SCHEDULING PARALLEL PROCESSES
WITHOUT A COMMON SCHEDULER#*

Extended Abstract
George Holober and Lawrence Snyder

Technical Report # 154, July 1979

*This work was funded in part by the Office of Naval Research grant
N0O0014-75-C-0752.

SCHEDULING PARALLEL PROCESSES WITHOUT A COMMON SCHEDULER+

EXTENDED ABSTRACT

George Holober and Lawrence Snyder
Department of Computer Science
Yale University
New Haven, Connecticut 06520

Abstract: An algorithm which solves the critical
section problem for distributed processes is
presented. We extend the solution of Lamport
[LL76] by continuing to allow processes to access
their respective critical sections in any
arbitrary user-specified order, but with greatly
reduced storage requirements for each process. In
addition, we supply a facility for testing the
presence of deadlock among processes waiting to
enter their critical code. We show our scheme to
be tolerant of several malfunctioning processors,
and derive an equation relating the probability of
total system failure to the probability of many
individual failures occurring simultaneously among
the processors.

INTRODUCTION

The ‘"ecritical section" problem, which
involves developing a synchronization scheme for a
set of processes that enforces solo occupancy of
common code, is further complicated when we
generalize the circumstances under which the
scheme will work or restrict the allowable
solutions in some manner. For example, we will
assume that the processes execute asynchronously
(i.e. nothing is known about one process’ rate of
execution relative to that of another process nor
to the same process’ rate of execution at a
different time) and that each process must have
the same solution as every other process. Another
reasonable objective is to avoid possible deadlock
resulting from two or more processes waiting for
each other.

A number of solutions to the critical section
problem have been developed and studied since
Dijkstra’s initial paper [EWD65]. The results
reported in that paper, along with the subsequent
refinements outlined by Knuth [DEK], deBruijn

1tThis work was funded in part by Office of Naval
ResearchvGrant N00014-7SfC-0752.

[deB], and Eisenberg and McGuire [EM], assumed
that concurrent processes would be implemented on
multiprogrammed systems. These systems allow
different processes to read from or write into any
memory location.

Only recently have researchers begun to look
at multiprocessor or distributed systems. In such
a system, a process may read or write in its local
memory and may read from another processor’s
memory, but may not write into another processor’s
address space. This restriction prevents the use
of global variables, but does yield one important
advantage over multiprogrammed computers: if one
process fails, the entire systems does . not
necessarily crash, though system performance will
likely be degraded.

One of the first examinations of distributed
systems was done by Dijkstra [EWD74]. This paper
studied the possibility of processors
independently recognizing that they had failed and
correcting themselves to some prescribed state.
At about the same time Lamport [LL74] presented a

solution to Dijkstra’s original problem with
critical sections that obeyed the constraints of
distributed computers. Rivest and Pratt [RP]

improved upon this scheme by bounding the values
of the variables necessary for inter-process
coordination and by preventing a process that
continually fails and restarts from deadlocking
the system. Further improvements (in terms of
smaller ranges of values for variables, greater
fairness when sequencing processes for entry into
their critical regions, and reduced waiting times
-for processes before entering their respective
regions) were developed by Peterson and Fischer
[PM]. Finally, Ratseff [HPK] incorporated the
best aspects of each of these solutions, including
the servicing of processes in the order in which
they arrive (FIFO), into one algorithm.

Taking a somewhat different approach, Lamport
[LL76] recognized the fact that it is not always
desirable to allow processes to enter their
critical regions in the same order in which they
attempted to access these regions. It is
frequently the case that a process may not

conflict with another process in the sense that
they may enter critical regions simultaneously,
though both these processes may conflict with a

‘third process. Furthermore, given a set of
-processes that are currently prevented from
entering their critical regions, we may wish to

impose some priority on these processes so that
when conflicting processes eventually do leave
their critical regions, the process having the
highest priority, rather than the process that has
been waiting the longest, will be the first to

‘access its own region.

In this paper we present a modification of
-Lamport’s system that corrects some drawbacks of
both his and Katseff’s solutions. In particular:
1) We maintain the basic capabilities of
Lamport’s design but add a facility to detect the
formation of anamalous situations in which a set
of processes will deadlock because each process
believes another process has priority over it.
2) One variable that is used in Lamport’s
solution may grow unboundedly large (though in
practice this may have little effect). We show
how to limit to a finite range the possible values
of all wvariables used for synchronization
purposes.
3) Lamport’s and Katseff’s code requires that
each process contain an array, the length of which
is equal to the total number of processes. With
the recent advances in computer-on-a-chip hardware
designs, it is quite likely that future machine
architectures will involve huge numbers of
communicating processors (capable of running a
proportionately large number of processes), each
processor possessing a fairly limited amount of
memory. Such a hardware scheme is clearly
incompatible with Lamport’s and Katseff’s
routines. In our program, each process will need
to keep track of only a constant number of other
processes.

