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Abstract

Protocols are developed and analyzed for transmitting a secret bit between a sender
and a receiver process using only the information contained in a random deal of hands
of specified sizes from a deck of n distinct cards. The sender’s and receiver’s algorithms
are known in advance, and all conversation between sender and receiver is public and
is heard by all. A correct protocol always succeeds in transmitting the secret bit, and
the other player(s), who receive the remaining cards and are assumed to have unlimited
computing power, gain no information whatsoever about the value of the secret bit. In
other words, their probability of correctly guessing the secret bit is exactly the same after
listening to a run of the protocol as it was before. Both randomized and deterministic
protocols are considered. A randomized protocol is described which works whenever the
sender’s and receiver’s hands comprise a constant fraction of the deck, for all sufficiently
large decks. A deterministic protocol is also described, but it requires the sender and
receiver to each have approximately 44% of the cards. A general condition is presented
that provides a lower bound on sizes of the sender’s and receiver’s hands in order for a
protocol to exist. There is still a considerable gap between the upper and lower bounds,
and improving the bounds remains an open problem.

1 Introduction

In the game of bridge, partners exchange public bids in order to arrive at a contract before
playing the cards. In the course of bidding, partners gain information about each other’s
hands, and indeed, considerable effort has been put into designing bidding conventions
(protocols in our terminology) for maximizing the amount of useful information conveyed
to the partner. It is of course desirable that the opponents obtain as little useful information
as possible from the bidding.

It is considered dishonest for partners to use secret conventions, and the laws of bridge
require that a partnership make public their conventions prior to play. Nevertheless, one
partner may well learn more from her partner’s bid than do the opponents. For example, a
partner responding to the Blackwood convention makes a bid whose meaning is the number
of aces held. While all players thereby learn that number, the initiating partner will learn
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by inference which aces the responding partner holds if the initiator happens to hold all of
the remaining aces.

Peter Winkler carried this idea further and developed bidding conventions whereby one
player could send her partner secret information about her hand that was totally unrelated
to the actual bid and completely undecipherable to the opponents, even though the protocol
was known to them [1, 2, 3, 4]. While one such convention was turned down in Great
Britian for use in tournament play, the idea that card games could be used to achieve
perfect cryptography without further assumptions remains intriguing and led to this paper.

2 Secret Bit Transmission

The secret bit transmission problem that we study is the classical problem of cryptography.
An agent, Alice, has a secret bit s, which she wishes to send to another agent, Bob. All
communication is via an insecure channel, so we must proceed under the assumption that
an eavesdropper, Eve, overhears all communication between Alice and Bob. The goal of
the protocol is for Bob to learn s but for Eve to gain no information about s. In other
words, Eve’s probability of correctly guessing s is unchanged after listening to the run of
the protocol between Alice and Bob. Since Eve is assumed to have unlimited computing
power, cryptographic systems based on computational difficulty are not applicable, and we
seek instead a perfect scheme in the information-theoretic sense.

We are interested only in protocols that always work, as opposed to protocols that only
sometimes work or that have a probability of error. Thus, we say that a protocol solves the
secret bit transmission problem if in every run, Bob learns s and Eve gains no information
about s.

Of course, if Alice and Bob share a random secret bit r which is not known to Eve, then
it suffices for Alice to send the message m = r ⊕ s (the exclusive “or” of r with s). Bob
computes s = m ⊕ r, and Eve learns nothing about s, since the possibility that s = 0 and
r = m and the possibility that s = 1 and r = 1⊕m are equally likely given knowledge only
of m. r is called a “one-time pad” (since it cannot safely be used again to send another
message), and this scheme is an example of a secure private-key cryptosystem for sending
a single secret bit.

A generalization of the one-time pad is important when we consider determinstic pro-
tocols. Suppose that Alice and Bob share a random value r ∈ {0, . . . , d − 1}. When d is
odd, r cannot be mapped to a random fair bit, but it can still be used to send s secretly,
namely, Alice sends the message m = (r + s) mod d. As in the binary case, Eve learns
nothing about s since all values m are equally likely, regardless of the value of s. We call
such an r a d-generalized one-time pad.

We rule out private key cryptography by assuming that Alice and Bob have no prior
secret information between themselves. Both the protocols and initial state of Alice and
Bob are known to Eve. The only information that Eve does not know in advance is the
value of the secret bit s, which we can regard as a private input to Alice.

