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Abstract

We discuss space-efficient encoding schemes for planar graphs and maps. Our results
improve the constant on previous schemes and can be achieved with simple encoding
algorithms. They are near-optimal in number of bits per edge.

1 Introduction

In this paper we discuss space-efficient binary encoding schemes for several classes of unla-
beled connected planar graphs and maps. There are a number of recent results on space-
efficient encoding. A standard adjacency list encoding of an unlabeled graph G requires
©mlgm bits, where m and n are the number of edges and vertexes, respectively. Turdn [8]
gives an encoding of unlabeled connected planar graphs which uses (asymptotically) 4m
bits'. Itai and Rodeh [4] give a scheme for labeled planar graphs requiring 3nlgn + O(n)
bits, and Naor [6] gives a method for general unlabeled graphs which uses n?/2—nlgn+0(n)
bits (the storage requirement is shown to be optimal to second order). We may also mention
that Jacobson [5] gives an ©(n) space encoding of unlabeled connected planar graphs which
supports traversal in ©(lgn) time per vertex visited. The constant factor in the space bound
is relatively large, however.

We shall discuss storage-efficient encodings of unlabeled planar graphs and maps. In
encoding a graph we must encode the incidences among vertexes and edges. By maps
we understand topological equivalence classes of planar embeddings of planar graphs. In
encoding a map we are required to encode the topology of the embedding ¢.e., incidences
among faces, edges, and vertexes, as well as the graph. Each map embeds a unique graph,
but a given graph may have multiple embeddings. Hence maps must require more bits to
encode than graphs in some average sense.

Our encoding schemes for planar graphs are at heart schemes for encoding maps: we
choose a particular planar embedding and encode the resulting map. (This is the procedure
as well in [5, 8].) The natural measure of map size is the number of edges, and this quantity
hence governs the size of our encodings even though graph size is typically measured by
number of vertexes.

All maps and graphs to be encoded in the rest of this paper shall be understood to be
unlabeled and connected. Following Tutte [10], we allow graphs and maps to have multiple
edges between two vertexes, and to contain loop edges (edges whose endpoints coincide). We
show encodings for

e 2-connected maps and graphs in 3 bits per edge,
e arbitrary planar graphs in g 12 bits per edge,

e arbitrary maps without loop edges in lg 12 bits per edge,

This is not actually stated in [8]; the storage requirement is given as < 12 bits per vertex.
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e proper planar triangulations in (3 + lg3)/2 bits/region or (3 + 1g3)/3 bits per edge.

The unusual constant lg 12 =~ 3.58 is of particular significance in view of Tutte’s enumer-
ation of the rooted connected planar maps with m edges [10]. There are

_2(2m)l3™

" m!(m 4+ 2)!
such, implying that the number of general (unrooted) maps with m edges is 12™ .25 1gm+0(1)
Then given any code for maps with m edges, the number of maps whose codewords are
shorter than mlg12 + O(1) bits is o(Amm)%. Another enumeration due to Tutte [9] gives the
comparable bound for triangulations, with which we shall compare our result.

Our goal in this paper is primarily theoretical: to move towards encoding schemes for
planar maps that are the shortest possible according to Tutte’s results. Our encoding and
decoding algorithms, however, are simple, run in linear time, and provide the most compact
encoding currently known, so our results may have some practical application. In addition,
our schemes immediately imply an encoding for labeled planar graphs that requires nlgn +
m1g 12 4+ o(n) bits, thus improving on Itai and Rodeh.

Our basic idea is to construct a particular depth-first search tree of a map, then sequen-
tially to delete the non-tree edges and add labels to the tree edges in such a way that the
non-tree edges can be reconstructed from the labels. This converts the map into a labeled
version of the search tree. We then encode the tree in any standard way, followed by an
encoding of the string of labels.

2 Encoding 2-connected Maps in 3 Bits/Edge

In this section we describe an encoding scheme for 2-connected maps. To encode a 2-
connected graph we embed it using a standard algorithm (e.g. [1]) and then encode the
resulting map. An important consequence of 2-connectedness is that the maps contain no
loop edges.