SYSTEM OVERVIEW

The architecture of the system we will use
for our studies is conceptually simple: we have a
set of processors, each processor capable of
executing at most one process from a set of N
processes, and each processor communicating with a
subset of the other processors. By "communicate"
we mean that one processor may read from another’s
memory or possibly transmit an interrupt signal
(this latter condition is not essential);
however, conforming to the definition of a truly
distributed system, it may not store into any
memory but its own.

We further assume that a processor may fail,

though it does so in a somewhat orderly fashion.
A read request issued to a process immediately
after this process has malfunctioned may return

arbitrary values. Eventually only some default
value will be returned by read requests to a
failing processor, hence it is impossible to
accurately examine the memory contents of such a
processor. Each processor has the ability to

detect its own deviation from normal operating

protocol and shut itself dowm without transmitting
spurious interrupts and without writing incorrect
information on a disk to which it is linked. The
process that had been running on a processor until
that processor malfunctioned may be restarted at
some predefined point.

As noted in the previous section, the early
solutions to the critical section problem require
disjoint processes to store into common memory
locations. Many of the synchronization schemes’
that have been proposed to date, such as PV
[EWD68], monitors [CARH74], and path expressions
when implemented in terms of semaphores [CH, ANH],
seem to rely upon a dedicated scheduling routine.
Unfortunately, such schemes are incompatible with
the desired autonomy of processors. For if the-
processor in which global data is stored or a
dedicated scheduler should fail, the entire system
fails. Lamport has explored many aspects of .a
synchronization scheme that avoids this drawback,
though he only touches briefly upon the issue of
scheduling. We examine this last issue in greater
detail.

The synchronization primitive used by Lamport
is an extension of the conditional critical region

first proposed by Hoare [CARH71] and later
described by Brinch-Hansen [PBH72, PBH73a,
PBH73b]. This new primitive takes the form
region <mode> when <condition>
do <critical-section> od
The metavariable <mode> is an expression

(typically a constant or a single variable) which
evaluates to an element of some arbitrary finite

set M (subject to Restriction #1 below);
<condition> is a Boolean expression;
critical-section> is an arbitrary length of code

(subject to Restriction #3) which
critical region.

comprises the

It may not be the case that all critical
regions will conflict with all other critical
regions in the sense that we may desire two
processes to be executing their critical regions
simultaneously, though either or both of these
pProcesses may in turn prevent a third process from
entering its region. To formalize this notion, we

define a symmetric, time-independent function
conflict: M x M —> {true, false}. We then say

that two processes conflict if and only if they
are both attempting to execute region statements
with respective <mode> values of model and mode2,
and conflict (model, mode2) = true.

The semantics of the region statement can be
stated quite simply: the code in the
<eritical-section> may not begin execution if a
conflicting process has already entered the
<critical-section> of a region statement or if
<{condition> evaluates to false. To prevent
certain anomalous situations from arising, we must
enforce the following restrictions on our
synchronization primitive:

Restriction #1: The value of <mode> must remain
constant during the entire execution of the

region statement to which it is associated.

Restriction #2: To prevent races between
instructions which alter and examine a when
<{condition>, arguments of the <condition)> of
one process’ region statement which are
stored in the memory of another process may
only be modified by this second process
within a region statement which conflicts
with the first region statement.

Note that if the <condition> of a region statement
does not depend upon the contents of another
process’ address space, then this <condition) must
always evaluate to true, for if this were not so,
then the process would enter the region statement,
halt execution until the <condition> became true,
thereby preventing assignments to the very
variables that can satisfy the <condition) and
causing the process to deadlock with itself.

Restriction #3: A region statement may not be
one of the instructions in the
{critical=-section> of another region
statement.

associated with
the difficulty
synchronization
usually have a
given a set of

One problem frequently
conditional critical regions is
they pose in expressing some
problems. These problems
"scheduling" flavor to them:
conflicting processes that are all competing to
enter their respective critical regions, which
will take precedence? To remedy this flaw, we
define a new function must precede: {1, 2, ..., N}
x {l, 2, ..., N} ==> {true, false} which may
depend upon any information that is available to
the system. Therefore given a particular i and j
in the set {1, ..., N}, must precede (i, j) need
not remain constant over a period of time.
(Lamport actually calls this function
"should precede"; we will save this term to
denote a different function.)