It is easily shown that without any further assumptions, secret bit transmission is im-
possible, for Eve can simulate Bob and reach the same conclusion as to the value of s that
Bob does. In case Bob is a deterministic algorithm, the simulation is obvious. If Bob is a
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randomized algorithm (i.e. can flip private fair coins), then Eve simulates Bob on all pos-
sible coin-toss sequences, discarding those simulated runs in which the simulated behavior
deviates from Bob’s actual observed behavior. Any remaining simulated runs are possible
runs for Bob, and thus any such run that determines a value for s must determine the
correct value. In this way, Eve learns s.

Henceforth, we assume that the three players have available randomly dealt hands from
a deck of n distinct totally-ordered cards. In an (a, b, c) deal, Alice gets a cards, Bob gets
b cards, and Eve gets c = n − a − b cards. The size of the deck, the values of the cards in
the deck, and the total ordering on the cards are common knowledge among all players, as
are the cardinalities of each player’s hands. Only the identities of the particular cards in
each player’s hand are private to that player. Unlike a deal in a real card game, we assume
that each player’s hand is sorted by the dealer, so that no random information is contained
in the order in which the cards are presented to the player. This assumption is significant
when we discuss deterministic protocols.

In carrying out a secret bit transmission using a deal of cards, players are allowed to say
anything they want and to reveal as much information as they like about their hands. The
only requirement is that Bob eventually learns s and Eve remains in completely in the dark
about s. A protocol that, given a random (a, b, c) deal, succeeds in transmitting s secretly
is called an (a, b, c) secret bit transmission protocol.

3 A Simple Randomized Protocol

To illustrate some of the basic ideas underlying this problem, we first consider a simple
randomized protocol and prove that it works whenever a, b ≥ 1 and a+ b ≥ c+ 2.

A key set K consists of any two cards, one from Alice’s hand and one from Bob’s hand.
We say that K = {x, y} is hidden if the two situations, that Alice holds x and Bob holds
y or that Alice holds y and Bob holds x, are equally likely, given the information available
to Eve. Note that by this definition, K can be hidden even though Eve knows which two
cards are in K.

Assuming Alice and Bob can somehow identify a hidden key set K = {x, y}, they can
then obtain from it a one-time pad r. Namely, they agree that r = 0 if Alice holds the
smaller card in K and r = 1 if she holds the larger. Since Alice and Bob each know which
card of K they hold, they each also know r. Eve on the other hand has no information
about which card which partner holds, so r looks completely random to her. Alice can then
use r to send s to Bob as described above.

The following protocol allows Alice and Bob to determine a key set:

1. Alice chooses a random card x contained in her hand and a random card y not in her
hand and proposes K = {x, y} as a key set to Bob.1

2. If Bob holds y (i.e. holds a card in K), he knows that K is a key set, so he accepts
K and announces that fact to Alice, who then also knows that K is a key set. K
is hidden since it is equally likely to be proposed by Alice in the symmetric deal in

1To keep from revealing information about which of the two cards she holds, she sorts K into increasing
order before sending it to Bob.
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which everything is the same except that Alice holds y and Bob holds x. K is the
desired key set and the protocol terminates.

3. If Bob does not hold y, he rejects K and announces this fact to Alice. In this case, the
facts that Alice holds x and Eve holds y are common knowledge between Alice and
Eve, so Alice tells these facts to Bob as well, making the locations of x and y public.
Alice and Bob then discard x and y from the deck and go back to step 1 of the protocol,
pretending that the cards remaining in their hands came from a (a− 1, b, c− 1) deal
from an n− 2 card deck. Eve has no information about how the remaining cards not
in her hand are divided up between Alice and Bob, so the remaining hands indeed
look random to her. Alice and Bob keep repeating the protocol in this way until they
find a key set or until Alice is unable to complete step 1 (because either her hand is
empty or she holds all of the cards in the deck).

If a > c, then Eve runs out of cards before Alice does, since both Alice and Eve lose one
card on each iteration where Alice proposes a set K that is rejected by Bob. If also b ≥ 1,
then when c becomes 0, the next proposed key set is guaranteed to be accepted by Bob and
the protocol terminates.

