Interest in the numerical solution of acoustic inverse scattering problems arises in a number
of areas. Examples include medical diagnostics, non-destructive industrial testing, geophys-
ical prospecting for petroleum and minerals, and detection of earthquakes.

The highly nonlinear and oscillatory nature of the problem is one of the major difficulties
one encounters in the construction of effective inversion algorithms. Schemes based on
global or local linearization methods, or nonlinear optimization techniques, tend to work
only when the index of refraction is almost constant. They develop serious convergence
problems whenever the perturbation of the index of refraction increases.

Limited successes in the solution of the inverse problems have been achieved only in one di-
mensional cases (Gelfand-Levitan and layer striping methods are among the most notable).
These methods are generally unstable numerically since the procedures used to calculate
the index of refraction are ill-conditioned.

We present a method for the solution of inverse problems for the one dimensional Helmholtz
equation. The scheme is based on a combination of the standard Riccati equation for the
impedance function with a new trace formula for the derivative of the index of refraction,
and can be viewed as a frequency domain version of the layer-stripping approach. The
principal advantage of the procedure is that if the scatterer to be reconstructed has m > 1
continuous derivatives, the accuracy of the reconstruction is proportional to 1/a™, where a
is the highest frequency for which scattering data are available. Thus, a smooth scatterer
is reconstructed very accurately from a limited amount of available data.

The scheme has an asymptotic cost O(n?), where n is the number of features to be recovered
(as do classical layer-stripping algorithms), and is stable with respect to perturbations of
the scattering data. The performance of the algorithm is illustrated by several numerical
examples. Generalizations of this approach in two dimensions are discussed.
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Chapter 1

Introduction

1.1 Background

During the last several decades, the inverse scattering problems for the Helmholtz
equation have enjoyed a remarkable degree of popularity, both in pure and ap-
plied contexts (see, e.g., [1], [2]). A number of algorithms has been proposed
for the numerical treatment of these problems, in such environments as medical
diagnostics, non-destructive industrial testing, anti-submarine warfare, oil explo-
ration, etc. In the design of such a scheme, three major problems have to be
overcome.

1. The problem is highly non-linear, even in its purely mathematical form. In
the one-dimensional case, the problem can be reduced to a linear one, but the
procedure is not stable numerically.

2. Once a mathematically valid inversion scheme is constructed, it might or
might not be stable numerically. In fact, no numerically robust schemes seem to
exist at this time, except in one dimension.

3. The cost of applying the scheme on the computer tends to be extremely high,
except in the one-dimensional case.

The existing attempts to solve inverse scattering problems for the Helmholtz
equation can be roughly subdivided into four groups.

1. Linearized inversion schemes, attempting to approximate the inverse scattering
problem by the problem of inverting an appropriately chosen linear operator (see,
for example, [2]).

2. Methods based on the non-linear optimization techniques, attempting to re-
cover the parameters of the problem iteratively, by solving a sequence of forward
scattering problems (see, for example, [3], [4], [5]).

1



2 CHAPTER 1. INTRODUCTION

3. Gel'fand-Levitan and related techniques, converting the Helmholtz equation
into the Schrodinger equation, the inverse problem for the latter being reducible
to the solution of a linear Volterra integral equation (see, for example, [1], [6]).

4. Techniques based on the so-called trace formulae, connecting the high fre-
quency behavior of the solutions of the Helmholtz equation with the local values
of the parameters to be recovered (see, for example, [7], [8], [9]).

The approach of this thesis falls into the category 4 above, and is different
from the preceding work in the choice of the trace formula (see Theorem 4.19
in Section 4.3). The new trace formula leads to an algorithm with superior
convergence properties for smooth scatterers (see Chapter 5 below), and the
resulting numerical procedure is extremely stable and efficient.

1.2 Thesis Organization

Chapter 2 contains the exact formulation of the problem to be addressed, to-
gether with the relevant notation. In Chapter 3, we summarize the background
facts to be used in this thesis. Chapter 4 is devoted to the development of the
mathematical apparatus used to construct the algorithm, and in Chapter 5 the
scheme itself is presented. In Chapter 6 we present several numerical examples
demonstrating the actual performance of the procedure. Finally, in Chapter 7
we discuss generalizations of the approach to higher dimensions.




Chapter 2

Formulation of the Problem

2.1 The Helmholtz Equation

Following the standard practice, we will be considering the one dimensional scalar
Helmbholtz equation

¢"(2,k) + k(1 + g(2))¢(, k) = 0. (2.1)

Unless specified otherwise, we will be assuming that ¢ € ¢3([0,1]), i.e., that ¢ is
twice continuously differentiable everywhere, and that ¢(z) = 0 for all z & [0, 1].
Defining the function n : R — R by the formula

n(z) =4/1+ g¢(z), (2.2)

we will denote by ng, n; the minimum and maximum of n respectively, and
assume that 0 < ng so that

no <n(z) =1/1+¢(z) < ny. (2.3)

For any complex k, we consider solutions of the Helmholtz equation ¢4(z, k) and
é—(z, k) which have the form

¢+(x) k) = ¢inc+($a k) + ¢scat+($, k), (24)
¢-(2,k) = Ginc—(7,k) + bocar—(z, k) (2.5)
with
¢inc+(xa k) = eik'az (26)
¢inc— (.’IZ, k) = e—zka: (27)

3




4 CHAPTER 2. FORMULATION OF THE PROBLEM

and @scatt, Pscat— both satisfying the outgoing radiation boundary conditions

¢;cat(0’ k) + ik¢scat(07 k) = 0, (28)
lscat(l’ k) - ik¢80at(1’ k) = 0 (29)

Normally, @ine+ and ¢in.— are referred to as right-going and left-going incident
fields respectively, and @scqr+ and ¢se.— are called scattered fields corresponding
to the excitations ¢+ and ¢;,.—. The sum of an incident field and its corre-
sponding scattered field is called the total field.

Remark 2.1 Throughout this thesis, given a function f(z,k), we will take the
liberty to denote % by f'(z,k), so that the derivatives in the formulae (2.15),
(2.16) are with respect to x.

As is well-known, for any complex k, the scattered fields ¢sequeq(z, k) and
Gscat—(z, k) satisfy the nonhomogeneous Helmholtz equations

Pocat (T, k) + K1+ q(2))Pscar+(z, k) = ”‘kz‘Z(x)eikma (2.10)
¢,s,cat-—($7 k) + kz(l + Q(I))¢scat—($, k) = “k2Q($)6—ikm. (211)

Since g(z) = 0 for all z & (0,1), it is easy to see that for any k € C there exist

two complex numbers p4 (k), u—(k), identified as the reflection coeflicients, such
that

bocat(T,k) = py(k)-e ™, for all £ <0, (2.12)
bscat(z, k) = p_(k)-e*®. for all z >1, (2.13)

due to (2.10), (2.8) and (2.11), (2.9) respectively.

2.2 The Impedance Functions
Denote by C'* the upper half of the complex plane so that
Ct = {k € C|Im(k) > 0}. (2.14)

For any k € C*, the impedance functions pi(z,k),p_(z,k) associated with
é4+(z, k), ¢_(z, k), respectively, are defined by the formulae

p+(z,k) = ;,;:Z—f% (2.15)

¢_ (2, k)

P B = Sk by

(2.16)
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Remark 2.2 For x outside the scatterer, it is easy to obtain explicit expressions
Jor py,p— in terms of reflection coefficients py, p—. Indeed, combining (2.4) with
(2.12), (2.5) with (2.18), we have

dr(z, k) = e* 4 py(k)e™™ for all 2 <0, (2.17)
¢_(z,k) = e * 4 pu_(k)e*, for all z > 1, (2.18)

which can be reformulated as

di(z, k) = e* 4 b (ke Fet+ ) for gll £ <0, (2.19)
¢—(z, k) = e L b_(k)eFto-0) for all z > 1. (2.20)

with oy (k),a_(k) real numbers and by(k) > 0, b_(k) > 0, for any k € C.
Consequently,

1 — b4 (k) + 9264 (k) sin(kz — ay(k))

P4 R) = T (6 95, (k) cos(ke — ay () (221)
for all <0, and
p_ (2, k) = 1 — 0% (k) + i2b_(k) sin(kz — a_(k)) (2.22)

1+ 02 (k) + 2b_(k) cos(kz — a_(k))
forall x > 1.

For any complex number k, the boundary value problems for ¢,,¢_ can be
reformulated as initial value problems. More specifically, formulae (2.4), (2.5),
(2.12) and (2.13) imply that there exist such complex constants o, 8, depending
only on k, that

di(z, k) = a-e*, forallz>1, (2.23)
¢_(z,k) = B-e™* forall z<0. (2.24)

Furthermore, a, 8 are nonzero because, e.g., if 8 = 0, then ¢_(0,k) = ¢’ (0,k) =
0, according to uniqueness theorem on initial value problems, ¢_(z,k) = 0 for
all z € R, i.e.,

¢scat—(a:7 k) = _¢inc~(x7 k) = _e_ikza (225)

contradicting to (2.13). Clearly, formulae (2.23), (2.24) can be used as initial
conditions for equation (2.1) to (uniquely) determine the total fields ¢, ¢_.

Remark 2.3 While the existence and uniqueness of the functions ¢,,¢_ are
quite obvious for any complex k, the functions pi(z,k),p_(z,k) are only well-
defined when Im(k) > 0, and the proof of this fact is somewhat involved (see
lemmas in Section 4.1 below).
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Remark 2.4 It is easy to see that the impedance functions py,p_ are indepen-
dent of the nonzero coefficients o, f in (2.28), (2.24). Therefore, for simplicity,
the initial conditions (2.23), (2.24) are reformulated as

di(z, k) = e* forall z > 1, (2.26)
¢_(z,k) = e for al <0 (2.27)

The functions ¢4, d_ as solutions of equation (2.1) subject to boundary condi-
tions (2.26), (2.27) differ from those subject to boundary conditions (2.23),
(2.24) by constants.

The classical inverse scattering problem for the equation (2.1) is as follows:
Problem 1. Given the impedance function p(0,k) for all £ € R, reconstruct
the potential ¢ for all z € [0, 1].

It is well-known that this problem has a unique solution (and in the class
of functions ¢ much broader than ¢3([0,1]), and several constructive schemes for
that purpose have been proposed, most notably the Gel’fand-Levitan and related
methods. However, in applications the impedance function p, (0, k) is measured
with a finite accuracy and at a finite number of (usually equispaced) values of the
wavenumber k. Therefore, the following problem is more relevant in numerical
applications

Problem 2. Suppose that the impedance function py (0, k) is given at a finite
number of frequencies k;,j = 1,2,..., N defined by the formulae k; = j - h, with
h a positive constant. Suppose further that the values py (0, k;) are given with
the relative accuracy e. Reconstruct the potential ¢ in the interval [0, 1] with the
error that rapidly decreases with increasing N and decreasing h.

This thesis is devoted to the construction of an algorithm for the solution of
the Problem 2.

Observation 2.5 The value of impedance function p, at x = zo, 20 < 0 can be
obtained from ¢, (zo,k) in the following manner. Assuming that at x < 0, the
total field ¢, (z, k) is given by (2.17), from which py (k) can be obtained

wi(k) = (64 (20, k) — eikx") e, (2.28)
the value of the impedance function p, at x = z¢ is then

¢4 (20, k) 1 — py(k)e”*ee

P+ (z0: k) kg (zo, k) 1+ oy (k) e2ekeo (2:29)
eikzo

= 22— —1. 2.30

¢+($07 k) ( )
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Similarly, for any z; > 1,

1 _ M_(k)e2ik$1 _ e—ik(l,‘]

) = T e = P k)

~1. (2.31)




Chapter 3

Mathematical Preliminaries

In this chapter, we summarize several well-known mathematical facts to be used
in the rest of this thesis. These facts are given without proofs, since Lemmas 3.1
3.8 are found in standard textbooks (see, for example, [10], [11], ) and Lemmas
3.9-3.6 are easy to verify directly.

3.1 Basic Lemmas

The following basic facts are tailored and stated in such a way that they will be

directly used in the existence and convergence proofs, see Chapter 4 and Section
5.2.

Lemma 3.1 Suppose that A is a linear mapping C[0,1] — C[0,1] and that
|All < p, with p a real number such that p < 1. Then for any g € L*0,1],
the equation

p=Ad+g (3.1)

has a unique solution, which is the sum of the series (known as Neumann’s series)

p=> Alyg. (3.2)
7=0
Furthermore,
n n+1
: p
16 =2 Agll < T—llgll- (3.3)
=0 P

Lemma 3.2 Suppose that f € cg'([0,D]) (i.e., f has m continuous derivatives
and f(x) =0 for all z ¢ (0,D)), and that f(™ is absolutely continuous. Suppose
further that g € ¢™Y(R), g™ is absolutely continuous and there exist real

8
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number a > 0 such that ¢'(z) > a for all zx € R. Then there exists a real ¢ > 0

such that
c

< e

/()D fz)e* s gy (3.4)

for all complex k such that Im(k) > 0.

Lemma 3.3 Suppose that f € ¢/(R) with | a nonnegative integer. Suppose fur-
ther that fW(0) = 0 for 0 < j < I, fO is absolutely continuous. Then there
exists a positive number ¢ such that

e . L1\ 1\
ik(z—t) 32 _ _ - -1 i ! .
f et = =3 () @ () U@+ k) (9
with b: R x Ct — C an absolutely continuous function of x € [0,1] such that
|b(z, k)| < c. (3.6)

for all x € [0,1], k € C*. Furthermore, if f(z) = 0 for all z > D with D a
positive number, then

|b(z, k)| < c. (3.7)
for all (z,k) € R x C*

Lemma 3.4 Suppose that a : [0,1] — R and b: [0,1] — C are two continuous
functions, and that a(z) > 0, for all z € [0,1]. Then for any two solutions u and
v of the second order ODE

(a(z)¢'(z)) + b(z)¢(z) = 0, (3.8)
there exists a constant ¢ such that

a(z)(u(x)v'(z) — v(a)/(c)) = ¢ (3.9)

for all x € [0,1]. Furthermore, ¢ # 0 if and only if u and v are Linearly inde-
pendent. (The expression W(u,v) = u(z)v'(z) — v(z)u'(z) is referred to as the
Wronskian of the pair u,v).