This very general definition of must precede
is actually too permissive. The following
argument illustrates this point. Suppose that in
addition to i and j, the names of the two
processes, the function must precede depends on K
other sources of informationm, e.g. which
processes are in their critical regions, which
processes are awaiting permission to enter their
regions and how long they’ve been in this state,
which processes have failed, the values stored in
the memories of various processes, etc. It 1is

very unlikely that a process can examine all K+2

the value of
Rather, the process would

arguments and instantly determine

must precede (i, j).

probably scan one or two arguments at a time and’

_combine this information with previously computed
results to obtain a partial answer. This
procedure would repeat this until all arguments

have been examined and must precede (i, j) has
been fully determined. Consider the case in which
a process is scanning the xth argument of
must precede (x is in the interval [2, ..., K+2])
when another process alters the value of the yth
argument (y is in the interval [1, ..., x-1]).
The first process will never rescan the yth

argument, so the value it finally obtains for
must precede (i, j) will be incorrect. To
overcome this difficulty, Lamport assumes that
must precede is strongly constant, meaning that
its value will not change when we are in the midst
of computing it. This convention simplifies
matters greatly (and in fact probably does not
pose a severe restriction), so we will adopt it as

well.

The interpretation of the must precede
function 1is self-evident, but it is important to
point out that it has meaning only on those
processes that are simultaneously waiting to enter
their critical regions and that conflict with one
another. Putting together the mechanisms we have
described so far, it becomes clear that a process
i can enter the <critical-section)> of a region
statement only if the following three conditions
are satisfied:

Condition #1: All processes that conflict with
process i are executing code outside of
their critical regionms.

Condition #2: The when <condition> evaluates to
true.

Condition #3: For all processes j that are
presently executing region statements but
have not yet entered their
<{critical-section>’s, and that conflict with
process i

true if j has been
waiting longer than i
must precede (i, j) =
) false if i has been
waiting longer than j

In other words, of all the processes that do
not conflict with another process that is in a
<critical-section> (#1), that have true when
<condition>’s (#2), and that have no predecessors
(in the sense that there is no conflicting process
j for which must precede (j, i) holds true), time
of arrival is the final arbiter (#3). We impose
one more condition on our system that guarantees
that no process can be locked out of a
<critical-section> once it has begun executing a
region statement:

Condition #4: Assuming no further processes
encounter region statements, a process
satisfying Conditions 1 - 3 will enter its
<critical-section> after a finite delay.

This condition will follow if we assume that all
processes make progress executing their
instructions (though our previous assumption of
asynchronous operation may make this progress very
slow) and if a permanent deadlock situation does
not exist among the processes that are waiting to
enter their critical regions.

THE ALGORITHM

In the last section we briefly mentioned the
possibility of two or more processes causing a
deadlock while waiting to enter critical regions.
To see how this might happen, consider the most
trivial case for the moment. Suppose that process
i has just encountered the statement

region model when true do <anything> od
where conflict (model, model) = t rue and
must precede (i, i) = true. Using ou~ rules for
selecting processes to enter their

{critical-section>’s, process i must wait for
itself to leave its <critical-section> before it
can enter it, a clear impossibility. A deadlock

is present, and Condition #4 is violated (unless
must precede (i, i) changes to false at some

future point). Although this may seem 1like a
contrived example, & - : therefore not a very
convincing justification for our attempts to
determine the existence of deadlocks, these
deadlocks can arise in far more subtle ways. The
following theorem characterizes the situations in
which a deadlock will be present.

Cycle Theorem: A deadlock will exist among the
processes that are awaiting entrance to their
critical regions if and only if there exists
a subset {P(0), P(), ..., P(L)} of these
processes which form a "cycle" in the sense
that for all i in the set {0, 1, ..., L}

(1) P(i) is in a region statement with <mode>
value M(i), and

(2) the functions must precede (P(i), P(itl mod
L)) and conflict (M(i), M(i+l mod L))

evaluate to true.