By modifying this protocol so that on each iteration, Alice and Bob switch roles if Bob
holds more cards than Alice, we obtain:

Theorem 1 Let a, b ≥ 1 and a+ b ≥ c+ 2. Then there is a randomized (a, b, c) secret bit
transmission protocol.

4 A Solution Requiring Only a Fraction of the Cards

The protocol of Section 3 requires that Alice and Bob jointly are dealt more than half the
cards. We next sketch a protocol in which Alice and Bob each receive only bαnc of the
cards, where α is an arbitrary positive constant.

The idea here is to generalize the notion of a key set. Call a set K an i-set if the
cardinality of K is i and K contains exactly one card from each of Alice’s and Bob’s hands
(and the remaining i − 2 cards belong to Eve’s hand). By this definition, a key set as
previously defined is the same as a 2-set.

The protocol operates in two phases. The first phase produces a large collection of
disjoint m-sets and (m − 1)-sets, where m = dn/ae. A reduction phase then transforms
this collection into a single 2-set. The reduction phase operates iteratively, at each stage
replacing two sets in the collection by a new set. An entropy argument is used to show that
the reduction process eventually terminates in a 2-set, assuming the initial collection of sets
was sufficiently large.

In slightly more detail, Alice initially partitions the deck into a sets, each of which
contains one card from her hand and either m − 1 or m − 2 cards not in her hand. Bob
accepts a proposed set if he holds one or more cards in it; otherwise he rejects it. In the
worst case, he will accept at least b/(m − 1) sets since all of his cards lie in the various
proposed sets. By making n sufficiently large, the number of accepted sets can be made
arbitrarily large.
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If Bob holds more than one card in an accepted set, he randomly chooses one such card
to keep and he discards the rest. The result is an m′-set for some m′ ≤ m. Hence, the first
phase yields at least b/(m− 1) m′-sets of various sizes m′ ≤ m.

In the reduction phase, Alice chooses two sets R,S of maximal size from the collection.
For definiteness, say R is an i-set and S is a j-set (2 < i, j ≤ m). She then chooses one of
the two sets at random, say R. Let x be the (unique) card in R that Alice holds. Let y be
chosen randomly from among the cards of S that Alice does not hold. Alice then proposes
T = {x, y} as a key set, and Bob accepts or rejects it according to whether he holds y or
not. If he accepts it, then T is a 2-set, and the reduction phase succeeds. If not, then Alice
announces the locations of the cards in R∪{x, y} which are then discarded. She removes R
and S from her collection of sets and puts the new set S′ = S − {y}, which is a (j − 1)-set,
back into the collection. This process is repeated until either a key set is obtained or until
only one set remains in the collection. A simple inductive proof shows that if the collection
originally contains at least 2m−2 sets, then the reduction process eventually yields a key set.

The above establishes:

Theorem 2 Let α be an arbitrary positive real number. There exists n0 such that for all
n ≥ n0, if a = b = bαnc and c = n − a − b, then there is a randomized (a, b, c) secret bit
transmission protocol.

For the above protocol, n0 is O(m22m). The protocol can be improved to yield a much
smaller bound, which we currently believe will work out to about O(mc log m/ log log m) for
some constant c. The protocol improvements involve both phases. In phase 1, if Bob holds
more than k > 1 cards in a proposed m′-set then, rather than discard the extras, he can
partition the set into k sets each of size about m′/k such that he holds a card in each.
One of them will contain Alice’s card and hence be an m′′-set for m′′ ≈ m′/k. In phase 2,
instead of choosing two sets R and S and forming a trial 2-set T , it is better to choose r
sets R1, . . . , Rr from the collection and to form a trial r-set T by choosing one card from
each Ri such that T has exactly one card from Alice’s hand and r−1 cards not in her hand.
If Bob accepts T , then T is an r-set and replaces R1, . . . , Rr in the collection. Otherwise,
the cards in T are discarded, leaving r sets R′i = Ri − T , 1 ≤ i ≤ r. Since T contained
one card from Alice’s hand, one of the R′i sets has an empty intersection with Alice’s hand,
and it too is discarded. The remaining R′j sets are returned to the collection. r is chosen
at each stage to optimize the progress made. Our improved bound results from taking r
approximately equal to m log logm/ logm.