Lemma 3.5 (Gronwall’s inequality) Suppose that u,v,w : [0,a] — R are three
continuous and nonnegative functions, satisfying the inequality

w(z) < u(e) + /0 " o(t)w(t)dt (3.10)
for all x € [0,a]. Then
w(z) < u(z) + /Ox u(t)v(t)eftz v gy (3.11)

for all z € [0, a].
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The following lemma is a special case of the general theorem about continuous
dependence on initial conditions and parameters of solutions of ODEs (see, for
example, [11]).

Lemma 3.6 Suppose that a : C — C is an entire function and that A : RxC —
C™™ is an n X n-matriz whose entries a;;(z,2),1,7 = 1,...,n are continuous
functions of x and entire functions of z for all x € R. Then for any z € C, the
differential equation

y'(z,2) = Az, 2) - y(z, 2) (3.12)
subject to the initial condition

y(0) = c(2) (3.13)

has an unique solution y(z,z) for all x € R. Moreover, y(z,z) is an entire
function of z.

3.2 Schrodinger Equation and Riccati Equa-
tion
Lemmas 3.7— 3.13 describe the basic facts about the Helmholtz equation and

its connections with the Schrédinger Equation and the Riccati Equation, in the
context of scattering problems.

Lemma 3.7 Suppose that Gy, : [0,1] x [0,1] — C is the Green’s function of the
boundary value problem

V"(z, k) + k*b(z, k) = 0, (3.14)
¥'(0,k) + iky(0,k) = 0, (3.15)
P'(1,k) — k(1 k) = 0. (3.16)

for any complex k # 0. Then the boundary value problem
P(x, k) + (K + 1(2))(e, k) = f(a, k) (3.17)
¥'(0, k) + ikp(0, k) = 0, (3.18)
Y'(1,k) —ikp(1,k) = 0. (3.19)

is equivalent to a second kind integral equation

0o, ) = = [ Gule, Dn(0)b(t, )t + g(z, b (3.20)

with f,g:[0,1] x C — C and g defined by the formula

oo k)= [ ' G, ) (1, B)dt. (3.21)



3.2. SCHRODINGER EQUATION AND RICCATI EQUATION 11

Lemma 3.8 For any complex k # 0, the Helmholtz equation
V" (z, k) + k*p(z, k) =0 (3.22)
with the outgoing radiation conditions (2.8) (2.9) has the Green’s function

1 ez’k(t—x)’ z < t,
Gr(z,t) = ﬂ{ ket 3>, (3.23)

Lemma 3.9 Suppose that ¢ : R — R is a ¢*—function such that ¢ > —1 for all
z € R. Suppose further that the functions n,z,S,n,g9 : R — R are defined by the

formulae
n(z) =4/1+ ¢(z), (3.24)

#(z) = /0 " n(r)dr, (3.25)
S@t) = (1+q(z(t)T (3.26)

S"(t) n'(z)
1 = T fnte)y?

= 1407 (¢~ T+ d@d@) - 204 97%@)) (327)

o) = 53 = 1@)- 1+ alo)? (3.29)
Finally, suppose that the function ¢ : R x C — C satisfies the equation
¢"(2, k) + k(1 + ¢(2)) - $(z, k) = f(2), (3.29)
and the function 1 : R x C — C is defined by the formula
(t, k) = (1), k)/S(t) = ¢z, k) - (1 + q(z))* (3.30)
Then the function 3 satisfies the Schrodinger equation
(8, k) + (K + () - (t, ) = g(2). (3.31)

at allt € R.

Remark 3.10 Lemma 3.9 provides a connection between the solutions of the
Helmholtz equation (3.29) and those of the appropriately chosen Schrédinger
equation (8.81). This connection will be used in the following chapter as an
analytical tool. However, it is not useful in numerical computations since the
connection between 1 and q (see (3.27)) is generally ill-conditioned.
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Corollary 3.11 Suppose that under the conditions of the preceding lemma that
g(z) =0 forallz ¢ (0,1). Suppose further that the functions ¥, ,_ : RxC — C
are defined by the formulae

it k) = ¢4(2(t), k)/S(D), (3.32)
bt k) = b (a(t) B)/S(2). (3.33)
Then ¥4, 1_ satisfy the ODEs
F(R) + (B +n0(1) - $4(t,k) = 0, (3.34)
YUt k) + (K +n(t) - -(t, k) = 0 (3.35)

subject to the boundary conditions

Yo (t, k) = E(k) - T (3.36)
for allt > Ty, and
P_(t, k) = et (3.37)
for allt <0 with Ty > 0, (k) # 0 defined by the formulae
T, = t(1) = A n(r)dr, (3.38)
k) = S(Ty)e*. (3.39)

Furthermore,

pelok) = ne)giatl 2 (3.40)
W, )
—tkyp_(t, k) 2ikn(z)

p—(z,k) = n(z) (3.41)

Observation 3.12 Suppose that g(z) = 0 for all z ¢ (0,1). Then according to
Lemma 3.9 and Corollary 3.11,

t = =z, (3.42)
Sty = 1, (3.43)

and consequently
¢4 (z, k) =i (1, k) (3.44)

for all x < 0. Now, suppose the function v, is defined by formulae (3.32),
(2.17). Defining the scattered field gty : R X C — C by the formula

"Z)+(t7 k) = eikt + 7vbsccnf+(t7 k)a (3'45)
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we immediately see that

¢scat+(t7 k) = /‘l’+(k) ) e—ikt (346)

forall z <0 due to (8.44), (2.17), (8.45). Finally, combining (8.45) with
(8.84), we observe that s,y satisfies the Schrodinger equation

—k2q(x et z(t)
Pt (8 k) + (k2 + 0(t))scar+ (t, k) = i q(S((tt))) ‘ (3.47)

subject to outgoing radiation conditions (2.8), (2.9) (the latter due to (3.46),

(3.56)).

Lemma 3.13 Suppose that under the conditions of the preceding lemma,

¢+($07k0) 7é 07 (3'48)
QS_(CC(),]C()) # 0 (349)

at some point (xo, ko) € R x C. Then there exists a neighborhood D of (zo, ko)
such that the impedance functions py,p_ satisfy the Riccati equations

pi(z, k) = —ik(pi(z, k) — (1+q(z)), (3.50)
p_(z,k) = ik(pl(z, k) — (1+ q(z)) (3.51)

for all (z,k) € D.
Observation 3.14 Combining formulae (2.23), (2.24), we easily observe that

pr(z, k) = 1, forallz > 1, (3.52)
p-(z,k) = 1, forallz <0, (3.53)

for all complex k # 0.




Chapter 4

Impedance Functions and Their
Properties

In this chapter, we investigate analytical properties of the impedance functions
P+, P—. Our principal purpose here is to formulate exactly and prove the following
three facts.

(1) For any & € R, the impedance functions p.(z, k), p_(z, k) are analytic func-
tions of k in the upper half plane C*t. Furthermore,

pi(z, k) = 1+4q(z)— % : % +O(k™), (4.1)
p_(.’E, k) = 4/1+ (I(.??) + qul_% : ;'k‘ + O(k_z), (4.2)

for all z € R, k € C* (see Theorem 4.14 below).

(2) For large real k, the difference between py and p_ is extremely small (it
decays like k=™, where m is the smoothness of the scatterer, see Theorem 4.18
below). The expressions (4.1), (4.2) are the first two terms in WKB expansions
of the functions py,p_, respectively.

(3) For any a > 0, and all € R, we have the so-called trace formula

¢(@) = 2+ 4(&) [ (sl B) ~ p- (e, Kk + 0@ D), (4.3)

with m the smoothness of the scatterer (see Theorem 4.19 below).

As often happens, the statements (1)-(3) above have extremely simple for-
mulations, and a transparent physical interpretation. However, their proofs are
technical and do not follow any simple physical intuition.

14
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4.1 Boundedness

The following five lemmas establish the basic properties of the impedance func-
tions py, p- introduced in Chapter 1. Lemma 4.1 is a technical one, describing
the behavior of ¢, ¢_ in the vicinity of k¥ = 0 in the complex plane. Lemma 4.2
describes the properties of the impedance functions p,,p_ near k = 0, Lemma
4.4 demonstrates the well-definedness of the impedance functions for real &, and
Lemmas 4.5 and 4.6 provide upper and lower bounds for the impedance func-
tions.

Lemma 4.1 Suppose that ¢ € ¢([0,1]) and A > 0 is a real number. Then there
exist three positive numbers §, o and (3 such that

Lo [g4(z, k) — 1] < ofk], (4.4)
2. |¢-(z,k) — 1| < alkl, (4.5)
3. ¢4 (2, k) — k| < BIE[, (4.6)
4. |¢l(z, k) +ik| < BIE[?, (4.7)
5. ¢'+(:l:,k) 7é 07 ( )
6. ¢_(z,k)#£0, (4.9)

Jor all real z € [—A, A] and complex k such that |k| < 6.

Proof. Since the proofs of this lemma for ¢, ¢/, and for ¢_, ¢’ are identical,

we only prove it in the case of ¢_,¢" . Defining two auxiliary functions ¢y, :
R x C — C by the formulae

¢1($,k) = ¢—(wak)_17 (4'10)
B, k) = &(0,h) ik, (@.11)

and combining (4.10), (4.11) with equation (2.1) and the initial condition (2.27),
we observe that the functions ¢, satisfy the linear first order ODEs

$1(z, k) = P(z,k) + ik, (4.12)
Piak) = —B(1+q(@)(1+ bz, b)) (4.13)
subject to the initial conditions
¢1(0,k) = 0, (4.14)
¥(0,k) = 0. (4.15)

We start with showing that there exist continuous functions M, N : R* x Rt —

R* such that, for any s € R, M(s,t), N(s,t) are monotonically increasing

functions of ¢ for all t € Rt and
|¢1 (:I: ’ k)l
|4 (z, k)]

M(A, |k|)[K], (4.16)

<
< N(A, k)] (4.17)
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First, we prove the estimate (4.17). Integrating (4.12) from 0 to z, we have

bu(z, k) = /0 “(ik + (L, B))dt, (4.18)

and substituting (4.18) into (4.13) and integrating the result of the substitution,
obtain

T t
w(e,k) ==k [ (1 +q(0) (1 + [k + 0, k))clr) dt.  (4.19)
Denoting [|¢(z, k)| by a(z,k) and observing that 1 + ¢(z) < n? (see (2.3) in
Section 2.1), we obtain
z i
a(z, k) < [k|Pn? (m + -;—x2|k| +[ [t k)drdt)
o Jo
1 T
< (kP2 (|:L~|+ §x21k|) 12 [((z ~ a(t, k) (4.20)
0
for any z € R. Gronwall’s inequality (see Lemma 3.5) implies that for any
z € [0, 4],
2,2 1, “ 1, L(a—t)?
a(z,k) < |kPn? <|x|—|——2—x |k|+/0 ]+ 5271kl (z — t)el dt)
< N(A, [k])IE (4.21)

It is easy to see that (4.21) is also valid for any z € [—A, 0], and we obtain the
estimate (4.17) with N(A, k) defined by the formula

1 z 1 1 2
N(A k)= sup o} <|x| + 52k + /0 1]+ 521kl — e dt) . (4.22)

We now turn our attention to the estimate (4.16). Substituting (4.17) into
(4.18), we obtain

|bu(z, k) <zl (Jk] + N(A, [k])|5]?)
< M(A,|k])|K|, (4.23)
with
M(A, |k]) = AL + [k|N(A, |E])), (4.24)

for all real z € [—A, A] and complex k, which proves (4.16).
Now, the estimates (4.5) and (4.7) easily follow from (4.16) and (4.17).

Indeed, since M(A,t) is a continuous, monotonically increasing function of ¢,
there exists a real ¢ such that

M(A,6)-6< 1. (4.25)
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Denoting M(A,6) by «, N(A,§) by 8 and observing that M(A,|k|), N(A, |k|)
are monotonically increasing functions of |k|, we have
61(z, k)| < M(A, [k|)|k| < M(A,8)|k| = alk], (4.26)
iz k) < NCAK)IE < N(A,8)[k| = Ik, (4.27)

from which (4.5), (4.7) follow immediately.
Finally, (4.9) is a direct consequence of (4.26) and (4.25). O

Lemma 4.2 Suppose that ¢ € c2([0,1]) and A > 0 is a real number. Then there

exists 6 > 0 such that the impedance functions py,p_ are continuous functions
of (z,k) for all real (z,k) € D with

D ={(z,k)|z € [-A, Al k€ C,k #0, k| < 8} (4.28)

Purthermore,
limp, (z,k) = 1, (4.29)
limp_(z,k) = 1. (4.30)

Proof. Due to Lemma 4.1, there exists a positive number § such that
d4+(z, k) £ 0, ¢_(z, k) # 0 for all real (z,k) € D. Therefore, the functions py, p_
are well-defined in D, and their continuity follows from the continuity of ¢,

'+, ¢, ¢_ and the formulae (2.15), (2.16). Finally, (4.29), (4.30) are direct
consequences of Formulae (4.4)- (4.7). O

Remark 4.3 While the impedance functions py,p_ are continuous in the vicinity
of k =0 in the complex plane, formulae (2.15), (2.16) fail to define p,,p_ at
k=0. We now can define py(z,0) = p_(2,0) = 1 for all z € R due to Lemma

4.2
Lemma 4.4 For any real k # 0 and all x € R

bi(z,k) # 0, (4.31)
¢y (z,k) # 0, (4.32)
¢_(z,k) # 0, (4.33)
¢ (z,k) # 0. (4.34)

Proof. Again, since the proofs of this lemma for ¢4, ¢/, and for ¢_, ¢’ are
identical, we only prove (4.33) and (4.34). Denoting the real part of ¢_ by u
and the imaginary part by v, so that

b-(a,k) = ulz,k)+iv(e, k), (4.35)
(a,k) = oz, k)+iv(z,h), (4.36)
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we observe that each of the functions u,v satisfies equation (2.1) (since the
coefficients of the equation are real). Combining the initial condition (2.27)
with (4.35), we immediately see that

u(z,k) = cos(kz), (4.37)
v(z, k) = sin(kz) (4.38)

for all # <0 and k£ # 0. Therefore, the Wronskian of the pair u, v is
W(u,v) =k, (4.39)

for any z € R (see Lemma 3.4), and u(z, k), v(z, k) can not be both zero, nor
can u'(z, k), v'(z, k), for any x € R and k # 0. Now, formulae (4.33) and (4.34)
immediately follow from (4.35) and (4.36) O

We have shown that the impedance functions py,p_ are well-defined for all
real k (see Lemmas 4.2, 4.4 and Remark (4.3)). Now, we turn our attention to
the well-definedness of the impedance functions on the upper half of the k-plane.
First we provide the lower bounds for p,,p_.