Proof: The "if" part follows immediately from our
definitions. The '"only if" part stems from the
following fact: if we trace backwards over the
must precede and conflict relations on a finite
set of processes, we must eventually either return
to a process which has already been visited
(thereby showing the presence of a cycle), or else
we will arrive at a process i for which there are
no processes j such that must precede (j, i) =
true and processes i and j are in conficting
region statements. In this latter case there is
no cycle, but process i can enter 1its
ecritical-section> and there is no deadlock.

We must establish several ground rules for
manipulating faulty processes so that we will have
a common convention with which to work. In
addition to assuming that a failing process does
not behave '"maliciously," e.g. it sends off

spurious interrupts to the remaining operational
processes, we further assume that we have some
reliable mechanism for determining whether a

particular process has failed. A process can be
thought of as emitting a “carrier signal"; when
the signal dies, the process has failed.

Processes which . fail while
remain there until
them so that

on the queue
some external device repairs
they can eventually enter their

‘degradation in system performance.

-function. Thus

. Because

‘critical sections. We adopt this convention on
the basis of its being the most general scheme for
dealing with the failure of enqueued processes.
"Most general," in the sense used here, means the

ability of this scheme to simulate any other
scheme. This generality arises from the
flexibility of scheduling provided by the

must precede. For example, we could easily alter
the value of -must precede to effectively ignore
the presence of a failed process on the queue. Of
course, we are assuming that in such a situation
the values of the arguments to must precede can be
determined despite the 1loss of accessibility to
data that has been stored by malfunctioning
processes.

Processes which fail while executing their
critical sections can block many other processes
with which they conflict, thereby causing serious
We will assume
such processes are to be removed from their
critical sections by the external mechanism before
being repaired and returned to normal operation.

Note that once in its critical section, a process

is beyond the effects of the must precede
we do not have the run-time
flexibility we had when dealing with the failure
of enqueued processes, and we appear to be quite
rigidly bound by whatever scheme we choose for
servicing processes which fail in the midst of

their critical code.

It would be unreasonable to assume that a
process can be made to stop, perform some desired
operation, and resume unless it is wunder our
control. Thus we camnot expect the cooperation of
processes which are executing their critical
sections or non-critical sections. The only times
a process does come under our control so that it
can be made to perform synchronization tasks is
when it is waiting on the queue and leaving its
critical section.

concurrent computations are
inherently difficult to understand (and rigorous
mathematical proofs of their correctness are even
more difficult to comprehend), we will break down
the development of the algorithm into three steps.
In the first version, we deal with a sequential
program that will temporarily serve as our
scheduler and that is easy to comprehend. In the
next version, we transform the sequential program
into a parallel program. At this point we are

;halfway to our target program: control .of
instruction sequencing has been removed from the
central scheduler and 1is now managed by the

individual processes, but shared memory is still
utilized. In the final version, we convert this
parallel program into fully distributed code by
passing out the common storage locations among the
component processes. (For notational convenience,
we say 1 ==> j if conflict(i,j) = true and

must precede(i,j) = true.) .

There are several advantages to treating the
development of a distributed program as code
synthesis beginning with a simple statement of the
solution rather than as a programming task
followed by a verification phase. Not only are

of progtams (especiaily parallel programs)
difficult

proofs
difficult to devise, they are almost as

to understand due to their ad hoc nature. Even if
the rules of verification could be formalized,
mechanical verifiers invariably suffer from.

extremely poor efficiency, as the task they are
meant to perform is almost surely intractible.

Synthesizing code by means .of simple
transformations need not require a major effort,
just as the compilation of high 1level sequential
‘langu1ges into machine level code can be
accomplished efficiently and in a straightfoward
manner (presumably because this is a well
understood task). Furthermore, programming
"techniques demanding verification suffer because

t is difficult to build each new program upon old
programs. Instead, many papers dealing with
parallel processes seem to begin afresh, defining
low level features, expanding upon them, and
finally verifying what has been developed. On the
.other hand, synthesis begins with a small
collection of requisite parameters, “and modifies
these to mesh with the low level features of the
system in a top-down fashion.

Version 1

In this initial version, we are dealing with

a very simple sequential program. The scheduler
exists as a separate routine (which we will
presently assume is immune to failure), and

governs the operation of all other processes. A
macroscopic view of the operation of ;he scheduler
is given by the flowchart in Figure 1.

There is one very important issue that we
have avoided so far: how do we deal with two or
more processes that simul taneously begin execution
of region statements? Or in terms of our system,
how do we treat processes that signal their
intention to interact with the scheduler when the
scheduler is already busy servicing some other
process? Before proceeding with our description
of the algorithm, we must put this issue to rest
by establishing a method for determining the
relative ordering of such processes.

