trivial:

all reasonable programming languages are equal. However, in an applicative

language such as APL one can make Ql more brecise: how exﬁressive is an

APL one-liner, i.e., an APL expression tﬁat calls»ﬁo functions and uses no
brahching and no executeloperators. It is this question that we propose to ' .

study first. The reasons that the question is interesting are several:

1. Those who believe that APL forces one into new ways of solving
problems consider a one-liner as the basic unit of APL. Thus
it is reasonable to consider just what are the ultimate limits

to such expressions.

2., The answer, which demonstrates that such expressions, even if

greatly restricted, can compute a huge class of functions, is

¢
perhaps surprising to some. We have heard many conversations

such as:
"Can you find ‘an APL one-liner for"

We now can answer all (well, almost éll)'such questions

affirmatively.

3. While our results demonstrate the great expressive power of
one-liners, they do more to suggest an iﬁteresting question
about the power of apﬁlicative~languages and‘the power of
more classic Algol-like languages. We are able, we believe,
foi the first time to make precise the intuitive feeling to

many that APL is inherently slower than Algol.

We now will state precisely our main result that addresses Ql. We

assume the usualy semantics and definitions of the APL operators [51].

Theorem 1: Let £ : Ak -+ Ak be»;ny function from objects of rank k fo

objects of rank k (k20) that is computable by a random access computer in
time t(n) (n = length of the input in some standard encoding). If t(n) < 2¢n
(c a constant), then there is a pne—liner E with one variable v such that

»for all v ¢ Ak’

f(v) is equal to E.

- .
s

This theorem can be extended immediately to include even larger functions
t(n) and functions from many ranks to many ranks. Indeed, if f is any
elementary function [6] there is an E for computing it. Moreover, the

one-liners need only the operators

+ addition

- subtraction
= equality
AV~ logicéls
| residue)
p reshape
/ reduction

The chief difficul;y with this theorem is that it is still open whegher or
hot the cost of evaluating such an expression as E can be done in time
t(n).or eve;, say, tz(n). By time, here, we ﬁeaﬁwtﬁe cost of evaluating E
by any of the stapdard methods of evalﬁating APL [7]. A mbre general

question is:

can one add a set of new operators to APL so that
Theorem 1 can be improved to where EF can be evaluated

in time, say, tz(n)?

Clearly one must restrict the operators to be "reasonéble" in that they
dovnot include, for example, an execute command. Perhaps one can show
that no applicative language can be as powerful in this sense as an Algol-
like language. |

' The second question we wish to stddy is:

= o Q2: How can one efficiently implement an applicative

language such as APL?

The question here is what can one do about space; in particular, how can
temporary storage be reduced? APL and other applicative languages abound

with examples of statements that yield small answers (i.e., scalars) from

T e iy i e e

small inputs (i.e., scalars) and yet produce during their executions.huge

temporaries. A commonly cited example is the expression

2="14+70= (o] ¥

which decides‘whether or not the integer N is prime. The underscbred.
portion of the expression produces an N x ¥ array although the input and
éutfut are both scalars. Expressions of this type cannot be executed on
standard imﬁlementations not becéuse‘they wouid run too long but rather
because they use too much space. Thus, Q2 is really the following

question:

can one evaluate APL expressions in such a way that
no large temporaries are created and so that the
execution time (over- the usual evaluation) is not

increased dramatically.

The answer is yes. This is, perhaps, surpfising to some, and is made more

interesting when it is realized that our methods appear to be practical.

We will now briefly sketch our method of implementation of an arbitrary
one-liner E. The method used differs from the method of [7] and [8].

Let F be a one-liner with one free variable v (the generalization to several

is easy). Thus E could be

+/ A+ ¢ A<V,

-

We then show how td inductively construct a module M with the following

property:

for any index i into the position of the answer to F

L

M will return the value; M has the ability to request
in any order the value of the jth position of the in-

put V.

The key requifement here is ‘that we enable M to access the elémeﬁts of V

in any ofder. The price we pay, of course, is that M must be able to supply
#imilar informatiop, i.é.,<M must be ablg to supply the'ith position to

the answer §f E. This method should be compafed with the stream methods
of,[g J. The insight is that by allowing arbitrary requests, modules such
és M’caﬁ be indgctivel& coﬁstrucféd for aﬁy.APL one-liner. 1Indeed, the
gglz temporary storage needed in any such module is just the storage needed
to retain control information (which is independent of size of inputs) and
the storage needed to keep pqinters into the structures being handled. |

More precisely,

Theorem 2: Let Z be a one-liner with input V. Then E can be evaluated

in space bounded by the space required for

l. storing the inputs and the answer, and
2. storing a bounded number of pointers of at most log n bits
where no temporary structure is created that has size larger

than n.

Moreover, the time to evaluate E bj this method is at most O(tz) for any
one-liner whefe‘t is the time required to evaluate E by the usual methods
and is at most 0(t) when Z has no occurrénce of either dyadic ! nor scan.
Theorem 2 suggests an interesting reason why it remains open whether
or not Theorgm 1 can be improved to time tz(n). Suéh a simulation wéuld

- yield a positive result to the conjecture of Cook [9]

.

1s 0((log n)z) space sufficient to recognize all languages
recognizable in deterministic polynomial time?

and it is thus unlikely. Nevertheless the expressive power of these one-

liners is extensive.

REFERENCES

K. Kennedy and J. Schwartz : _ :
"An Introduction to the Set-Theoretic Language, SETL," in Computer
- and Mathematics with Applications, Vol. 1, Pergamon Press, 1975.

M. Wells and C. Cornwell .
"A data type encapsulation scheme utilizing base language operators,"

Proceedings of ACM Conference on Data: Abstraction, Definition and
Structure, 1976.

K. Iverson
A Programming Language.

C. Wogrin
Preface to APL 76: Conference Proceedings, 1976.

L. Gilman and A. Rose
APL, an Interactive Approach, Second Edition, John Wiley, 1974.

A. Grzegorczyk '
"Some classes of recursive functions," Rozprawy Mathematyczne, Polish
National Academy, 1953.

P. Abrams : : . . L
"An APL Machine," Stanford Linear Accelerator Report, 1969.

T. Miller ,
An APL Compiler, Ph.D. thesis, (in preparation). .

S. Cook and R. Sethi

"Storage Requirements for Deterministic Polynomial Time Recognizable
Languages," STOC, 1974 (Seattle).