Lemma 4.5 For all x € R and any k such that Im(k) > 0,
Re(ps(a,k)) > nosin(arg(F)), (4.40)
Re(p_(z,k)) > ngsin(arg(k)) (4.41)

with 0 < ng < 1 the minimum of n(x) (see (2.3) in Section 2.1), and arg(k)
the argument of the complexr wave number k.

Proof. Since the proof of (4.40) and that of (4.41) are identical, we only
provide the latter. Observing that

Re(p_(2,k)) = p_(a, k) = 1 > nisin(arg(k)), (4.42)

for any Im(k) > 0 and all z < 0 (see (3.53) in Chapter 3), we will prove (4.41)
by showing that

% (Re(p-(z,k))) >0 (4.43)
for any > 0 such that
0 < Re(p-(z,k)) < ngsin(arg(k)) (4.44)

(obviously, 0 < arg(k) < « for any k such that Im(k) > 0).
We will denote by a,b,u, v the real and imaginary parts of k and p_ respec-
tively, so that

k = a-+ib, (4.45)
p-(,k) = u(z,k)+iv(a, k), (4.46)
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with b > 0. Now, we can rewrite the Riccati equation (3.51) for p_ in the form

u' = b(v?—u?+n?) — 2auv, (4.47)
v = —a(v?—u®+n?) - 2buv. (4.48)
We observe that Zu(z, k) is a function of u, v given by the formula
ox
%u(m, k) = f(u,v) = b(v? — u® 4+ n?) — 2auv. (4.49)

Denoting the interval [0, ng sin(arg(k))] by I, and defining the region D C R x R
via the formula

D = {(u,v)|lu € I,v € R}, (4.50)
we observe that
(m)inD f(u,v) =b(n* —n2) >0 (4.51)
u,v)€

which proves (4.43) given (4.44). Now, (4.41) follows immediately form (4.42),
(4.43) and (4.44). D

As a direct consequence of Lemma 4.5, the following lemma establishes the
upper bounds of the impedance functions in the upper half-plane.

Lemma 4.6 For any k such that Im(k) > 0 and all z € R,

|(p+(z, k)| < Sn(are(F))’ (4.52)
|(p-(z, k)] sin(arg(k))’ (4.53)

with ny > 0 the mazimum of n(z) (see (2.8) in Section 2.1).

Proof. Again, we only give the proof of (4.53) since the proof for (4.52) is
identical. According to Lemma 4.5, the function

r(z, k) =1/p_(z,k) (4.54)

is well-defined for any Im(k) > 0. Combining (4.54) with the equation (3.51)
and the boundary condition (3.53) for p_, we observe that r(z,k) obeys the
Riccati equation

(2, k) = ikn*(2) (ﬁ(:c, B — #x)) , (4.55)

subject to the initial condition r(0, k) = 1. Reproducing the proof of Lemma 4.5
almost verbatim, we obtain a lower bound for the real part of r

Re(r(z,k)) > M. (4.56)

n
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Now, the upper bound

< L S .
(-2, kD) < Relr(e ) < s (4.57)
is readily obtained by combining (4.54) with (4.56). O
Corollary 4.7 For all x € R and k such that Im(k) > 0,
¢+(z, k) # 0, (4.58)
(2, k) # 0, (4.59)
b(ak) £ 0, (4.60)
¢_(z,k) # 0. (4.61)
Proof. We prove this corollary by contradiction. First, we observe that
b (2,k) = 0 (4.62)
implies
¢y, k) = 0 (163)

and vice versa, since both ¢, (z,k) and ¢/, (z,k) are continuous functions of ,
and their ratio .
_ +(3" ) k)

ik-pr(z, k) = NERD) (4.64)

is bounded from both above and below due to Lemmas 4.5, 4.6.
Suppose now that for some zo € R, Im(ko) > 0,

b+ (2o, ko) = ¢ (0, ko) = 0. (4.65)

Then the pair of functions

QZS(JJ) = ¢+($, k0)7 (466)
P(z) = ¢i(z,ko) (4.67)
satisfies the system of ODEs

¢'(z) = (), (4.68)
P(z) = —ko(1+4q(z))é(), (4.69)

subject to the initial conditions
$(20) = 1(z0) = 0. (4.70)
However, the initial value problem (4.68), (4.69), (4.70) has a unique solution
¢(z) =1p(z) =0 (4.71)

for all < o, which contradicts the condition (2.26), proving (4.58), (4.59).
The proof of (4.60), (4.61) is identical. O
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Observation 4.8 Due to Lemma 3.13, it is easy to see that

p+($,k) = p+(x,—z), (472)
p_(.’l),k) = p—(x7_75)7 (473)

forallz € R and k € C*. For real k, equalities (4.72), (4.73) assume the form

p+(.’12,k) - p+(33,—k), (474)
p_(.’v,k‘) = p..(.’]?,‘*k). (475)

Indeed, combining the complex conjugate of (3.50) with that of (3.52), we obtain
the ODE

(p+ @ B) = ~i(~B) (s (@, B) — (1 +q(2)) (4.76)

subject to initial condition

p+(0,k) = 1. (4.77)
Now, replacing k by —k in (3.50) and (3.52), we have

Py (z, k) = =i(=k)(p+(z, —F)* — (1 + ¢(2)), (4.78)

and

ps+ (0,-F) = 1. (4.79)

We notice that pi(z, k), p+(z,—k) satisfy identical differential equations (4.76),
(4.78) with identical boundary conditions (4.77), (4.79), from which (4.72)
follows. A similar calculation proves (4.73).

4.2 Smoothness and Asymptotics

The following two technical lemmas describe the asymptotic behavior of the func-
tions %4, %_ (see Corollary 3.11 in Chapter 3), ¢, and ¢_ at large frequencies.
They will be used in proofs of Theorems 4.14, 4.18, describing the high-frequency
asymptotics of the impedance functions py, p_. Theorems 4.14, 4.18 are in turn
used in the following chapter to derive the trace formulae (4.194), (4.198), which
are the principal analytical tool of this thesis.

Lemma 4.9 Suppose that for any a > 0, the region K(a) C C is defined by the
formulae

K(a) = {k|k € C, Im(k) > 0, |k| > a}. (4.80)

Suppose further that ¢ € c3([0,1]), q(z) > —1 for all x € R, and the second
derivative of q is absolutely continuous. Then there exist real numbers A >
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0, ¢> 0 such that

PaltR) = (k)T (”% [nmirteen), @8

Wt k) = iké(k)e““(t“Tl)( o / d7--|—6+tk)> (4.82)

b_(t,k) = e (Hé% (T)dr+e_(t,k)>, (4.83)

W (k) = —ike (1+$ n(T)dT+5_(t,k)>, (4.84)

with {(k) : C — C, Ty > 0 defined by (3.39), (3.88) (see Corollary 3.11 in
Chapter 8), and ey,e_,04,6_ : R x K(A) — C continuous functions such that

lex(t, k)] < ¢ k7% (4.85)
64(t, k)] < ¢ k7%, (4.86)
le_(t, k)] < c k72, (4.87)
|6_(t, k)] < c k72 (4.88)

for all (t,k) € R x K(A).

Proof. Since the proofs of this lemma for ¢, !, and for ¢_, 1’ are identical,
we only prove it in the case of ¥_, 1’ . Introducing two auxiliary functions m,n :

R x C — C by the formulae

m(t, k) = eiktd)—(t) k), (4.89)
n(t, k) }I;eikt;b'_(t, k) (4.90)

and combining (3.35), (3.37) with (4.89), (4.90), we observe that m satisfies
the equation

m"(t, k) — 2tkm/(t, k) = —n(t)m(t, k) (4.91)

(n € ¢o([0,T1]) is absolutely continuous, see (3.27) for the definition of 5) subject
to the initial conditions

m(0,k) = 1, (4.92)
m'(0,k) = 0. (4.93)

Multiplying (4.91) by e~%* and integrating the result from 0 to ¢, we have

(1, k) =~ [ ()2 H I (7, )dr. (4.94)
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Integrating (4.94) from 0 to ¢, we obtain the second kind Volterra integral equa-
tion for m

m = Fi(m)+1 (4.95)
with the mapping Fy : ¢(R) — ¢(R) defined by

_ L _2ik(t-7)
BN = 5 [ n(r)(1 = ) f(r)dr. (4.96)
Combining (4.94) with (4.89), (4.90), we observe that
_ _ Lt k)
n(t, k) = m(t, k) Zik/o n(r)e m(7, k)dr. (4.97)

Since 7 € ¢([0,T1]), the function (7)(1 — €2*(¢=7)) is bounded for all real ¢, 7
and k € K(0). Therefore, there exists a real number ¢; > 0 such that

&]

[Pyl < =, 4.98
17 < 2 (4.95)
and hence there exists a real number A > 0 such that

[ Fell <1 (4.99)

for all £ € K(A). Now, according to Lemma 3.1, for all (t,k) € R x K(A),
the unique solution of (4.95) can be approximated by the Neumann’s series
truncated at the second term

1 -
m(t,k) = 1+ %% ) (7)1 — e2*C=Ndr + aft, k)

- 14 ﬁ Ot n(r)dr + Bt k) + a(t, k) (4.100)

with a, 8: R x K(A) — C such that

2c2
e < W{fi (4.101)
(see Lemma 3.1), and
1 gt :
B(t, k) = _ﬂ/o n(7)e?* =" dr, (4.102)

Since ¢" is absolutely continuous and ¢(z) = 0 for all z < 0, we observe that g
is absolutely continuous and 7(z) = 0 for all z <0 (see (3.27) in Lemma 3.9).
According to Lemma 3.3, there exists ¢, > 0 such that

3
|B(t, k)| < e (4.103)
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for all z € [0,1], £ € C*. Now, combining (4.100) with (4.101) and (4.103),
we observe that there exists ¢3 > 0 such that

‘m(t,k) - (1 + 2_1% Otn(T)dT) <o (4.104)

for all (¢,k) € R x K(A). Similarly, there exists ¢4 > 0 such that

'n(t, k) — (1 + 2—% Otn(r)d'r> < — (4.105)

due to (4.97), (4.104).
Now, (4.83), (4.87) follow immediately from (4.104), (4.92), and (4.84),
(4.88) are a direct consequence of (4.105), (4.93). O

Lemma 4.10 Suppose that ¢ € c3([0,1]), v > 2, ¢ is absolutely continuous
and q(z) > —1 for all x € R. Then for any integer 1 < [ < ~, the I-th interate
my: R x Ct — C defined by the formulae

mol(t,k) = 0, (4.106)
ml(t,k) = 1+Fk(ml_1)(t,k) (4107)
t .
= 1 — (01 = Ny (r R) A (4.108)
2tk Jo

(see (4.95), (4.96)) assumes the form

mut, ) = 1 +§ (ﬁ)] a;(t) + (Zl_—];)ﬂ/av(t, k) (4.100)

witha;: R— R, y=1,...,v=1, ay: Rx C* — C such that

‘Z_;—jjgt) (4.110)
are bounded and absolutely continuous for allz € R, j=1,...,7v—1, and

a,(t, k) (4.111)
is bounded and absolutely continuous function of t for all (t,k) € R x C™.

Proof. We prove this lemma by induction. For [ = 1, formulae (4.106),
(4.108) yield

ma(t, k) =1 (4.112)

for all (t,k) € R x C*, which is already in the form (4.109) satisfying conditions
(4.110), (4.111).
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For [ > 1, assuming that my(¢, k) is in the form (4.109) satisfying conditions
(4.110), (4.111), we obtain my4; using (4.108):

1 .
mii(t, k) = 1+ 5% Jo n('r)(l — 2 ")y (7, k)dr

= 14 L(t, k) + L(t, k) + L(t, k) + L(t, k) (4.113)

with I; : R x Ct — C, 1 < j <4 defined by the formulae

Lt k) = —2-1—15 /tn(r)dr+§ (_2%_];)3 / “n(r)as_a(r)dr, (4.114)

1
Lt k) = —5 [ ()1 - ar, (4.115)

I3(t,k) = ——Z(M) /0 (7)1 (7)e** - dr = iJs(t,k),(LL.llG)

s=2
L(tk) = 5 / (7)ay (7)(1 — e2*C=)dr, (4.117)

Clearly, we only need to show that I;, 1 < j <4 can be expressed in the form

v-1

; (i)] () + <§%>waq(t, k) (4.118)

withe; : R — R, 1 < j < y—1satisfying condition (4.110) and o, : RXCt — C
satisfying condition (4.111). Obviously, I and I, are already in the form (4.118).
We now use Lemma 3.3 to show that I3, Is can also be expanded in the form
(4.118). Observing that 5(t) = 0 for all ¢ & (0,T}), n'~?) is absolutely continuous
(see Lemma 3.9), and that agﬂ_] J1<j< v — 1 are absolutely continuous (due
to the assumption of the induction), we can use formula (3.5) in Lemma 3.3 to
expand [; and each term J, (s =1,...,7 —1) of I3 as

oIN 1y
hit,k) = 2(2 k) 20+ (5-) bl b, (4.119)
1 s 13 .
Js(t, k) = (ﬂ) /()n(T)as_l(T)ezzk(t"T)dT (4.120)
1\ dime 1y
--T (ﬁ) W(n(f)a(s,l)—<ﬂ) by(t, k) (4.121)

with b, : RxC% — C uniformly bounded on RxC* (see Lemma 3.3). Therefore,
I; is in the form (4.118) due to (4.119), and I3 is of the form (4.118) due to
(4.121), (4.116). Thus, my41(t, k) can indeed be written in the form (4.109)
satisfying conditions (4.110), (4.111). O




26 CHAPTER 4. IMPEDANCE FUNCTIONS AND THEIR PROPERTIES

Corollary 4.11 Suppose that for any a > 0, the region K(a) C C is defined by
the formulae

K(a) = {klk € C,Im(k) > 0, |k| > a}. (4.122)
Suppose further that the functions m,n,m.,n,: R x Ct — C are defined by the
formulae (4.89), (4.90), (4.108) and
no(t, k) = mo (t, k) — —— / ()t (r k)dr (4.123)
B L 2tk Jo T

respectively. Then under the conditions of the preceding lemma, there exist posi-
tive numbers A, ¢, ¢, c3 such that

(5]

) = mo(t, )] < 2 (L124)
c
ot ) =t B] < (1125)
for all (t,k) € R x K(A), and
n(t, k) cs
1< = .
i < (120

for all (t,k) € [T1,00) x K(A).