A topological depth-first search (TDFS) of a connected graph G embedded in an oriented
surface (or, to abuse definitions slightly, of a map M in that surface) is a depth-first search [7]
in which vertexes adjacent to the current vertex are recursively searched in counter-clockwise
(CCW) order of the corresponding edges around the current vertex, starting at the edge from
the current vertex to its parent. (In standard DFS, the adjacent vertexes are searched in
arbitrary order.) The TDFS is started by choosing a first edge to search out of the the root
node. For any vertex u of G and any initial edge (u,v), there is a unique TDFS tree T. If G
has n vertexes and m edges then T has the same n vertexes and n — 1 of the m edges. There
are therefore k = m — n + 1 non-tree edges, the set of which we denote by N. Depth-first

2This is a sharper version of what is often called in the computer science literature the “information-
theoretic lower bound,” by which is meant simply the logarithm of the size of the set to be encoded.
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Figure 1: A map M. Figure 2: A TDFS of map M. Non-tree edges
are shown dashed.

search has the property that for any non-tree edge (u,v) € N, either u is an ancestor of v or
vice versa 7). Figure 1 gives an example of a map M and figure 2 shows the TDFS T of M.

Lemma 2.1 Let e = (u,v) be a non-tree edge, and assume that u is the ancestor of v. Let
[ be the last edge on the TDFS tree path from v to w. Then f precedes e in counterclockwise
order around u starting at the edge from u to its parent.

Proof: The edges out of u were explored in counterclockwise order starting at the edge
from u to its parent, and if e occurred before f, then v would have been made a child of u
by edge e, contradicting the assumption that e is a non-tree edge. &

Let M be a 2-connected map with n vertexes and m edges. Briefly to sketch our encoding
method: we first compute a TDFS tree T of M. We perform simple modifications, converting
M and T to a new map My and TDFS tree Ty. We then label each edge of My with a “0”
and compute a series of maps {M;, i = 1,...,k}, at each stage possibly deleting an edge
and changing some labels. M will be a copy of T, whose edges have been labeled with
cither a 0 or 1. Finally we encode Ty by encoding the tree in a standard way and append
the associated labels as a string.

To convert M and T to M, and Ty, we examine each non-tree edge e = (u,v) € N.
Assume u is the ancestor of v in T. We split e by inserting a degree-2 node w,, thereby
creating two edges (u,we) and (we,v). We also make w, a child of v in T by the new tree
edge (v,w.) (See Figure 3). This gives a new embedded graph My with TDFS tree T, and
non-tree edges {(we,v),e € N}. The new tree Ty has n + k = m + 1 vertexes and m edges.




Figure 3: TDFS tree Tp of M.

Since M is 2-connected, every leaf in the TDFS tree T has at least one incident non-tree
edge. Hence the leaves of the modified tree Ty consist exactly of the k new nodes w,,e € N,
the set of which we denote by W.

Let l3,15,...,lx be the leaf nodes of Tp in order from left to right, i.e., by increasing
pre-order number. We compute M; from M;_; by processing leaf [;. Let leaf [; have parent v
and incident non-tree edge e = (l;,u). Define the tree path from [; to u to be P(¢) = (l;,v =
Vi,Va, ..., Vs = u). Note that k > 2, since otherwise u = v, implying that e is a loop edge of
M, which is forbidden.

The cycle formed by e and P(7) separates the plane into an interior and an exterior region,
dividing the remaining vertexes and edges of My into an interior set /NT'(z) and an exterior
set EXT(¢) such that EXT(7) contains the root of Ty and no edge of M connects a vertex of
INT(z) with one of EXT(z). Let f = (l;,v) and let g be the edge that immediately precedes
¢ in CCW order around u. Since u # v, we have f # g. By Lemma 2.1, edge (v.—1,u)

precedes edge e in CCW order around u. Hence edge g is contained in INT'(2) U {(v.-1,u)}.
(Sce Figure 4.)