Optimaily, we would 1like the scheduling
routine to service processes in the same
chronological order these processes signal the
scheduler. One solution to this problem,
performed at the implementation level of the
‘system, would be to let each process dispatch an
interrupt when it wants the attention of the
scheduler. The scheduler, in turn, serves as our
interrupt handler, and it disables all other
jinterrupts until the process requesting attention
is fully serviced. In this solution, we have’
pushed the problem back onto the hardware
mechanism. :

Another possible solution might be to 1let
each process maintain a timer while it is awaiting
the attention of the scheduler. The timer could
be a mechanical clock, or we could let the program
idle in a loop. On each iteration of the loop, a
variable TIMER would be incremented by one. When
the scheduler becomes available, it picks the
process whose timer indicates the longest wait.

This solution suffers several drawbacks.
Depending upon the response time of the scheduler,
the value stored in the timer could grow
unboundedly 1large. Even worse, we are dealing
with an asynchronous system, so the timer may not
reflect a true measure of the waiting time (though
if we assume a finite bound on the speed of one
process relative to another, we are guaranteed
that all processes will eventually command the
attention of the scheduler).

In both of these solutions, we have relied
upon an external agent to assume the burden of the
problem. Is it possible to avoid the wuse of an
external device entirely? We maintain the answer
is no. In any realistic system, there will be a
lower bound on the 1length of time that can be
measured. If two events occur within this time
span, we are faced with the problem of taking
these seemingly simul taneous events and
determining which of them actually came first.
What choice do we have, but to rely upon an
external arbiter to resolve this dilemma?
Hopefully, such an arbiter would either be capable
of measuring time on a more refined basis, or
would have some other information, unknown to us,
for ordering events.

In our system, the lower bound for measuring
time is the maximum response time of the
scheduler. What we have done, in effect, is to
treat time as a resource, and to insist that

.mutual exclusion be maintained on this resource at

those points in time when a process is interacting
with the scheduler. We note in passing that many
systems that have been described in the literature
finesse the issue of simultaneity by assuming the
availability of indivisible or atomic operationms.

Version 2

Continuing with the synthesis of our final
program, we now '"snip" the control mechanism to
eliminate the explicit scheduler. The scheduler,
which is still failure-free, can instead be
thought of as existing only in an conceptual form,

transmitting instructions to the individual
processes. By this we mean that the scheduler
issues an instruction which all the processes

compete for and execute. The execution of such an
instuction is finished when all the processes have
completed their portions of the code, or have
failed. The result is a parallel program which
utilizes shared memory.

In reality, each process will have a copy of
the scheduler. These individual copies will
operate in asynchronous parallel manner by using
a "mutual handshake" concept. When one component
of the scheduler finishes some instruction, it
polls the other components to determine if they
have finished their respective instructions, and
waits until they have done so before proceeding
with the next instruction. Setting a flag at the
beginning and end of each instuction would be a-
simple mechanism for determining whether or not:
each process had finished its scheduling
instuction. Figure 2 illustrates a sample
instruction for enqueuing a process that begins

executing a region statement.

We also begin to decompose the queue at this
point. Instead of having one process, the common
scheduler, store the configuration of the enqueued
processes, we now let each component process
remember its location within the queue. The
processes on the queue will be strung together in
a linear sequence by a set of multiple pointers.
Each process contains s-element arrays BEFORE and
AFTER. The value of BEFORE[i] is the identifier
of the process which arrived on the queue i
arrivals before the process in which this array is

stored. AFTER has the complementary meaning. We
will sometimes subscript a variable with index i
to emphasize that this variable is 1local to

process i. Figure 3 provides a global view of the
structure of these arrays.

The purpose of the multiple links between
processes 1is twofold. First, should a process
fail, we can still determine which processes

follow it or precede it on the queue simply by
following an alternative link around the
malfunctioning process. And second, the

useful for
Many previous
problem assume

redundancy of these pointers can be
detecting the failure of processes.
solutions to the critical section

that when a process fails, it turns on some sort
of signal that beacons its failure to the
remaining functional processes, so that the

operation of these processes will not be affected.
‘Clearly this is not an entirely realistic
assumption. We note that if BEFORE [j] = k and
i
*AFTER [j] does not equal i, then
k

likely that either or both of processes i and k
have failed. Further tests involving comparisons
with links from other processes could aid in
pinpointing the exact identity of the
malfunctioning process.