Proof. Due to (4.98), the norm of the integral operator Fj in (4.108) is
of the order O(|k|™) for any k£ € C™, from which we observe that there exists
A > 0, such that (4.124) is true.

Subtracting (4.123) from (4.90), we obtain

n(t, k) — ny(t, k)
1 gt .
= mit, k) = ma (L, ) - 5 / n(r)E T (m (7, k) — ma (7, k))dr(4.127)
0
Now, the estimate (4.125) is a direct consequence of (4.127), (4.124) and the
fact that in (4.127), the expression

1 2ik(t—7)
Qikn(T)e (4.128)

is uniformly bounded for all £k € K(A), —co < 7 <t < o0.
We now prove (4.126) by showing that there exists a positive number ¢3 such

that
m.(t, k) L

(4.129)
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for all (¢,k) € [T1,00) x K(A). According to Lemma 4.10, m., (¢, k) can be

expressed in the form

m (k) = 1 +:§ (ﬁ)] a;(t) + (E%-];)W%(t, k), (4.130)

with aj,5 = 1,...,~ satisfying conditions (4.110), (4.111). Therefore, we can
assume that the constant A has been chosen such that for all (¢,k) € R x K(A),

ima (2, k)| > % (4.131)
Combining (4.123) with (4.130), we obtain
ny(t, k) = my(t, k) + L(t, k) + L:(t, k) + Is(t, k), (4.132)

with Iy, I5(t, k) defined by (4.115), (4.116), and I5(¢, k) defined by the formula

Is(t, k) = (izl'—k)’%l /Ot n(1)a, (1, k)eX* =) dr. (4.133)

Noticing that n(t) = 0 for all ¢ > Ty, we have

Lt k) = (ﬁ)qbl(t,k), (4.134)
Tt k) = (é‘i‘k) bo(t, ) (4.135)

for all (t,k) € [T1,00) x K(A), due to (4.119), (4.121). Consequently, there
exists ¢ > 0 such that

\L(t, k) + Is(t, k) + Is(t, k)| < 179% (4.136)
for all (¢, k) € [T1,00) x K(A), since a,(t, k), bs(t, k) are bounded for all (¢, k) €
[T1,00) x K(A),and s =1,...,v— 1.

Now, (4.129) follows immediately from (4.132), (4.136) and (4.131). The
estimate (4.126) is a direct consequence of (4.129), (4.124) and (4.125). O

Lemma 4.12 Suppose that q € ¢§([0,1]), v > 2, ¢ is absolutely continuous
and q(z) > —1 for all x € R. Then there exists a positive number ¢ such that

Ip—(z, k) — 1| < |75T (4.137)

forallz>1, ke Ct.



28 CHAPTER 4. IMPEDANCE FUNCTIONS AND THEIR PROPERTIES

Proof. According to Corollary 3.11 and formula (3.41),

YL(t, k)

p_(wak) = W

(4.138)
for all ¢ > Ty (i.e., for all z > 1), k € C*. According to (4.89), (4.90) and
(4.138)

m(t, k)
n(t, k)

for all ¢ > T1, k € C*. Now, the lemma follows immediately from (4.139) and
(4.126). O.

p_(z, k) = (4.139)

Remark 4.13 By a similar calculation, one can show that under the conditions
of the preceding lemma, there exist positive numbers A > 0, ¢ > 0 such that
c

—1l<
|p+($,k) ll = Ikl,y

(4.140)

forallz <0, ke Ct.

Theorem 4.14 Suppose that ¢ € ¢&([0,1]), ¢(z) > —1 for all z € R and ¢" is
absolutely continuous. Suppose further that

D = {(z,k)|z € R, Im(k) > 0}. (4.141)

Then

(a) ¢4 and ¢_ are continuous functions of (z,k) and analytic functions of k for
allz € Rand k € C;

(b) p+ and p_ are continuous functions of (z,k) and analytic functions of k in
D;

(c) there exists a positive number ¢ such that for all (z,k) € D

q'(z) 1

T +q@) iF + er(z, k), (4.142)

k) = Virde)+ s @l @

with €;,e_ : D — C continuous functions such that

p+(z,k) = 1+4q(z)-

(4.144)

le-(z, k)| < - (4.145)
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Proof. We only give the proof for ¢_, p_ since the proof for ¢, , p, is identical.
We introduce two auxiliary functions ¢ and ¢; via the formulae

¢z, k) = ¢_(,k), (4.146)
¢1(~T7k) = ¢,—($7k)a (4147)

so that the equation (2.1) and the initial condition (2.5) for ¢_ can be rewritten
as a system of linear ODEs

¢'(z,k) = ¢i(z,k), (4.148)
Pi(z, k) = —kEn*(z)d(z,k), (4.149)
subject to initial conditions
#(0,k) = 1, (4.150)
¢1(0,k) = —ik. (4.151)

According to Lemma 3.6, ¢, ¢, are continuous functions of (z,k) and entire
functions of k for all 2 € R and k € C, from which (a) follows immediately.
Similarly, we obtain (b) by combining (a) with (2.16) and the fact that ¢_(z, k) #
0 for all (z,k) € D (see Remark (4.3), Lemma 4.4 and Corollary 4.7).

The expansion (4.143) and the estimate (4.145) follow immediately from
(3.41) (see Corollary 3.11 in Chapter 3), (4.83), (4.84), (4.87), and (4.88) (see
Lemma 4.9). O

Corollary 4.15 Denote by p py or p_. Then under the conditions of the pre-
ceding theorem, there exist positive number cy, c; such that

o2k ft” p(r,k)dr

<a, (4.152)
forallt,z € [0,1], k€ R, or for all0 <t <z <1, ke Ct, and

p'(z, k)| < e, (4.153)
forallz € R, ke Ct.

Proof. Due to Statements (b), (c) of Theorem 4.14, the real part of the
function

%k /t " p(r, k)dr (4.154)

is uniformly bounded from above for ¢,z € [0,1], k € R,orforall 0 < ¢ <z < 1,
k € C*, from which (4.152) follows immediately. Estimate (4.153) is a direct
consequence of Statement (c) of Theorem 4.14, and formulae (3.50), (3.51). O

Global upper and lower bounds for the impedance functions will be established
in Theorem 4.17. We first obtain a partial result in the following lemma.
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Lemma 4.16 Suppose that for any positive numbers a, o, the domain K(a,a) C
C is defined by the formula

K(a,o) = {k|k € C, Re(k) € [—a,a],Im(k) € [0,a]}. (4.155)

Then under the conditions of the preceding theorem, for any A > 0, there exist
positive numbers B, b, 6 such that

pe(e, B < B, (1.156)
p(e. k)] < B, (.157)
Re(pi(z,k)) > b, (4.158)
Re(p_(z,k)) > b, (4.159)

in the domain R x K(A,$).

Proof. Since the proof of (4.156), (4.158) is identical to that of (4.157),
(4.159), we only provide the latter. Denoting by u, v the real and imaginary parts
of p_ so that

p—(z, k) = u(z, k) + tv(z, k), (4.160)

the Riccati equation (3.51) for p_ can be rewritten in the form
v = —2kuv, (4.161)
v = —k(v® —u? +n?), (4.162)

for any k € R. Integrating (4.161) on interval [0,z] and observing that
u(z, k) =p_(z,k) =1 (4.163)
forall z <0, k € C (see (3.53)), we have
u(z, k) = e 2k Jy vEhdt 5 g (4.164)

forall z,k € R. For any A > 0, p_,u = Re(p_) are continuous functions of (z, k)
in the compact domain [0, 1] x K(A,¥). Therefore, there exist positive numbers
b1, 6, By such that
u(z, k)
lp—(z, k)|
for all (z,k) € [0,1] x K(A,8), which proves the estimates (4.157), (4.159).
We now prove the estimates (4.157), (4.159) for all z > 1 using the formula
1 — b2 (k) + 12b_(k) sin(kz — a_(k))
1+ b2 (k) + 2b_(k) cos(kz — a_(k))’

by > 0 (4.165)

>
< B, (4.166)

p-(z, k) =

(4.167)
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(see Remark (2.2)). According to Remark (2.2), b(k) > 0 is a real-valued
continuous function of k£ € C'. We observe that

0<b(k) <1 (4.168)

for all k in the close domain K (A, §) since otherwise if b(k) > 1, the real part of

p-(1,k)
1 — B2 (k)

14 b2 (k) + 2b_(k) cos(kz — a—(k))
will be non-positive, contradicting (4.165). Due to (4.168), (4.167), there exist
positive numbers by, By such that

u(l, k) =

(4.169)

u(z, k) > b, (4.170)
lp-(z, k)] < By, (4.171)

forallz > 1, k€ K(A,$).
Now, (4.157), (4.159) follow immediately from (4.165), (4.166), (4.170),
(4.171), and (4.163). O

Theorem 4.17 Suppose that q € c5([0,1]), ¢(z) > —1 for all x € R and the
second derivative of q is absolutely continuous. Then there exist real numbers

B >0, b>0 such that

lp+(z, k)] < B, (4.172)
lp-(z,k)| < B, (4.173)
Re(py(z,k)) > b, (4.174)
Re(p_(z,k)) > b, (4.175)
in the domain
D = {(z,k)|z € R, Im(k) > 0}. (4.176)

Proof. Since the proof of (4.172), (4.174) is identical to that of (4.173),
(4.175), we only provide the latter. According to the high-frequency asymptotics
(4.143) in Theorem 4.14, there exist positive numbers A, b; such that

Re(p-(z,k)) > by, (4.177)
in the domain Dy C D defined by
Dy = {(z,k)|z € R, |k| > A, Im(k) > 0}. (4.178)

Since p_(z,k) is a continuous function of (z,k) € D, there exists a positive
number B; such that
lp-(, k)| < By, (4.179)
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for all (z,k) € D;. For such a number A > 0, according to Lemma 4.16, there
exist positive numbers 6, By, by such that

lp-(z, k)| < By, (4.180)
Re(p_(z,k)) > by, (4.181)

in the domain Dy C D defined by the formula
Dy = {(z,k)|z € R, Re(k) € [-A, A], Im(k) € [0, 4]} (4.182)

Now, according to Lemmas 4.5, 4.6, there exist positive numbers Bs, b3 such
that

lp-(z,k)| < Bs, (4.183)
Re(p_(z,k)) > bs, (4.184)

in the domain D3 C D defined by
Ds = {(z,k)|z € R, Re(k) € [-A, A],Im(k) > é}. (4.185)

The estimates (4.173), (4.175) for (z,k) € D follow immediately from the
estimates for (z,k) € Dy, Dy, D3 since D = D; U D, U D3. O

The following theorem furnishes the analytical apparatus for the error analysis
of the truncated trace formula (see (4.198)).
Theorem 4.18 Suppose that q € ¢3([0,1]), m > 2, ¢'™ is absolutely continuous
and q(z) > —1 for all z € R. Then there exists a positive number a such that

|+ (2, B) = p_ (2, k)| < W (4.186)

for all (z,k) € R x C*.

Proof. According to Lemma 4.12 and Remark (4.13), (4.186) is true for all
z & (0,1). In order to prove the theorem for z € (0,1), we observe that p; and
p- obey the same Riccati equation (3.51) due to (3.50), (3.51). The difference,
s = Py — p-, satisfies the ODE

s'(z, k) =1k (py +p-)s (4.187)
with the solution

s(z, k) = e * N (t’k)+p‘(t’k))dts(0, k). (4.188)
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Corollary 4.15 indicates that there exists constant b > 0 such that

e~k fo (P+ER+p- () dt| (4.189)

for all (z,k) € [0,1] x R. Due to Remark (4.13), there exists a positive number
¢ such that for all k € R,

|5(0, k)| = [p+(0, k) — p—(0, k)| = |p+(0, k) — 1| < (4.190)

Ikl

Now, (4.186) for z € (0,1) follows immediately from (4.188), (4.189), (4.190).
O

4.3 Trace Formulae

In this section, we prove Theorem 4.19, which is both the purpose of this chapter,
and the principal analytical tool of this thesis. Theorem 4.19 describes the so-
called trace formulae for the impedance functions p;,p_ (for a more detailed
discussion of the term ”trace formulae”, see, for example, [7]). In fact, only the
formula (4.194) is to be used by the reconstruction algorithm of the following
chapter. We present the formulae (4.191), (4.192), (4.193) for completeness,
since some of them appear to be well-known, and attempts have been made to use
them in reconstruction algorithms (see, for example, [8]). See also Section 5.1
below for a more detailed discussion of the use of trace formulae in reconstruction
schemes

Theorem 4.19 (Trace formulae) Suppose that q € c([0,1]), m > 2, ¢™ is
absolutely continuous and ¢(z) > —1 for all x € R. Then

(a)
V1+4(@) = lim —/ pi (2, k)d (4.191)

w 2 a
¢'(z) = lim —(1+ q(z)) 5 k- pi(z,k)dk. (4.192)

a—+00 3q
(c)
ViHa@) = tim o [ (oo, B+ po (e, ). (4.193)
(d) , )
¢(e) = ~(1+4(=)) [ (pe(a, k) = p- (o, k))dk. (4.194)
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More precisely, there exist positive numbers ¢y, ¢y, cs, c4 such that
1 a C1
—_— < — .
1\/1 +a(z) - o /_ap+(w,k)dk < -, (4.195)
2 a
! _—— .
¢(e) = (4 a(e)) [ k- pule, k)dk
Vita@ - o [ e k) o kar| < &, @aon
4a —a + I - ’ a27
2 a
7(@) = ~(L+4() [ (ps(2,k) = p_(a, k))dk

for all x € R.