Using the above definitions, we process leaf [; as follows (see Figures 4 and 5).

1. Label edge g with a “17.

(8]

. Label edge f with the current label of edge e.

w

. Delete edge e from M;_; to form M;

We now establish a series of lemmas that lead us to the encoding scheme.
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Figure 4: Tree T) prior to process- Figure 5: Tree T, after processing
ing leaf b. (Edges have label 0 unless leaf b.
marked 1.) Shaded area is INT(b).

Lemma 2.2 M, is a tree.

Proof: By construction, every non-tree edge in My is of the form (we,u) for w, € W and
u € V. Mj is constructed by examining each leaf in turn and, if it is in W, deleting the
incident non-tree edge. [ )

Lemma 2.3 Consider leaf I;. Let I; be a leaf node in INT(3). Then j > i.

Proof: By planarity, the tree path from I; to the root must intersect the boundary of I NT'(z)
at some node v, € P(7). Thus v, is the least common ancestor of /; and I;. Furthermore,
since the first edge on the path from v, to I; must lie inside INT(7), it must follow the
edge (vy-1,vy) in CCW order around v., But then a TDFS will visit and number [; before
it numbers (. &

Lemma 2.4 In M;_,, all edges connecting vertezes in INT (i) U P(2) are labeled “0”.

Proof: Suppose that there is an edge f contained in INT'(i) or on P(i) that has a label
other than “0”. Edge f received this non-zero label during the previous processing of some
leaf Ij, j < 1. It received this label either because it is incident on I; (Step 2) or because
it immediately precedes the non-tree edge f' = (I;,u) in CCW order around u (in Step 1).




In either case this requires that /; lie in INT(z) or P(z): in the former case this follows by
hypothesis, and in the latter case planarity implies that edge f’, which is incident on u and
immediately follows f in CCW order, must lie entirely in INT'(z). But, since j < ¢, [; cannot
lie in INT(7) because of Lemma 2.3, and [; cannot belong to the tree path P(z), since [; is
the only leaf on P;. &

Lemma 2.5 FEach edge of M is given a non-zero label at most once.

Proof: Consider the processing of leaf node l;. The two distinct edges f and g labeled in
this processing are both in INT(¢) U P(z), so Lemma 2.4 implies that both are previously
labeled “0”. &

Lemma 2.6 Map M;_, can be constructed from map M;.

Proof: We simply reverse the processing of leaf [; that created M; from M;_;. The non-tree
edge e deleted in Step 3 satisfied the following: it connected /; to some ancestor u other than
the parent v of l;; it immediately followed an edge g marked 1; and it enclosed a region in
which all edges were marked 0 except for g and possibly the edge f from [; to its parent.
These conditions uniquely determines where the non-tree edge must be inserted. After the
non-tree edge e is inserted, we undo Steps 2 and 1 by copying the label of f to e and labeling
f and g with 0. &

Theorem 2.7 A 2-connected planar graph G with m edges can be encoded in 3m + O(1)
bits.

Proof: We take M and apply the series of transformations described above to produce the
graph M;, which is a tree of m + 1 nodes whose edges are labeled 0 or 1. To encode this
we traverse the edges of Mj in depth-first order and write down the labels in a string o’
Simultaneously, we encode the unlabeled tree Mj in a string o; by writing a 1 whenever the
traversal descends an edge and a 0 when it subsequently ascends that edge. This well-known
representation requires 2 bits per edge. We concatenate o; and o3 to give the encoding of
map M.

That this is uniquely decodable is clear: given m, we can read off o; and o, and build
the labeled tree Mj; My can then be built by applying Lemma, 2.6 repeatedly, and M is then
recovered by replacing all nodes which were leaves in M}, by single edges.