it is quite

Version 3

In the third and final version of our
routines, we are ready to eliminate the scheduler
completely and to distribute both the memory and
control mechanism to the individual processes.
Each process has a copy of the scheduler and can
be thought of as issuing instructions to itself.
The processes then operate in conjuction to
determine which instructions should be executed
and when,

Possibly the first feature of version 2 that
strikes the reader is that memory management has
been almost entirely divided among the constituent
processes. This division of memory management has
been one of our prime objectives from the
beginning, for in order to conform to the
definition of a distributed system and reap the
fault-tolerant capabilities such systems have to
offer, we must insure that individual processes
perform write operations only on their own local
memories. An examination of the instructions of
version 2 reveals ‘that all of the instuctions
cause process i to alter only the contents of its
own memory.

We are not quite finished, however, due to
the memory requirements that would result from a
naive implementation of the instructions. A
restriction we have placed on our system, along
with the need for a distributed control mechanism,
is that each process use a limited amount of
memory. In other words, each process should have
an address space whose size is independent of n,
the number of processes. Nearly all of the
instructions obey this property, the sole
exception being the deadlock-test operation.

The Cycle Theorem tells us that testing for
‘deadlock is equivalent to testing for the presence
of cycles in the ==)> relation. Phrasing this
another way, a deadlock will exist if and gply if
some process p obeys the relationship p ==> p,
where s is the (non-reflexive) transitive
closure of ==)>, A deterministic algorithm for
computing the transitive closure on n objects will
undoubtedly proceed by following the ==> relation
from one object to the next and backtracking where
necessary. To prevent some sequence a ==> b ==> ¢
=> ... ==> 2z of processes from being examined
repeatedly, it appears necessary to keep a record
of the oprocesses along such chains that have
already been scamned and need not be re-examined.
The number of markers needed to maintain this
record yields 0(n) space complexity in the worst
case. Linear space complexity is unfortunate from
our point of view, for even though an amount of
memory proportional to n will be needed to test
for deadlock, no single process can directly
utilize that much space. Thus each of the n
processes must devote a constant amount of memory
toward executing the deadlock-test instruction.

To see if process i has caused a deadlock,
process 1 turns a flag CYCLE to ON. Each process
k other than i checks to see if there is a process
j such that CYCLE = ON and j ==> k. If so,

J
process k sets CYCLE

k
link in the potential deadlock cycle. Eventually,
either no more processes can set their values of
CYCLE to ON (in which case there can be no
deadlock) and the test ends, or some process k
such that k ==> i sets CYCLE to ON, and process i

k

notes the completed cycle and announces the
presence of a deadlock. This deadlock check
algorithm is outlined by the flowchart in Figure
4.

to ON, establishing one more

An analysis of the
deadlock-test instruction
in either of two circumstances: more than the
designated number of consecutive processes fail
simultaneously (in which case the remaining
operational processes will not be able to assume
responsibility for all of their malfunctioning
counterparts), or all the processes on the queue
fail simultaneously. However, neither of these
conditions is too important. We have ruled out
the first case (or at least know the probability
of its happening). In the second case, there are
no operational processes on the queue, so that

requirements for the
shows that it can fail

-none could possibly enter their critical sections,

and the existence of a deadlock 1is therefore

inconsequential.

we have been very 1liberal in
allowing the wuser tc risk potential deadlock
situations. As a result, our deadlock detection
routine incurs a great deal of run-time expense in
the form of process cross-talk. One possible
alternative to the scheme
somewhat more conservative in nature. Instead of
permitting the possibility of deadlock at
compile-time and checking for 1its presence at

Note that

run—time, we disallow definitions of must precede
that would allow a deadlock to develop when
certain combinations of processes are enqueued.

This compile-time check is simple: we assume all
processes are on the queue, and use our deadlock
tester to see if a cycle is present. If no cycle
exists wunder these circumstances, no cycle can
ever exist, and the system is guaranteed to be
deadlock-free. Otherwise, the wuser is informed
that deadlock may develop in the future. Thus we
need to test for deadlock only when must precede
changes, and not whenever a new process enters the
queue .