IN
!

: (4.196)

IA
I

AN

(4.198)

alm-1)"

Proof. Since the proofs of trace formulae (a),(b),(c), and (d) are similar, we
only present that of (d). According to statement (c) of Theorem 4.14, there
exists ¢ > 0 such that

(s (2, k) — p () - (—ﬁ%—))ikﬂ <o 4

for all (z,k) € R x C*. Denoting by I' the upper half circle of radius A, with
clockwise orientation, in the complex k-plane, i.e.,

I = {k|k € C*, |k| = A}, (4.200)

and noting that p; — p_ is an analytic function of k € C't, we obtain

[ e B = p (e )k = [l k)= p-(a )b (2.200)

Substituting (4.199) into (4.201), we have

/ * (pa(@s k) = p_ (o, Bl = — L@ o(k™) (4.202)
—a Y 2(1 + ¢(2)) '

from which (4.194) follows immediately.
In order to prove the estimate (4.198), we rewrite (4.194) as

(@)= 200+ a(@) [ (ps(a,k) - p(z, )k + I(a) (4.203)

with I(a) given by the formula

1@ =20 +a@) ([ 4 [7) oaley - p(e )b, (0200
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Now, formula (4.74) implies
2
1@==0+4@) ([ +[7) pr@R - (e, ) db,  (4.205)
and according to (4.186), there exists a constant ¢4 such that
Cq
[1(a)| < T (4.206)

from which (4.198) follows immediately. O




Chapter 5

The Reconstruction Algorithm

5.1 Reconstruction via trace formulae—an in-
formal description

An examination of the formulae (4.191)- (4.194) in combination with the Riccati
equations (3.50), (3.51) immediately suggests an algorithm for the reconstruc-
tion of the parameter ¢ given the impedance function p, (o, k) measured at some
point zo € R outside the scatterer. Namely, one is tempted to substitute one of

the formulae (4.191)- (4.194) (for example, (4.191)) into (3.50), obtaining

shan) = =it (12 o)~ i (5 [ miar) ). G

and attempt to view (5.1) as a differential equation for the function p : R x R' —

C.

Needless to say, standard existence and uniqueness theorems are not appli-
cable to ‘differential equations’ of the form (5.1). Furthermore, in order to be
numerically useful, the integral in (5.1) would have to be replaced with some
finite quadrature formulae. The latter procedure is significantly complicated by
the fact that the function p; is defined on the whole real line, and its domain of
definition has to be truncated before discretization. It turns out that the solution
of (5.1) is not unique, except in a very carefully chosen class of functions p. Such
a class of functions has been successfully specified (see, for example, [8]). The
resulting numerical scheme is, however, quite expensive, and the construction is
not rigorous, though we believe that this could be made so. The same prob-
lem arises if one attempts to use the trace formulae (4.192), (4.193), and the
conceptual reason for this situation is summarized in the following observation.

36
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An immediate consequence of the formula (4.191) is

. 1 -b a
i) = tim g ([ pete by | p+(:c,k>dk) L 62
for any positive real b. Thus, the ‘differential equation’ (5.1) can be replaced
with

P (2, k) = —ik (p‘i(w, F) - (a_lgnoo = ( [ peta i+ [ p+(m,k)dk))2)
(5.3)

and a convergence, uniqueness, etc. proof valid for (5.1) would also be valid for
(5.3), unless some extremely subtle phenomenon interfered.

However, given a smooth scatterer ¢, for any € > 0, one can choose a suffi-
ciently large b that

1+ g(z) — py(z, k)

for any k > b. If the scattered data p,(zo, k) have been collected at some point
zo outside a smooth scatterer, (5.4) assumes the form

<e (5.4)

1 —pi(z, k)| <e. (5.5)

In other words, a reconstruction algorithm using the ‘differential equation’ (5.3)
with a sufficiently large b would effectively reconstruct the parameter ¢(z) for all
z € [0,1] from a single measurement, the latter being equal to 1 (!). Another
way to make this observation is to notice that the formula (4.191) is simply the
WKB approximation to the impedance function py, and that in the WKB regime,
the back-scattered field is absent. A similar problem arises if one attempts to
combine formulae (4.192), (4.193) with (3.50), and view the result as a “system
of ordinary differential equations”.

In the case of a discontinuous scatterer ¢, the WKB expansions (4.142),
(4.143) are invalid. On the other hand, the trace formulae (4.191), (4.194)
are valid (if the limits in these formulae are interpreted properly), and can be
combined with the equations (3.50), (3.51) to obtain a numerical scheme for
detecting discontinuities in the scatterer. If ¢ is piece-wise constant, such a
scheme will reconstruct it effectively, and time-domain versions of this procedure
are known as layer-stripping algorithms (see, for example, [12], [13], [14]).

While the author failed to find the trace formulae (4.192), (4.193) in the
literature, they appear to be well-known among specialists, being an immediate
consequence of the WKB analysis of the equation (3.50). On the other hand, the
formula (4.194) does appear to be new, and its combination with the equation
(3.50) immediately leads to a robust reconstruction algorithm. While we post-
pone a detailed construction and analysis of such a scheme till Section 5.2, in
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the following observation we summarize the conceptual reasons for its analytical
and numerical effectiveness.

Formula (4.198) means that approximating the trace formula (4.194) with

its ‘truncated’ version
a

(@)~ 20+ 4@) [ (o (,k) = p- (2, Bk, (56)

we make an error of the order a~("™~1, where m is the smoothness of the scatterer.
Thus, for a sufficiently smooth scatterer and a sufficiently large a, (5.6) is an
extremely good approximation to the trace formula (4.194).

Now, for the system of equations (3.50), (3.51), (5.6), it is not hard to
prove existence, uniqueness, etc. theorems of the type valid for systems of ODEs
(since now for a fixed value of z, the functions p,(z,k),p_(z,k) : [~a,a] — C
are defined on a compact interval, as opposed to the whole line). The remainder
of this thesis is devoted largely to proving such facts (see Theorem 5.1 below),
and to a numerical implementation of the resulting procedure. The latter is also
quite straightforward, since it only involves constructing a quadrature formula
for the evaluation of the integral in (4.194), where it is taken over an interval
of finite length. Furthermore, for all practical purposes, the integrand vanishes
at the ends of the domain of integration together with all its derivatives, com-
pletely obviating the issue of the choice of the quadrature formula, and leading
to extremely accurate numerical procedures (see Remark 6.3 below).

5.2 Reconstruction via trace formulae—a for-
mal description

Now, we are prepared to construct a system of integro-differential equations
whose initial conditions are the values of the impedance functions py,p_ mea-
sured outside the scatterer, and whose solution reconstructs the potential ¢ for
all z € [0,1]. We will consider a system of integro-differential equations

PlesB) = —ik(e2, (e, k) — (1 + 0.(@)), .7
Po(h) = k(B (k) — (14 a(+))) (59
We) = 20 +a@) [ (e ?) —pe(e, )iz, (59

with respect to the functions puy,pe— : [0,1] X [—a,a] — C, ¢, : [0,1] — R,
subject to the initial conditions

pa+(07k) = po(k), (510)

Pa-(0,k) = 1, (5.11)

q(0) = o. (5.12)
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It turns out that for sufficiently large a, the system (5.7)-(5.12)has a unique
solution for all = € [0, 1], that this solution is stable with respect to small per-
turbations of the initial data po(k) , and that g, converges to q as a — co. The
following theorem and Lemmas 5.2-5.4 formalize these facts.

Theorem 5.1 (Convergence of the inversion algorithm) Suppose that g € ([0, 1])
m > 4, ¢ is absolutely continuous and q(z) > —1 for all x € R. Then there
exist constants A > 0,¢ > 0 such that

Cc

l(2) = ga(@)] < 5 (5.13)
for all z € 10,1], a > A.

Since the proof of this theorem is quite involved, we break its technical part
into three lemmas which are then directly used in the proof of Theorem 5.1.

Lemma 5.2 Suppose that q € c([0,1]), m > 4, ¢\™) is absolutely continuous
and ¢(z) > —1 for all z € R. Suppose further that the function space ¥ is defined
by the formula

% = {le, ,7le, B € ¢([0,1] x [-a,a]),y € ¢([0,1])}, (5.14)

equipped with the norm
I£1' = max (lledl, 11811 IY11) (5.15)

with f = [o, f,7] € X. Finally, suppose that for any a > 0, the functions
fa,w, €, 1 R — R are defined by the formulae

fa(x) = %/_Z(p+(m,k)—p_(x,k))dk, (516)
w(e) = 2(1+q()), (5.17)
wl@) = —w@) ([ + [T ule ) —p @ k)ak. (518)

Then the error function u = [ey,e_,h] € ¥ defined by the formulae

er(z, k) = Pat (2, k) — pi (2, k), (5.19)
e-(z,k) = pa-(z,k) —p_(z,k), (5.20)
h(z) = q(z)—q(2) (5.21)

satisfies the equation

L(u)(z, k) = N(u)(t, k) + [0,0, ea(?)], (5.22)
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where L, N : ¥ — X are defined by the formulae

e (z, k) — ik [T h(t)e 2k [ pr R gy

L(u) = e_(z, k) + ik [ h(t)e2* S p-Rrir gy (5.23)
| h(@) = J§ (B falt) + w(t) [ (ex — e2)(t, 2)d2) dt

[ ik 7 €2 (L, k)e PR PR gy

N(u) = ik 7 €2 (t, k)X [ p-(rh)dr gy : (5.24)
| % o h(t) [2,(et(t,2) — e_(t, 2)dzdt

Proof. We know that the functions py,p_, q satisfy the ODEs

pil-(wa k) = '-Z.k(p?‘_(x, k) - (1 + Q(:C))a (525)
po(z, k) = ik(pl(z, k)~ (1+q(2)), (5.26)
(@) = 20 +4@) [ (ala ) —p-@ RNk, (5:27)

for all z € R, any k € C™*, and that the functions p,y, p.—, ¢, satisfy the ODEs
piw.(w, k) = —ik(p¢21,+(x7 k) - (1 + Qa(w)))a (5'28)
Po(z,k) = ik(pi_(z,k) — (1 + qu(2))), (5.29)
@) = 20+0@) [ us(,9) - p (@) (5.30)

for all (z,k) € [0,1] X [—a,a], subject to initial conditions

pa+(0>k) = p+(03 k)? (531)
Pa-(0,k) = p-(0,k) =1, (5.32)
%.(0) = ¢(0)=0. (5.33)

for all k € [—a,a]. Subtracting equations (5.25), (5.26), (5.27) from equations
(5.28), (5.29), (5.30) respectively, we observe that [e,e_, k] (see (5.19), (5.20),
(5.21)) satisfies the ODEs

eil—(xa k) = —ik (2P+($, k)e+("57 k) + 63_(5(3, k) - h(x)) ’ (534)
e (z,k) = ik (Zp_ (z,k)e_(z, k) + €% (z,k) — h(a:)) , (5.35)
W) = h@)fa(@)+ule) [ (esle,2) = e-(2,2))ds
—l—;zr—h(:c) /_aa(e_l_(a:, z) —e_(x,2))dz + €,(z), (5.36)
subject to the initial conditions

e+(0,k) = e_(0, k) = h(0) = 0. (5.37)
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We now convert the initial value problem (5.28)-(5.33) as a system of integral
equations. Multiplying (5.34) by the function

ezikf: p+(t,k)dt, (5.38)

we have

d

- (e%kfo P (bRt (g, k)) = —ik- X o PRI (62 (5 k) — h(2)).  (5.39)

Integrating the result over the interval [0, z], we obtain
er(a, k) —ik /0 " R(t)e RS R gy /0 " e (1, k)e 2R PR gy (5 40)
A similar calculation reduces (5.35) to the equation
e_(z, k) + ik /0 " h(t)eBR S p- T gy g /0 T2 (1, )Xk =R gy (5.41)

An integration of (5.36) over the interval [0, z] converts (5.36) into the integral
equation

a

h(z) — /0 " h(8) fu(t)dt — /0 " w(t) /_ (ex(t,2) = e-(t,2))dzdt

= % /O 0 | z(6+(t,z)— e_(t,2)dzdt + /0 " ea(t)dt. (5.42)

Clearly, equations (5.40), (5.41), (5.42) is equivalent to (5.22), which completes
the proof. O

Lemma 5.3 Under the conditions of Lemma 5.2, there exists a positive number

c1 such that for any f,g € X, there exist continuous functions 61,6, : [0,1] x
[—a,a] = C, 85 :[0,1] — C such that

N(f)(@, k) = N(g)(, k) = [81(a, B), 6o, B), [ ()], (5.43)

and

max ([|é1]], [162]l, |8s]l) < e1 - a - max (I fIl, llgll) |f - gll. (5.44)

Proof. Formula (5.43) is a direct consequence of (5.24). In fact, we have
Su(z k) = —ik / (P E) — g3t k))e BRI pr R gy (5.45)
0
8oz, k) = ik / (P2t ) — g2(t, )P S PG gy (5.46)
0

f(e) = = [ (@) - ) 2) ~ ()~ 92w )}z (5.47)
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for any f = [f1, f2, 3] € £, g = [91, g2, 93] € . In order to prove (5.44), we first
observe that due to Corollary 4.15, there exists a positive number ¢4 such that

e—2ik ftz p4(7,k)dr

IN

Cyq, (54:8)

eZik f: p—(7,k)dr < (549)

for all t,z € [0,1], £ € R. Observing that |k| < a, 0 < z < 1, and using the
estimate (5.48), we obtain the estimate

6]l < a-call £ +gll - If = gll- (5.50)

A similar calculation shows that

162]] < @ - callf +gll - I f = gl (5.51)

and we obtain the estimate for 83 by first regrouping (5.47):

ol = 2 sup |((s(0) = 0o(®) [ (56 2) ~ falt,2))d=
T zel0,1] —-a

+9s(t) :;((ﬁ(t, 2) — g1(t, 2)) — (fa(t, 2) — ga(t, z)))dz)
< 2(15 =l [ 15 +glld=+ gl [ 217 ~ gllaz)

< a7 = gll (I + ol + 2llgl) (552

Now, (5.44) follows immediately from (5.50), (5.51), (5.52). O

Lemma 5.4 Under the conditions of Lemma 5.2, there exist positive numbers
a2, C3 such that for any 6 € ¥ of the form