If m is not taken as known by the decoder, a degree-one node can be added to T" whose
sole child is the original root of T. The string o, that encodes this modified tree can be
extracted from the front of oy 0 o, by observing that the encoding traversal must start and
end at the degree-one root. Alternately, m may be prepended to oy 0 o3 with ~ lgm bits
using Elias’s representation of the positive integers [2]. [ )




3 Planar Graphs in Ig12 Bits per Edge

In this section we extend the technique of Section 2 to handle an arbitrary connected planar
graph G. As before, the graph G is embedded, giving a map M, and a TDFS is performed
on M, generating a tree T'. This tree can have two structures that could not arise in the case
of a 2-connected graph. First, T may have leaves without incident non-tree edges. Such a
leaf corresponds to a degree-one vertex in G, and is called a stick. Thus in the general case
we must distinguish between leaves corresponding to sticks and “regular” leaves w, resulting
from splitting non-tree edges.

Second, T may contain loop edges. In Ty, the tree produced from T by splitting non-tree
edges, a loop edge e with endpoint v produces a leaf w, with parent v and incident non-tree
edge (we,v). This invalidates Lemma 2.5, since the edge g preceding e around its ancestor
endpoint is no longer necessarily distinct from the tree edge f that connects w, to its parent.

Given an embedding, M, of G, we produce a modified embedding, M’, in which loops and
sticks are easy to handle. We begin by computing a TDFS tree, T', of M. Next, we rearrange
each loop edge so that it is “empty”, i.e., its interior consists of a single face. Since a loop
edge is a l-connected component, this is always possible. The embedding is then further
rearranged so that for each node v, the incident loop edges and sticks occur last in CCW
order around v, starting at the edge from v to its parent in T'. Thus, if we walk around
v starting at the edge from v to its parent, we encounter first an intermingled collection
of regular tree edges and non-tree edges, and then an intermingled sequence of sticks and
loop edges with empty interiors. Since sticks and loops are 1-connected components, this
rearrangement can always be performed. Furthermore, the resulting tree T” is a valid TDFS
of the new embedding M’. Figure 6 gives an example of a map M and Figure 7 shows a
TDFS tree after rearranging sticks and loops. The critical consequence of the embedding
rearrangement is that no non-tree edge follows a loop or stick in CCW order around the
ancestor endpoint, and hence the loop or stick cannot receive a mark during the removal of
some other non-tree edge.

Once the embedding has been rearranged, we proceed as in Section 2, splitting each
non-tree edge e to give a new leaf vertex w,, then processing each leaf [; in order from left to
right. If [; is a leaf resulting from splitting a non-loop non-tree edge, then it is processed as in
Section 2. Suppose [; is the degree-one endpoint of a stick, or a degree-two leaf w, resulting
from splitting loop edge e. Let f be the tree edge from I; to its parent. To process l;, f is
labeled #, and the non-tree half of the loop edge is deleted, if appropriate. A temporary bit
vector is kept that indicates for each edge labeled * whether it led to a loop or a stick. Thus
the edge labels are now drawn from the ternary alphabet {0, 1, *}.

Theorem 3.1 An arbitrary planar graph G with m edges can be encoded in mlg12 + O(1)
bits.

Proof: We encode the final labeled tree as in Section 2, traversing the tree in depth-first
order, writing down the string of edge labels and encoding the structure of the tree by writing
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Figure 6: A map M with a stick (ver- Figure 7: A TDFS of map M after
tex 10) and a loop. rearrangement of the embedding.

a 1 whenever an edge is descended and a 0 whenever it is subsequently ascended. Note that
if an edge leads to a leaf, the descending 1 is immediately followed by the ascending 0. If an
edge is labeled * then it must lead to a leaf, and the ascending 0 for that edge is redundant.
We replace the ascending 0 with either a 0 or 1 depending on whether the leaf corresponds
to a stick or a loop, respectively. In decoding, the tree string and the label string are read
in lock-step: whenever a 1 is read off the tree string, indicating a new descending edge, the
next label is read off the label string. If the label is *, then the descending edge leads to a
either a stick leaf or a loop leaf; the bit following the 1 in the tree string indicates which.