FAILURE ANALYSIS

One drawback of our system is that wunder

extreme circumstances the entire system may fail.
Such a situation would arise 1if groups of
operational enqueued processes were separated .by

so many failed processes that the former could not
use the information contained in BEFORE and AFTER
to derive the relative ordering of the groups. If
each of these arrays has s elements, at least 2s
consective processes on the queue must be down at
the same time for the system to collapse. The

probability of such a failure occurring is given
by the formula
n-s-1 [i/s+1] i-js ¥
1+ 3 [(p-Dp]
i=0 j=1
s n-i-s-1
*(1-p)ep - (1-p)
where p is the probability that an individual

process will be nonoperational at any particular
moment. By making s as large as we desire, this
probability becomes arbitrarily small.

CONCLUS IONS

We have demonstrated a solution to the
critical
that satisfies the stated design requirements:

1) It permits arbitrary processes to
conflict/not confict depending upon the particular
critical regions they are attempting to enter.

2) It allows granting access to critical regions
based upon an arbitrary scheduling function. The

presented here is.

‘allow the
section problem for distributed systems

critical
used for

order of requests for entering the
regions is maintained and can be
scheduling purposes.

3) All variables involved in the synchronization
process assume values from a finite range.

4) All processes need to store only a small

amount of data to maintain the synchronization
scheme. By "small" we mean an amount that is
independent of of the number of processors in the
system.

5) The failure and subsequent
individual process or even a

restart of any
reasonably small

subset of processes will not cause a widespread
system malfunction.
6) The creation of a cycle of

must-precede-related processes and the resulting
deadlock can be detected, though we do not specify
what course of action should be taken from that
point on.

Most importantly, we have demonstrated a

:technique for transforming an easy-to-understand

sequential program into a
Each step of the
straightforward. We have

distributed program.
transformation is reasonably
attempted to find

natural lines along which to decompose our
program. With a greater effort, we might hope to
formalize the transformation process, possibly to

the point where it could be mechanized.

Our results point to several other areas that
should be examined. For example, we have
described one notion of deadlock, when in fact
there exists another rather obvious form of
deadlock with which we have not dealt. If a
process 1is waiting on the queue for its when
condition to turn true, but no other conflicting

process has yet arrived which can alter this when
condition, then this process, along with all
enqueued conflicting processes which it

must-precede, will sit idle. Determining whether
a process will alter any variables and thereby
change when conditions is recursively undecidable,
so it may not be feasible to build a mechanism to
accurately detect or correct this type of
dead lock. Is this an important consideration
among real parallel routines? If so, will
heuristic deadlock testers suffice to make this a
negligible problem?

Furthermore, we have been able to develop a
reasonably simple algorithm by passing the details
of scheduling, in the form of conflict and
must-precede relations, to the user. While this
gives the user a great deal of flexibility, this
flexibility must be accompanied by a certain
measure of responsibility. Is all this
flexibility necessary? Or must the user pay for
it in terms of the extreme care taken to program
scheduling relations? And are there techniques he
might employ developing these relations that would
synchronization protocols to execute
with greater efficiency?

Another area for further study centers around
the implementation of the queue. Our
multiply-linked list is a "stretched-out" data
structure, in the sense that it does not require a
large set of malfunctioning processes to form a

cut set and thereby cause the system to fail. Are
there alternative data structures which require a
larger cut set to separate and therefore present a
lower probability of system failure? And exactly
what would be the tradeoff between the improved
reliability of these structures and the increased
conplexity and reduced efficiency of the code for
the critical section problem?

Mark R.
related

Acknowledgements: Prof.
sone useful suggestions
analysis. Prof. Alan J. Perlis
very insightful comments upon the
limitations of parallel systems.

Brown provided
to the failure
made several
nature and

REFERENCES

[PBK72] Per Brinch-llansen, "A Comparison of Two
Synchronizing Concepts," Acta

Informatica, Vol. 3, Fasc. 1, 1972, pp.
190 - 199.

[PBH73a] Per Brinch-lansen, "Concurrent
Programming Concepts,” ACM Computing
Surveys, Vol. 6, No. 4, Dec. 1973, pp.
223 - 245,

[PBH73b] Per Brinch-lansen, Operating

Principles, Prentice-Hall,
Cliffs, New Jersey, 1973.

System
Englewood

[deB] "Additional Comments on a
Concurrent Programming
ACM, Vol. 10, No. 3,

137 - 138.

N.G. deBruijn,
Problem in

Control," Comm.
March 1967, pp.
[cH] R.H. Campbell and A.N. Habermann, "The
Specification of Process Synchronization
by Path Expressions," Operating Systenms,
Lecture Notes in Computer Science, Vol.
16, Springer-Verlag, 1974, pp. 89 - 102.