8(z, k) = [6(z, k), 6a(a, k), /0 " 6a(t)dt], (5.53)

the linear equation

Lv)=§ (5.54)

has a unique solution v = [vy,ve,v3] € X. Furthermore,
[oll < €3 - amax ([|1]],[|62]]) + es|6]]- (5.55)

Proof. We only need to prove (5.55), since the existence and uniqueness of
the solution v of the linear equation (5.54) is a direct consequence of the estimate
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(5.55). Due to (5.23), (5.53), the equation (5.54) can be rewritten in the form

oz k) = ik /O”v3(t)e-2"kffp+<ﬂ’°>dfdt+51(x,k), (5.56)
va(a k) = —ik /:vg,(t)e%’ﬂffp—w)dfdt+52(x,k) (5.57)

va(z) = /Oxvg(t)fa(t)dt-l— /Oxw(t) _aa(vl(t,z)—vz(t,z)dzdt
+ /0 " 6a(t)dt. (5.58)

In order to prove (5.55), we first eliminate vy,v; from (5.58) and obtain an
estimate for vs. Subtracting (5.57) from (5.56), and integrating the result over
the interval [—a, a], we obtain

/a (vi(z, 2) — va(z, 2)) dz

—-a

= /z v3(t) "z <e'2izftxp+(7’z)d7 + el ”‘(T’z)‘h) dzdt
0

—a

+ _2(51(:13,2) — by(z, 2))dz

- L " gal@, )os(t)dt + da - so(e), (5.59)

with g : [0,1] X [0,1] = C, sa : [0,1] — C given by the formulae
gale,t) = /_ iz <e2z‘z Jvetnadr g2z f7 p—<m>df) dz, (5.60)
sa(z) = ﬁ [ (51(2,2) = (e, 2))d. (5.61)

Combining (5.58) with (5.59), we obtain

w(e) = [eshde+ ["u() /Otga(t,'r)vg(r)det
t4a /0 " w(t)sa(t)dt + /0 " 6a(t)dt. (5.62)

We will obtain the estimate (5.72) for vs (see below) by first proving (5.63),
(5.64), (5.65), and (5.69) for functions f,,w, gs,s,. Obviously, there exist con-
stants ¢5 > 0,cg > 0 such that

lw(z)| < es (5.63)

for all z € R due to (5.17), and

|[fa(2)] < co (5.64)
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for all z € [0,1], any a > 0, due to (5.16), (4.198), and
|sa(z)] < max (||&1]l, [|62]]) - (5.65)
due to (5.61). Observing that

/ et g, / IR S CELR (5.66)
due to (4.72), and combining (5.60) with (5.66), we have

ga($at) :/

—a

a

12 (ezizﬂm”“(T’z)dT — ety p+(T’Z)dT> dz. (5.67)
According to Theorem 4.18, for any = € R, the function

p-(z,k) — ps(z, k) (5.68)

decays uniformly like =™, for k € R, and consequently, the integrand in (5.67)
decays like k~(™~2) uniformly with respect to ¢,z € [0,1]. Since we have assumed
that m > 4, there exists a constant ¢; > 0 such that

|9a(z,t)| < er, (5.69)

for all t,z € [0,1], a > 0. Now, combining the integral equation (5.62) with the
estimates (5.63), (5.64), (5.65), (5.69), we have

z z gt
c6/0 |vs(t)|dt + c5 - 07[0 /0 |vs(7)|dtdr
+4a -5 - max (|61, [|62]]) + [[6]]
< /0 (¢6 + cser)lvs(8)]dt + 4a - sz max (||é]], [|621]) + 165]] (5.70)

lva(z)]

IA

Now, the estimate for v3 follows from Gronwall’s inequality (see Lemma 3.5),

jos(e)| < da-cs-wmax (sl 6al) + 15
+ o [ (da estmax (1] 16al) + 1]} et ay, (5.71)

with ¢s = ¢ + ¢5 - ¢7. Clearly, there exist positive numbers cg, c1o such that

|va(@)| < co max ([|4]], 162]]) + c1ollés ]I, (5.72)

for all z € [0,1], we thus have the estimate for vs (see (5.55)).
In order to obtain similar estimates for vy, vy, we first provide an estimate for
the derivative of vs. Differentiating (5.62), we have

vs(z) = v3(z) fu(z)dt + w(z) /: ga(z, t)vs(t)dt + 4a - w(z)sa(z) + 65(z). (5.73)
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Combining (5.73) with (5.72), we observe that there exist positive numbers
11, ¢12 such that

lvg(z)| < e1x max (|é1]], [|62]) + c12]|83]]- (5.74)

Integrating by parts in (5.56) yields

(o k) = 1= ws(t) d(e—zikftzp+(¢,k)d7>+51(w7k)

2Jo pi(t, k)
_ ’03(58)
= bi(z, k) + = (p+($ )
. US t k —’03(t)p+(t k) —2zkf p+(1,k)dT
/ YO0 dt) (5.75)

For all (z,k) € R x C*, py is uniformly bounded, Re(p;) is uniformly bounded
from below by a positive number (see Theorem 4.17). Due to Corollary 4.15,
pl, and

e—2ik ftx p4(7,k)dr (576)

are uniformly bounded for all z,¢ € [0,1], £ € R. Therefore, combining (5.75)
with (5.72), (5.74), (4.152), we observe that there exist positive numbers ¢;3, ¢14
such that

lvi(z, k)| < cramax ([|61]], 162]]) + cral|63]l, (5.77)

and a similar calculation shows that
|lva(@, k)| < cramax (||61]], [|62]]) + c1a]|63]| (5.78)

for all z € [0,1], k € [—a, a]. Now, the estimate (5.55) follows immediately from
(5.72), (5.77), (5.78). O

Using Lemmas 5.2, 5.3, 5.4, we now proceed with the proof of Theorem
5.1.

Proof of Theorem 5.1. Theorem 4.19 implies that there exists positive
numbers by, by such that

IA

| fa(2)]

lea(z)] <

bl) (5.79)
b
2 (5.80)

alm=-1)"
We prove the theorem by showing that there exist positive numbers A, ¢ such
that for all a > A, the solution u = [e4,e_, h] € X exists (see Lemma 5.2 for the
definitions of u,¥), and that

[#
lull = =y (5.81)
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We will obtain the solution u of the equation (5.22) via the following iterative
procedure:

L(unt1) = N(un) +[0,0,e(2)], (5.83)

with L, N defined by the formulae (5.23), (5.24), respectively. Clearly, we only
need to show that there exist positive numbers A, ¢ such that for all « > A

c

[[un|l < 1)’ (5.84)

and the sequence u,, n =0, 1,... converges (to the solution u). The first iterate
uy satisfies the equation

L(uq) = 10,0, €(t)], (5.85)

and according to (5.18), (4.198), there exists a constant b such that

b
llea]l < 21 (5‘86)

Combining (5.85) with (5.55) and (5.86), we observe that there exist constant

¢4 such that
Cy4

lwll < =5 (5.87)
Now, we choose a constant A > 0 such that
1
a - C1(62 -a+ C3)”’U,1“ S - (588)

4

for all @ > A. Defining u_; = 2u; for convenience, we prove by induction that
1
lenss —unll < Sllun = wnall, (5.89)
ltnsall < 2fuall, (5.90)

foralln >0, a > A.
The case n = 0 is a trivial one. For n > 1, (5.83) indicates that

L(unt1 — up) = N(up) — N(tn_1), (5.91)

Due to Lemma 5.3, there exist continuous functions 61,6, : [0,1] x [~a,a] — C,

65 : [0,1] — C such that

N(tt) = N(tn1) = [61(z, k), 62(z, k), /0 " Sa(t)dt], (5.92)
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Now, combining (5.91), (5.92) with (5.55), (5.44), and the assumption of the
induction, we obtain

lunt1 = uall < ez~ amax(||én], [[62]]) + csl|65]]
< a-afera+t cs)max (|[unll, [[un-all) lun = unal|
1
< §|Iun — Un_1]], (5.93)

which proves (5.89). The estimate (5.90) is a direct consequence of (5.89).

Finally, the sequence u,, n = 0,1,... converges to the solution u due to

(5.89), and therefore

204
[Jull < ey (5.94)

for all @ > A due to (5.90), (5.87), which was to be proved. O

Remark 5.5 The proof above requires that ¢ € ¢™(R), with m > 4. At the ex-
pense of a considerable increase in the complexity of the proof, it is not difficult to
extend this result to m > 2. However, our numerical experiments (see the follow-
ing chapter) indicate that the scheme works quite well for continuous, piecewise
continuously differentiable ¢, and even for piecewise continuously differentiable q
with finite number of jumps. In the latter two cases, the rates of convergence of
the algorithm are 1/a and 1/+/a, respectively.




Chapter 6

Implementation and Numerical
Results

6.1 Implementation

In implementing the algorithm of this thesis (see Chapter 5.2), the integral

/_ (p+ (2, k) = p-(o, k) dk (6.1)
in equation (5.9) is approximated by the trapezoidal sum
M-1
T(h) = h Z (p+($, k.?) —p—($7 k]))
j=—M+1
h

+5((p(2, —a) = p_(z, ~a)) + (p+(2,0) = p-(2,0))),  (6:2)

with h =a/M, kj = jh, j = —M,..., M. Since for real k, py(z,—k) = py(z, k),

p—(z,—k) = p_(z, k) (see Observation (4.8)), the ODEs (5.7), (5.8), (5.9) are
discretized in the k-space using M + 1 nodes k; = jh, 7 =0,..., M, leading to
a system of 2M + 3 ODEs

Php(, k) = —ik; (p}, (o, k;) — (1 +a(2))) , (6.3)
Pho(z k) = ik (B2 (2,k;) — (1 + qu(2))), (6.4)
M-1
q(z) = %(14-%(«’6)) (; Re(pry(z, kj) — pa—(z, kj))

+ S Relpha (2,0) = - (2,0) + s (2,0) — puc (2,0} ) (65)

48
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subject to the initial conditions

prt(0, k) = po(kj), (6.6)
pr-(0,k;) = 1, (6.7)
a(0) = 0 (6.8)

(see (5.10)- (5.12)). These ODEs are then solved using a standard 4-th order
Runge-Kutta scheme.

When an integral is discretized via a quadrature formula, the rate of conver-
gence of the quadrature is critical to the numerical performance of the algorithm.
It turns out that while the estimate

p+(2, k) — p-(z,k) = O(a™™) (6.9)
(see Theorem 4.18) ensures a rapid convergence of g, to ¢ as a grows (see Theorem
5.1), it also guarantees a rapid convergence of the trapezoidal quadrature (6.2)
to the integral (6.1). This fact is formalized in the following lemma. Its proof is
based on the Euler-Maclaurin summation formula (see, for example, [10]), and is
omitted, since it is quite involved, and incidental to the purpose of this thesis.

Lemma 6.1 Suppose that ¢ € c([0,1]), m > 2, ¢'™ is absolutely continuous
and g(z) > —1 for all x € R. Then there exist positive numbers c,, n = 0,...

such that
& (pi(z,0) = p-(2,0))| o, (6.10)
dkn = k™ :
Furthermore, for any 8 > 0,b > 0, there exists a constant ¢ > 0 such that
¢ b c
k) —p_(z,k ~-T|l=] < —=. )
[ osten=p-e b1 (5] < 5 (6.11)

Using the estimate (6.11), and reproducing the proof of Theorem 5.1 almost
verbatim, one can prove the following theorem.

Theorem 6.2 Suppose that ¢ € ¢T([0,1]), m > 4, ¢™ is absolutely continuous
and q(z) > —1 for all x € R. Suppose further that for given r > 0,5 > 0,

q(r, s, ) denotes the solution gy, of the system (6.3)- (6.8) with h = r/a®. Then
for any a > 0,8 > 0, there exist constants A > 0,¢ > 0 such that

l9(2) ~ gl 8, 2)| < ;. (6.12)

forallz €0,1],a > A
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6.2 Numerical Results

We have applied the algorithm of this thesis to the reconstruction of several types
of scatterers, from infinitely differentiable g to discontinuous q. The computations
were performed in double precision on a SPARC 1 computer without the use of
the accelerator. The results of numerical experiments for four classes of scatterers
are presented in this chapter.

In the first class (Examples 1-2.2) are scatterers satisfying the smoothness
conditions of Theorem 6.2. In the second class (Example 3) is a scatterer g vio-
lating the smoothness conditions only mildly (it is continuous, but its derivative
is discontinuous at two points). In the third class (Examples 4.1, 4.2) are scat-
terers that strongly violate the smoothness conditions by being discontinuous.
Finally, in Example 6 a scatterer with an index of diffraction that changes in
several order of magnitude is reconstructed. As is well-known, scatterers of this
type are difficult to recover due to strong back scattering.

We also performed a crude test, in Example 5, of stability of the algorithm
by truncating the scattering data po(k;), j = 1,..., M after 1,2, or 3 digits. The
truncated scattering data are subsequently used in reconstructions.

In Tables 6.1- 6.9, hy denotes step size of the trapezoidal rule in the k-interval
[0,a], N, denotes the number of points in the z-interval [0,27], E%, E>® repre-
sent the relative L? and maximum norm of error of the reconstructed scatterer,
respectively. In Figures 6.1- 6.15, dotted lines denote the exact solution, while
solid lines denote the numerical reconstruction. In all examples, for a given a, hy
and N, were chosen such that further decrease of hj and increase of N, brought
no improvements on the accuracy of the reconstruction.

Remark 6.3 In order to obtain the scattering data p,(0,k) for the Eramples
1-3, the scattered field ¢scqry was obtained as a solution of the boundary value
problem (2.10), (2.8), (2.9) via a high order algorithm described in [15]. The
parameters in the scheme were chosen in such a manner that at least 14-digit
accuracy was always maintained. Formulae (2.4), (2.80) were then used to
obtain py(0,k) from dseats-

In Examples 4.1 and 4.2, a standard procedure for the solution of the initial
value problem (2.1), (2.26) (for ¢.) with piecewise constant q was used (see, for
example, [16]). Here, the solutions were obtained with at least 15 correct digits.
The scattering data p, (0, k) were obtained from ¢ via formula (2.30).