Given £k, it is possible to encode a string of length k over a ternary alphabet in a uniquely
decodable way with klg3 + O(1) bits. Regard the string as the standard ternary represen-
tation of an integer between 0 and 3* — 1; the standard binary representation of this integer
has length [lg3*] = klg3 4+ O(1) bits.

There are 2m + O(1) bits to encode the tree plus mlg3 + O(1) bits to encode the label
string, for a total of (2 +1g3)m + O(1) = mlg12 + O(1) bits. &

We are unable to match the bound of Theorem 3.1 in encoding arbitrary maps, since in

encoding maps we are not free to change the embedding. We can, however, match it in two
important special cases:

Corollary 3.2 A loopless map M of m edges can be encoded in mlg12 + O(1) bits.

Proof: Run the algorithm of Section 2 on map M, not processing leaves that result from
sticks but remembering which they are. In the resulting labeled tree, stick edges are labeled
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0 or 1. Now examine each stick: save the original label in a temporary vector and relabel it
*. Encode the final tree, replacing the redundant ascending 0 for each stick with the stick’s
original label. &

Corollary 3.3 A stick-free map M of m edges can be encoded in mlg12 + O(1) bits.

Proof: Replace each empty loop edge by a stick. Now process M as in Corollary 3.2.
In decoding, replace sticks by empty loops. Furthermore, modify the procedure described
in Lemma 2.6 so that a non-tree edge can connect a leaf I; to its parent. (This handles
non-empty loop edges.) The correctness of this encoding scheme can be seen by examining
Lemmas 2.2 through 2.6. )

To conclude the section, we remark that the 3-bits-per-edge encoding scheme described
in Section 2 can in fact be applied to any map that is free of loops and sticks. Our techniques
can be used to encode labeled planar graphs in nlgn 4+ mlg12 4 O(1) bits by first encoding
the structure of the graph using the appropriate encoding scheme described above and then
writing down the string of labels in pre-order.

4 Triangulations

We can improve significantly upon Theorems 2.7 and 3.1 if the planar map M to be encoded
is a proper triangulation, i.e., each face of the embedding is a triangle consisting of three
distinct edges. (The graph G underlying such a triangulation can be embedded in the plane
in exactly one way up to the choice of exterior region, so M and G are in 1-1 correspondence.)

Let M* be the dual® of M. The graph G* underlying M* is regular of degree three and
is two-connected. The map and its dual uniquely determine each other; the regularity of G*
implies that any TDFS tree T* is a binary tree, which can be exploited for efficient encoding.

Let r be the number of regions in M and so the number of vertexes in M* and the number
of internal nodes in T*. There are 3r/2 edges in M and M*, of which k = 3r/2 — (r — 1) =
7/2 41 are non-tree edges.

To proceed: compute a (binary) TDFS tree T* of M*. Children of a node v are called
“first” or “second,” according to their position in CCW order around v from its parent. As
in Section 2, construct M; and Ty by splitting each non-tree edge e = (u,v) (with u the
ancestor of v, say) into two, inserting a degree-two node w, into T§ as a first or second child
of v as appropriate. The edge (we,u) remains a non-tree edge.

Lemma 4.1 In tree T, there are five types of internal node:
1. A node with an internal node first child and an internal node second child.

2. A node with an internal node first child and a missing second child.

3See [3] for a definition.




3. A node with an internal node first child, and a leaf second child.
4. A node with a leaf first child and an internal node second child.

5. A node with a leaf first child and a leaf second child.

Proof: We show that the remaining four combinations cannot occur. First, no internal
node v of 7§ has a a leaf first child and a missing second child. For suppose it did. In
place of the missing second child is a non-tree edge e. By construction, the other endpoint
of € is a leaf node w, that is a descendent of v. Node w,. cannot be a child of v, however,
since otherwise e would have originally been a loop edge. But by hypothesis v has no other
descendents.