[EWD65] E.W.
Concurrent
ACM, Vol.

569.

Dijkstra, "Solution of a Problem in
Programming Control," Comm.
8, No. 9, Sept. 1965, p.

[EWD74] E.W. Dijkstra, "Self-stabilizing Systems
in Spite of Distributed Control," Comm.
ACM, Vol. 17, No. 11, Nov. 1974, pp.

643 - 644,

[EM] M.A. Eisenberg and M.R.
"Further Comments on Di jkstra’s
Concurrent Progranming Problem,"” Comm.
ACM, Vol. 15, No. 11, Nov. 1972, p.

999.

McGuire,

[ANH]

[CARH71]

[CARH74]

[HPK]

[DEK]

[LL74]

[LL76]

(PF]

[RP]

A.N. Habermann, "Path Expressions,"
Technical Report, Dept. of Computer
Science, Carnegie-Mellon University, June
1975.

C.A.R. Hoare, '"Towards a Theory of
Parallel Programning," International
Seminar on Operating System Techniques,
Belfast, Northern Ireland, Aug. - Sept.
1971, Also in Operating Systems
Techniques, Ed. by C.A.R. Hoare and

R.H. Perrott, Academic Press, 1972, pp.
61 - 71.
C.A.R. Hoare, "Monitors: An Operating

System Structuring Concept," Comm. ACM,
Vol. 17, No. 10, Oct. 1974, pp. 549 -
557.

H.P. Katseff, "A Solution to the
Critical Section Problem with a Totally
Wait-free FIFO Doorway," Internal
Memorandum, Computer Science Division,
University of California, Berkley.
Extended abstract in "A New Solution to

the Critical Section Problem,” Proc. of
the Tenth Annual ACM Symp. on Theory of
Computing, May 1978, pp. 86 - 88.

D.E. Knuth, "Additional Comments on a
Problem in Concurrent Programming
Control," Comm. ACM, Vol. 9, No. 5,
May 1966, pp. 321 - 322.

L. Lamport, "A New Solution of
Dijkstra’s Concurrent Programming
Problem," Comm. ACM, Vol. 17, No. 8,
August 1974, pp. 453 - 455.

L. Lamport, "The Synchronization of
Independent Processes," Acta Informatica,

Vol. 7, Fasc. 1, 1976, pp. 15 - 34.
G.L. Peterson and M.J. Fischer,
"Economical Solutions for the Critical

Section Problem in a Distributed System,"
Proc. of the Ninth Annual ACM Symp. on
Theory of Computing, May 1977, pp. 91 -
97.

R.L. Rivest and V.R. Pratt, "The Mutual
Exclusion Problem for Unreliable
Processes: Preliminary Report," Proc.
of the 17th Annual Symp. on Foundationms
of Computer Science, Oct. 1976, pp. 1 -

8.

/
{

when
must precede
changes

deadlock test

PARALLEL-AWAIT

when
process p

statement

begins region

when
process p
leaves critical
section

failure

when
process p
returns from

put p on if any new if p can enter
tail of queue process can enter critical section
¥) critical section, let it; otherwise
if any processes let them re-insert p
can enter critical deadlock test 1 into the queue
section, let them

let p continue
with non-critical
section

Figure 1: Version 1 Common Scheduler

|

when process j
begins execution
of region statement

D

no yes

determine the distance, m
from process i to the
end of the queue

BEFOREi := last s

elements on the queue

Figure 2: Version 2 Instruction for Process i : Enqueue Process j.

process:

n-2 n-3 ... n-s-1
n-1 n-2 n-s
Figure 3:

yes

CYCLE, :=
i

ON

PARALLEL-AWAIT

—_—r

when some
nearby
process k
fails

assume the
operation
of process k

_J

\

—

T

Head of Queue

Tail of Queue

l

n-2 n-1 n

n-1 n

n

Structure of the BEFORE and AFTER arrays.

no

PARALLEL-AWAIT

(]

\

vee 8
2 3 4 s+1
3 4 5 s+2

n-s+l n-s+2 n-s+3 n

when when it is when some when

CYCLEk = ON no longer nearby . CYCLEk = ON -

and process and when
possible fails .

k ==> i k ==> 1 process j
for any finishes its
process k deadlock test
to set

announce assume the

presence CYCLEk to ON operation CYCLEi"= ON

of of process k

deadlock \\» 4/)

(no
deadlock)
Figure 4: Version 3 instruction for process i to

determine if process j is caught in

a deadlock.

10