Remark 6.4 In the examples below, no effort was made to optimize the code
used, either from the algorithmic or from the programming point of view. For
ezample, we used the Runge-Kutta scheme to solve ODEs (6.3), (6.4), (6.5).
While it produced satisfactory results in our ezperiments, it is by no means the
most efficient scheme for the solution of problems of this type.
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a hi N, E? E>® t (sec.)
51 0.1 80 | 0.146 x10=% | 0.153 x10~2 | 0.600
10| 0.1 | 300 | 0.354 x10=° | 0.415 x107° | 4.41
10 | 0.05 | 600 | 0.177 x10=° | 0.183 x107% | 16.7
10 | 0.05 | 1200 | 0.175 x1075 | 0.184 x10=° | 34.2
20 | 0.05 | 2400 | 0.759 x10™® | 0.108 x107% | 141
20 | 0.05 | 4000 | 0.988 x1071° | 0.143 x107° | 235
20 | 0.025 | 4000 | 0.982 x10710 | 0.142 x107° | 498
Table 6.1: CPU Times and Accuracies for Example 1
Example 1. Reconstruction of a Gaussian distribution
z—m\2
g(z) =e” %) (6.13)
where the variant o given by the formula
T
o= Z\/loglo(e) = 0.5175854235 .. .. (6.14)

was chosen such that the function is effectively zero to double precision outside
the interval [0,27]. The results of this numerical experiment are depicted in
Table 6.1 and Figure 6.1. For all practical purposes, the scatterer (6.13) is
a c™-function in R with the support on the interval [0,2x], and therefore the
algorithm converges extremely rapidly, as demonstrated in Figure 6.1 where the
two graphs of the exact ¢ and the reconstructed ¢ are almost identical.

In the following two examples, we reconstruct oscillatory scatterers of the

form
3

g(w) = 3 ¢;(1 = cos(n;z)),

j=1

(6.15)

with nj,¢;, j = 1,2,3 given below. For given n;, the coeficients ¢; were chosen
in such a manner that ¢ is five times continuously differentiable for all z € R,

so that the rapid convergence of the reconstruction algorithm is guaranteed (see
Theorems 5.1, 6.2)

Example 2.1. A less complicated scatterer is given by the formula

q(z) =0.3 ((1 — cos(2z)) — %—?(1 — cos(3z)) + %(1 - cos(4:c))> . (6.16)

Reconstructions were performed with @ = 7, 14. The results of this experiment
are depicted in Table 6.2 and Figure 6.2 Since the scatterer is smooth, p, (z, k) —
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1.0 — ]
0.5 — —
C.0
, a . 1 . l
@] 2 4 ]
Figure 6.1: Reconstruction of Example 1 with a = 5
a | hp | Ny E? E> t (sec.)

7] 0.1 100 | 0.523 x107% | 0.983 x10=2 | 1.05
7 1 0.05 | 600 |0.516 x1072 | 0.833 x10~2 | 11.9
14| 0.1 | 300 | 0.648 x10™* | 0.172 x10~2 | 6.04
14 | 0.05 | 600 | 0.568 x10* | 0.948 x10~* | 23.7
28 | 0.05 | 2000 | 0.231 x10~7 | 0.625 x10~7 170
28 | 0.025 | 4000 | 0.106 x10~" | 0.155 x10~7 243

Table 6.2: CPU Times and Accuracies for Example 2.1
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Figure 6.3: Real Part of the Scattering Data po(k) in Example 2.1
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a hi N, E? E*® t (sec.)
10| 0.1 300 | 0.288 x107' | 0.376 x1071 4.41
10 | 0.025 | 600 | 0.281 x107! | 0.367 x10~! 35.3
10 | 0.025 | 1200 | 0.281 %10~ | 0.367 x107! 70.4
20| 0.1 400 | 0.395 x1072 | 0.754 x1072 114
20 | 0.025 | 800 | 0.127 x107% | 0.226 x107? 98.7
20 | 0.025 | 1600 | 0.127 x10~2 | 0.220 x10~2 197
40 |1 0.025 | 800 | 0.788 x10~* | 0.300 x1073 202
40 | 0.025 | 1600 | 0.878 x10~° | 0.290 x10~* 404

Table 6.3: CPU Times and Accuracies for Example 2.2

a | hy | Ny E? E* t (sec.)
5101 75 |0.482 x107* | 0.829 x10~' | 0.590
10 | 0.1 | 150 | 0.239 x107' | 0.462 x10~! 2.19
201 0.1 | 300 | 0.119 x10~' | 0.283 x10~! 8.47

Table 6.4: CPU Times and Accuracies for Example 3

p-(z,k) decays rapidly as k grows. In particular, the scattering data Re(po(k))
approaches 1 rapidly, as can be seen in Figure 6.3.
Example 2.2. A more complicated scatterer is given by the formula

q(z) =04 ((1 — cos(3z)) —

1215
2783

———(1 —cos(11z)) + %(1 — cos(12:v)> . (6.17)

Reconstructions were performed with a = 10, 20. The results of this experiment
are depicted in Table 6.3 and Figure 6.4.
In this example, we reconstruct a scatterer defined by the

Example 3.

formula

g(z) = 0.2 - sin(z).

(6.18)

Note that ¢’ is discontinuous at the points z = 0,2, and as a result py(z, k) —
p—(z,k) decays like 1/k, as can be seen in Figure 6.6. We have not proven
a convergence theorem for such scatterers, but the algorithm seems to perform
quite well in this case, and its rate of convergence to be linear (see Table 6.4
and Figure 6.5).

Example 4.1. Here, we reconstruct a scatterer defined by the formula

04 ifzell,2],

q(z) = { 0  otherwise. (6.19)
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1.0 T T T
0.5 — —
0.0
. 1 . | . |
0 2 4 S]
Figure 6.4: Reconstruction of Example 2.2 with a = 20
0.2

Figure 6.5: Reconstruction of Example 3 with a = 10
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Figure 6.6: Real Part of the Scattering Data po(k) in Example 3

a | hy | Ny E? t (sec.)
101 0.4 50 0.165 0.230
201 0.4 | 200 0.119 1.51
40 | 0.4 | 400 | 0.843 x1071 6.03

Table 6.5: CPU Times and Accuracies for Example 4.1

In this example, the scatterer is discontinuous, and the conditions of Theorems
5.1, 6.2 are violated. In fact, the integrand p; — p_ does not even converge to

zero as k — oo. The results of this experiment are depicted in Figures 6.7, 6.8,
and Table 6.5.

Example 4.2. In this example, we reconstruct a staircase-shaped scatterer
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S7

0.0 o ‘/\7 _&/J\V

1 I Il | L

a} 1 2

Figure 6.7: Reconstruction of Example 4.1 with ¢ = 40

(8] 10 20 30

Figure 6.8: Real Part of the Scattering Data po(k) in Example 4.1

40
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a | hy | Ny E? t (sec.)
5 10.21100 0.149 0.430
10 | 0.2 | 150 | 0.936 x10~1 1.18
20 | 0.2 | 300 | 0.682 x107! 4.40

Table 6.6: CPU Times and Accuracies for Example 4.2

defined by the formula

(0 € (—00,0.5]
0.1 =z€(0.5,1.0]
02 =z € (10,15
04 z€ (520
0.6 =z € (20,25
0.5 =z €(25,3.0]

g(z)=1{ 03 z€(3.0,3.5] (6.20)
0.1 =z €(3.54.0]
—0.1 z € (4.0,4.5]
~0.3 z € (4.5,5.0]
0.2 z € (5.0,5.5]
—0.1 z€(5.5,6.0]
L 0 € (6.0, 00)

This example is similar to the preceding one, but the shape of the scatterer is
more complicated. The results of this experiment are shown in Table 6.6 and
Figure 6.9.

Example 5. We investigate the sensitivity of the reconstruction to perturba-
tions of the initial data. In a somewhat crude test, we perturb the initial data for
the algorithm by truncating it after a specified number of decimal digits (both
the real and the imaginary parts). Clearly, after such a truncation, the maxi-
mum relative error is of the order 10°~! (for example, when the number 1.999 is
truncated after D =1 digits, the result is 1).

Tables 6.7 and 6.8 demonstrate the numerical results of the reconstruction
of Examples 2.1 and 3, respectively, with various truncations of the input data.
In each case, a was chosen sufficiently large that the error from the truncation
of the trace formula due to finite a (see (4.194), (4.198)) is negligible compared
to the error due to the finite number D of digits retained. For a given a, the
parameters hy, N, were chosen such that accuracy of the reconstruction was
not improved by a further decrease of h; and/or increase of N,. Also see Figures
6.10- 6.14, comparing the scatterers reconstructed using the perturbed data with
the prescribed ones.
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Figure 6.9:

Reconstruction of Example 4.2 with a = 20

a

hy

Ny

E2

EOO

7
14
7
14
7
14
14
28
14
28

SOt W wN N~ T

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.05
0.1
0.05

100
300
100
300
100
300
300
600
300
600

0.410
0.412
0.126
0.128
0.174 x1071
0.187 x1071
0.126 x10~2
0.118 x1072
0.297 x1073
0.250 %1073

0.474
0.473
0.156
0.157
0.265 x10~!
0.256 x107*
0.151 x10~2
0.132 x1072
0.426 x1073
0.324 x1073

Table 6.7: CPU Times and Accuracies for Example 2.1 with Truncated Data
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1 | ! | I
a} 2 4 6

Figure 6.11: Reconstruction of Example 2.1 with D =2
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o 2 4 ]

Figure 6.12: Reconstruction of Example 2.1 with D =3

D|a | h| N, E? E*
110 |0.1]150 0.647 0.863
1120 0.1]300 0.640 0.852
2 {10 ]0.1]150 0.121 0.173
2 120 |0.1]300 0.113 0.164
3110 ]0.1|150|0.314 x10~! | 0.602 x107!
3 120]0.1|300]0.206 x10~! | 0.439 x107!

Table 6.8: CPU Times and Accuracies for Example 3 with Truncated Data
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Figure 6.13: Reconstruction of Example 3 with D =1

Figure 6.14: Reconstruction of Example 3 with D = 2
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a | hy | N, E? E* t (sec.)
25 0.2 250 | 0.750 x107! 0.153 22.6
25 | 0.1 250 | 0.722 x10~1 0.145 45.0
50 [ 0.2 | 500 | 0.512 x10~! | 0.793 x10~1! 89.8
50 [ 0.1 500 | 0.349 x10~! | 0.686 x10~1! 179
100 | 0.1 | 1000 | 0.158 x10~* | 0.359 x10! 718
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Table 6.9: CPU Times and Accuracies for Example 6

We conclude the numerical examples by a nearly singular problem with the
scattering potential defined by the formula

g(z) =2 e 509" 4 sin(5(2z — 7)) - sin*(2z — 7). (6.21)

The parameters in (6.21) were chosen such that the minimum of the function
1 + g is nearly zero. In fact,

mei}%lq(:v) = —0.9953, (6.22)
rfe%%cq(a:) = 2.10. (6.23)

Such a scattering potential is extremely difficult to reconstruct since the speed of
sound in the scatterer changes drastically (the ratio between the maximum and
minimum speed of sound is about 400), and the impedance functions p,,p_ have
large values, making the ODE system (6.3), (6.4), (6.5) stiff. A standard second
order Crank-Nicolson implicit scheme was employed to solve this problem.

Example 6. Table 6.9 demonstrates the numerical results of the reconstruc-
tion of the scattering potential (6.21). Also see Figure 6.15 for the numerical
reconstruction.

The following observations can be made from Tables 6.1- 6.9 and Figures
6.1- 6.15.

1. When the scatterer satisfies the conditions of Theorems 5.1, 6.2, the accuracy
of the reconstruction is somewhat better than that predicated by these theorems
(see Example 2.1). This indicates that (as expected) the estimates (5.13), (6.12)
are somewhat pessimistic.

2. When the scatterer violates the conditions of Theorems 5.1, 6.2 mildly (by
having discontinuous derivative at the points 0, 27), the reconstruction algo-
rithm still converges. Qualitatively, the reconstructions in Figure 3(a) should be
described as good. A careful examination of Table 6.4 (and other data not pre-
sented in this thesis) shows that the error of the reconstruction for such scatterers
is proportional to 1/a.
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Figure 6.15: Reconstruction of Example 6 with a = 50

3. When the scatterer is discontinuous (Examples 4.1, 4.2), the algorithm pro-
duces results depicted in Figures 6.7, 6.9. The oscillatory behavior near the
discontinuities resembles the well known Gibbs phenomenon. A careful exami-
nation of Tables 6.5, 6.6, (and other data not presented in this thesis) shows
that in this case, the point-wise convergence is absent. In the L?-norm, the error
of the reconstruction behaves like 1/,/a.

4. When the initial data are perturbed, the resulting error of the reconstruc-
tion appears to be proportional to the magnitude of the perturbation, and the
proportionality coefficient is close to 1. This is a much better estimate than the
one of Lemma 5.4 which bounds the condition number of the algorithm by a.
Qualitatively, it can be said that the algorithm is not sensitive to errors in the
initial data.

5. When the speed of sound to be reconstructed varies by several order of mag-
nitude, the algorithm encounters a mild difficulty in the form of stiffness of the
system of equations (6.3)- (6.5). The problem is easily solved by switching to
an implicit ODE solver.




Chapter 7

Generalizations and Conclusions

7.1 Generalizations in One Dimension

Following is a discussion of possible generalizations of the techniques and results
of this thesis in one dimension.

1. In their present form, Theorems 5.1, 6.2 require that the scatterer have at least
four continuous derivatives. Numerical examples 3-4 of the preceding section
make it abundantly clear that this is a superfluous requirement. Obviously,
Theorems 5.1, 6.2 can be generalized to at least include the scatterers of the
type reconstructed in examples 3-4. Including the scatterers of examples 3—4
will be somewhat more involved, and will require a significant reformulation of

Theorems 5.1, 6.2.

2. The algorithm of this thesis can be extended to the Schrodinger equation.
The generalization is fairly straightforward and will be reported at a later date.

3. In this thesis, we reconstruct a scalar potential g given the scattering data for
a single Helmholtz equation. In many problems of physical interest, the potential
has several components (such as the compressional and shear speeds of sound in a
medium), and the scattered data correspond to a system of Helmholtz equations
(such as equations of elastic scattering, or Maxwell’s equations in the frequency
domain). An extension of the techniques to these cases appears to be relatively
straightforward, and will be reported at a later date.