Second, no internal node v of 7§ has a missing first child. For if v does, then as above,
in place of the missing child is a non-tree edge e whose other endpoint w, is a descendent
of the second child of v. Thus, the non-tree edge e precedes the edge leading to w. in CCW
order around v. But this contradicts Lemma 2.1. &

Suppose that we run the labeling procedure of Section 2 on M{ to produce the tree M,
a copy of Ty with binary labels. Observe that since all internal vertexes have degree three,
a non-tree edge can be only be marked 1 if it replaces a missing left child. This is forbidden
by Lemma 4.1, however, implying that no non-tree edge is ever marked 1. In fact, the type
of an internal node v precisely determines how the edges to its descendants are marked:

o If v is a type-1 node, then both the edges from v to its children remain and are marked
“0” in M}.

o If vis type-2, then the edge to its first child remains and is marked “1” by Step 1 when
the non-tree edge that replaces the second child is deleted.

o If v is type-3, then both edges remain and are marked “0”. Neither can be labeled “1”
by Step 1 of the labeling procedure. The second edge can only inherit a zero mark in
Step 2, since all non-tree edges are marked zero.

o If v is type-4, then both edges remain and are marked “0”.

o If v is type-5, then both edges remain and are marked “0”.

Theorem 4.2 A proper triangulation of m edges and r = 27’" regions can be encoded in

(3+1g3)r/2 4+ O(1) = 2.297 or (3 +1g3)m/3 + O(1) =~ 1.53m bits.

Proof: Since the edge labels can be inferred exactly from the internal node types, there is
no point in saving the label string. In fact, all we need is a pre-order listing of the types of
the internal nodes, for this will permit us to reconstruct the entire tree: if leaves are added
where indicated, the location at which to place the next internal node in a pre-order traversal
of a binary tree is unambiguous.
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We shall, then, describe an efficient way of encoding a string of r internal node types. For
technical reasons involving length optimization we choose to do this in two steps: we first
distinguish between types 1, 2, and 3-5, then append the information necessary to distinguish
the last three from each other. Thus during the first traversal we form o using the following

code (“Code A”):
e Type1: 00
e Type 2: 01
o Types 3-5: 1

We then retraverse the tree in the same order, forming a second string o’ over {a,b,c} by
writing down, for each node of type 3, 4, or 5, the corresponding letter. Let there be I nodes
of the three types together (we will show momentarily that { < r/2 + 1); then as before
we encode the ternary string as a binary string o2 of length Ilg3 + O(1) bits. The map is
encoded by the concatenation ¢ = oy 0 03.

Decoding is straightforward: knowing r we can read off the first r codewords from Code
A, which is prefix-free. We then count the number ! of nodes of types 3-5, which permits us
to read off o,, convert it to ! ternary symbols and use them to determine the types of the
“1” codewords in o;.

How long is 0? Let t; represent the number of nodes of type i¢. Observe that since there
are /2 + 1 leaves, t3 +t4 +2ts = 1/2 + 1, so {3+ t4 + t5 < r/2 + 1; since there are r internal
nodes overall, the length of o is

lo] = 2(ti+1t2)+ (1 +1g3)(ta +ta+t5) + O(1)
< 2(r/2) + (1 +1g3)(r/2) + O(1)

bits. This is ~ (3 + 1g3)/2 & 2.29 bits/region of M, or ~ (3 + 1g3)/3 = 1.53 bits/edge. &

Our results may be compared with the theoretical limit of ~ 1.62 bits/region or ~ 1.08
bits per edge [9].

5 Remarks

In Sections 2 and 3 we give schemes to encode loop-free maps and stick-free maps in lg12
bits per edge, and maps that are both loop-free and stick-free in 3 bits per edge. We leave
open, however, the problem of finding an encoding for all planar maps in lg 12 bits per edge,
the minimum possible. We see no place in our current encoding to store the additional infor-
mation needed to handle loops and sticks simultaneously. Similarly, although our encoding
of triangulations significantly improves the bit requirement over previous schemes, we leave
open the problem of finding a minimum length encoding.
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