4. The impedance function formulation of the inverse problem (see, for example,
Section 5.2) can be reformulated as an initial value problem for two variables
called local reflection coefficients R, (z,k) and R_(z, k) defined below. Later in
Section 7.2, an extension of this formulation to two dimensions will be presented.

For any zo € [0,1] ([0,1] is the support of the scatterer ¢), we define the

65
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truncated scatterers ¢,(z) and ¢;(z) by the formulas

_ 0 ifz < o,
¢-(z) = { q(z) if z > zo, (7.1)

) q(x) ifz < o,

a(@) = { 0 ifz >z (7:2)
Clearly, the right-traveling incoming wave @inci(z,k) = €** gets reflected at
T = zo due to the discontinuity of ¢, at that point. Since the g,(z) = 0 for all
T < o, the total field, which is the solution of the Helmholtz equation, may be
expressed as (see formula (2.17) in Section 2.2)

¢+ (z, k) = €* + Ry (0, k)e™*, for all z < o, (7.3)

where Ry (zo,k)e™** is the reflected (or back-scattered) wave. We refer to
R, (20, k) as the local reflection coefficient at zq.

Denote by py and p,, the impedance functions for the two scatterers ¢ and g,
respectively (see Section 2.2 for the definition of the impedance functions). For
all z > zo, py and py, satisfy the same Riccati equation (3.50), since ¢,(z) =
q(z). Furthermore, they satisfy same initial condition (3.52); consequently

p+(z, k) = pyr(z, k), for all z > x. (7.4)
Combining formulas (2.15), (7.3), and (7.4) with the fact that p,.(z, k) is

continuous across £ = xg, we have the formula
1-— R+($0, k)e’%k“’
1 4+ Ri(zo, k)e=2ikzo’

P+ (o0, k) = (7.5)

from which we obtain

—2i 1 — py(wo, k)
Ry (wo, k)e 2ko0 = —_THT0 7/ 7.6
M TNy (70
for all real zg.
We observe that there exists a real ¢ > 0 such that for all real  and complex
k in the upper half of the complex k-plane,

|Ry(z,k)e™ | < e < 1, (7.7)

since p;. is uniformly bounded, and Re(py) > 0 is uniformly bounded from below
by a positive number (see Theorem 4.17 in Section 4.2).

It is now clear, from the Riccati equation (3.50) and formulas (7.5), (7.5),
that there is an ODE for the local reflection coefficient R, (z, k)

R (z,k) = —%q(m) (B (z, )e™ 4 ei*)’, (7.8)
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which is, of course, a Riccati equation for Ry(z,k) with the variable k as a
parameter.

In a similar manner, the local reflection coefficient R_(z, k) is defined by the
formula

o_(z,k) = e 4 R_(z0, k)e™*®, for all £ > zol, (7.9)

where ¢_ is the solution of the Helmholtz equation induced by the left-traveling
incoming wave @in.—(x, k) = "% and the scatterer ¢; defined by formula (7.2).
The following is a list of similar facts about R_.

For any real z and complex k in the upper half plane, R_ is connected with
p— via the formulas

1 — R_(z,k)e2*=

p_(z,k) = TR (2 b (7.10)

: 1 —p_(z,k)

2tkr  __ ) .
R_(z,k)e R ETNENSL (7.11)

R_ is bounded by the formula

|R_(z,k)e*™ | < e < 1; (7.12)
and R_ satisfies the Riccati equation
R (z,k) = Z—2—q(:c)(R_(:c, k)etke 4 g=tke)2, (7.13)

Finally, it is easy to see that there is a trace formula associated with the local
reflection coefficients Ry, R_,

1
(@) = ——(1+g) (1+/1+4@)
/ (Ri(z, k)e™™* — R_(z, k)e"**) dk. (7.14)
The ODE system (7.8), (7.13), and (7.14) for Ry, R_, and q is solved with
appropriate initial values of Ry, R_, and ¢ at z = 0. As is expected, the
convergence results are similar to those presented in Section 5.2.
Numerical experiments show that the performance of the algorithm using the

local reflection coeflicients is slightly and consistently better than that using the
impedance functions.

7.2 Extensions to Two Dimensions

The following is a brief discussion of the generalizations of our inversion algo-
rithms in two dimensions. While the impedance function formulation of the
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inverse problem (see Section 2.2) can be easily generalized in two dimensions,
the reflection coefficient formulation (see Section 7.1 for the 1-D formulation) in
two dimensions is not straightforward. Below, we first formulate the forward (as
opposed to inverse) scattering problem in two dimensions. We then derive the
Riccati equation for the impedance mappings, for the two dimensional inverse
problem. A trace formula associated with the impedance mappings (similar to
the trace formula used in Section 5.2) is then presented. Finally, for the general-
ization of the reflection coeflicient formulation, we will present a Riccati equation
for the scattering matrix in two dimensions.

7.2.1 Forward Scattering Problem in Two Dimensions

We first formulate the forward scattering problem in two dimensions. Let us
consider the two dimensional Helmholtz equation

Ad(z,y) + k> - (1 + q(z,y)) - ¢(z,y) =0, (7.15)

where A is the Laplace operator. We assume that the scatterer ¢ : R? — R is a
smooth function and has a compact support €, and that ¢ > —1.

In the forward scattering problem, we are interested in solutions of Helmholtz
equation (7.15) of the form

(ﬁ(.’t, y) = ¢0(:13, y) + 1/)(377?/)7 (716)

where ¢ is referred to as the total field, ¢q is referred to as the incoming field,
and ¢ is referred to as the scattered field. We also say that the total field ¢ is
induced by the incoming field ¢,.

The incoming field is a solution of the Helmholtz equation (7.15) with ¢ = 0.
It can be expressed by a linear combination of the incoming plane waves of the
form

i, y) = Xy in®) (7.17)

with $ the direction in which a plane wave travels. As can be easily verified, for
each real 3, function (7.15) is a solution of the Helmholtz equation (7.15) with
qg=0.

The scattered field ¢ satisfies the so-called Sommerfeld radiation condition,
or the outgoing radiation condition

ﬁ-(%%——i-k-z,b)ﬂ(),asr: 22 +y? — o, (7.18)

and satisfies an inhomogeneous Helmholtz equation

Adp(z,y) + & - (1 + q(z,9)) - (z,y) = —k* - ¢(2,y) - po(, y). (7.19)
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7.2.2 Riccati Equations for the Impedance Mappings

We define the set of right-going plane waves by the formula (see (7.17) for the
definition of the incoming plane waves)

Qrp'w — {eik(x-cos(ﬁ)+y~sin(ﬁ)) | z /3 <

5 < . (7.20)

A solution of the Helmholtz equation (7.15) is said to be a right-going so-
lution, if it is induced by a right-going plane wave, or in general, by a function
$+o in the linear span of the set ®,,, of right-going plane waves (see (7.16)).
Therefore, the set of right-going solutions is defined by the formula

D45 = {d+ = dro + ¥y | d40 € Span(®,,,), ¥ is the scattered field }.  (7.21)

We are now ready to define the impedance mapping P,. For fixed z and k,
P, (z,k) is a linear mapping, : L}, — L%, where L} is the local L? space on
the real line. It maps, for fixed z and k, a right-going solution ¢, € ®,,, as a
function of y to its derivative with respect to z as a function of y, more specificly,

1 0 ,
Pola k) dyoy) = - PO gorang g, €0, (12

Assuming that for fixed z and k, the right-going solutions in ®,,, is dense in
L}, and combining (7.22) with the Helmholtz equation (7.15), we can easily
obtain a Riccati equation for the impedance mapping P, ,

Pia k) = =ik (P(eb) - o~ (o), (2

where I is the identity operator, ¢(z,-) is a diagonal linear operator,

q(z,-) - f(y) = q(z,y) - f(y), (7.24)

for a fixed z and any f € L2 ,.
The impedance mapping P_ can be defined by first introducing the set of all
left-going solutions in a similar manner, which leads to a Riccati equation for P_ ,

P (z,k) = ik (Pf(x,k) ]:2 dd22 (I + g(=, )) (7.25)

These Riccati equations are operator equations; the operator 2 W for example,
in the standard discretized form, is a tridiagonal matrix, hence the term * ‘matrix
Riccati equations”.
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Combining the definition of the impedance mappings with the standard WKB
approximation, we obtain a trace formula (the derivation is omitted here),

dq(z, 2 00
WD)~ 20 4 4(a,0) [ (Palesk) = Po(e,K) - i), (720
where Fon(y) =1 for any real y is clearly a function in L? . Numerical experi-
ments show that when the integral is truncated so that it is taken over the interval

[—a, a], the rate of convergence behaves exactly like that in one dimension (see
Section 4.3).

Remark 7.1 While the matriz Riccati equation and the trace formula associ-
ated with the impedance mappings are extremely similar to their one dimensional
counterparts (see Section 5.2), the spatial discretization of these two dimen-
sional objects is quite different from that in 1-D. The fact that the scattered field
¥ decays very slowly like 1//7 makes spatial truncation virtually impossible.

In solving the initial value problem of the ODEs (7.23), (7.25), and (7.26),
the desired truncation in y-direction (see Remark 7.1) is achieved by periodizing
the scatterer ¢ in y-direction (the details of this procedure are omitted). The
periodized problem is then truncated in frequency space, and discretized in a
procedure similar to that described in Section 6.1. Numerical experiments are
presently being conducted, and the results, together with the periodizing proce-
dure, will be reported at a later date.

7.2.3 Riccati Equations for the Scattering Matrix

In a manner similar to that in which the impedance functions p; and p_ are
connected to the local reflection coefficients R, and R_ in one dimension (see
Section 7.1), the two dimensional objects Py and P_ are related to linear map-
pings called the scattering matrices, which are the two dimensional analogues of
the local reflection coefficients R, and R_.

We will define these scattering matrices in the polar coordinates, and will
present matrix Riccati equations for the scattering matrices. The procedures
used here being similar to those described in Section 7.1, only the main results
will be presented. We will also casually use several well established results about
cylindrical functions.

For any R > 0, we define the truncated scatterer qg by the formula

r,0) ifr <R,
qr(r,0) = { g( ) fr>R (7.27)
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We first discuss the forward scattering from the truncated scatterer gr. As is
well-known, for any r, an incoming field (see Section 7.2.1) can be expressed as
the so-called Bessel-Fourier series

bine(n0) = 3> i - Ton(kr)e™. (7.28)

m=-—00

Is is also well-know that for a fixed R, and for any r > R where gg(r,0) = 0,
the scattered field induced by ¢;,. and gr can be written as the so-called Hankel-
Fourier series -

P(r,0)= > Bu(R,k)- Hy(kr)e™, (7.29)
where J,, is the first kind Bessel function of order m, H,, is the first kind Hankel
function of order m. It is well-known that once m > £kr, J,,(kr) decays and

H,,(kr) grows like

In(Er) ~ \/%E<62’:n")m (7.30)

Ho(kr) ~ —i- i(e'k"’)_m. (7.31)

m 2m

As is well-known, for an incoming field of the form (7.28), there exists a
unique scattered field of the form (7.29), such that ¢ = ¢;,. + 9 is a solution of
the Helmholtz equation (7.15). Consequently, the linear mapping

S(R,k) - {am(R, k),m = 0,£1,..} = {Bn(R, k),m =0,%1,...} (7.32)

is well-defined, and is normally referred to as the scattering matrix. Furthermore,
the entries of the matrix S decay very rapidly, since §,,(R, k) decays extremely
rapidly due to (7.30), (7.31).

The scattering matrix S satisfies the Riccati equation

ITT

S'(r k) = —2—k2-(J(kr)-|—S(r, k)-H(kr))-F-q(r,-)-F~'-(J(kr)+ H(kr)-S(r, k)),
(7.33)

where J(kr), H(kr) are diagonal matrices
J(kr) = diag{Jo(kr), Js1(kr),...}, (7.34)
H(kr) = diag{Ho(kr), Hyi(kr),...}, (7.35)

q(r,-) is a diagonal linear operator

q(ry-) - f(6) = q(r,0) - £(0), (7.36)
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and F is the Fourier transform.

The derivation of this Riccati equation follows the procedures outlined in
Section 7.1, where Riccati equations for the local reflection coefficients are ob-
tained from the Riccati equations for the impedance functions. The derivation
is omitted here, and will be reported at a later date.

Remark 7.2 While the investigation of the inverse scattering problem in the
form of Riccati equation (7.33) is in progress, numerical experiments show that
ODE (7.33) could be useful for the solution of the forward scattering problem.
Unlike the Riccati equations for the impedance mappings, where there is a serious
problem with truncation, the scattering matriz S can be truncated easily since its
high-frequency entries (those with large indices) decay very rapidly. We currently
use the standard 4-th order Runge-Kutta method to solve the forward scattering
problem, that is, starting from r = 0 and S(r,k) = 0, solve the initial value
problem till r = Ry, for some Ry where the entire circle contains the support of
the scatterer. The whole procedure, as is easy to see, requirs order N* - log(N)
operations to obtain an N x N scattering matriz.

7.3 Conclusions

An algorithm has been presented for the solution of the inverse scattering prob-
lem for the Helmholtz equation in one dimension. The algorithm is based on a
combination of the standard Riccati equation for the impedance function with a
newly constructed trace formula for the derivative of the potential, and leads to
extremely accurate and efficient numerical schemes for smooth scatterers. The

principal differences between this scheme and various layer-stripping techniques
(see [12], [13], [14]) are:

1. The algorithm operates in the frequency domain, while other efficient schemes
are time-domain ones.

2. While the layer-stripping algorithms assume (at least conceptually) that the
scatterer is piece-wise constant, and are best in this regime, our algorithm as-
sumes that the scatterer is continuously differentiable. When the scatterer has a
sufficient number of derivatives, the algorithm converges almost instantaneously
(see Theorems 5.1, 6.2).

3. The principal drawback of the layer-stripping algorithms is the fact that they
are an essentially one-dimensional techniques, and the author is not aware of
any successful attempts to generalize them to higher dimensions. Our techniques
do generalize to two and three dimensions, and in fact an implementation of a
two-dimensional version of the procedure is in progress.
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