5 A Lower Bound Theorem

The above protocols establish triples (a, b, c) for which an (a, b, c) secret bit transmission
protocol exists. We now present a lower bound on the sizes of Alice’s and Bob’s hands for
such a protocol to exist.

Theorem 3 Let n = a+ b+ c. Let γ be the probability that a pair of random hands A (for
Alice) and B (for Bob) intersect when dealt from different decks, where as usual, |A| = a
and |B| = b. If γ < 1/2, then there is no (a, b, c) secret bit transmission protocol, even if
Eve is not allowed to look at her hand.
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The idea behind the proof is to look at runs of the protocol according to the transcript
(conversation) τ that Eve hears. Assume for the moment that Alice and Bob are determin-
stic protocols, so τ is a function of s, A, and B. Call the triple (s,A,B) a situation. The
secrecy condition implies that the number of situations giving rise to τ with s = 0 is the
same as the number with s = 1. Now suppose (0, A0, B0) and (1, A1, B1) are two situations
both giving rise to τ . Then an easy inductive argument shows that the situations (0, A0, B1)
and (1, A1, B0) also give rise to τ . Moreover, since Bob outputs 0 in (0, A0, B0) and outputs
1 in (1, A1, B1), then he outputs 0 in (1, A1, B0) and outputs 1 in (0, A0, B1). Since his
answers in these latter two situations are both incorrect and we assume a correct protocol,
it must be the case that these situations cannot occur in a proper deal, i.e. A0∩B1 6= ∅ and
A1 ∩B0 6= ∅. Thus, corresponding to legal pairs (A0, B0) and (A1, B1) (i.e. pairs dealt from
the same deck) are illegal pairs (A0, B1) and (A1, B0). A counting argument shows that #
legal pairs ≤ # illegal pairs, from which it follows that γ ≥ 1/2. Hence, if γ < 1/2, then no
protocol exists.

When Alice and Bob are randomized algorithms, the transcript τ depends on Alice’s and
Bob’s random choice sequences as well as on s, A, and B, so the definition of a situation must
be extended to include the choice sequences, and one must sum over all choice sequences at
the end. Details are given in the full paper.

Corollary 1 There is no (1, 1, 1) secret bit transmission protocol.

Proof: For this case, γ = 1/3 < 1/2.

6 Deterministic Protocols

The protocols given so far in this paper heavily exploit randomization by the players. More-
over, it is not at all clear how to get rid of randomization. For example, if Alice proposes a
key set {x, y} by picking the smallest card in her hand for x and the smallest card not in
her hand for y, then she may be revealing her entire hand by announcing the set {x, y}. For
example, if a < n/2 and the set she announces contains card number n − a + 1, that card
must be x, and Alice’s hand is {n− a+ 1, n− a+ 2, . . . , n}, where as usual, n = a+ b+ c,
and we assume the cards of the deck are numbered 1, 2, . . . , n. Nevertheless, determinis-
tic protocols are possible, at least for some triples of hand sizes. We describe a recursive
protocol below.

The protocol proceeds as follows on an (a, b, c) deal:

1. If a, b ≥ 1 and c = 0, then there are d =
(n
a

)
possible (a, b, 0) deals. Index them from

0 to d− 1 in some predetermined way, and let r be the index of the actual deal. Both
Alice and Bob know the exact placement of every card (since c = 0), so both can
compute r. Eve however has no information about r. Alice sends s to Bob using r as
a d-generalized one-time pad as described in Section 1, and the protocol succeeds.

2. If a = 0 or b = 0, there is nothing Alice or Bob can do and the protocol fails.

3. If n is odd, Alice and Bob determine the location of card n by each announcing
whether or not they hold the card, and that card is discarded from further play. This
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leaves the three players with a random deal from a deck of n− 1 cards and hands of
sizes (a− 1, b, c), (a, b− 1, c), or (a, b, c− 1), depending on which of the three players
originally held card n. Alice and Bob know which of these three situations they are
in, and they play accordingly by using this protocol recursively.

4. If n is even, Alice and Bob regard the deck as consisting of n/2 suits of two cards
each by mapping card 2k to suit k, rank 0, and card 2k + 1 to suit k, rank 1. Alice
and Bob then name all of their singleton suits. If they both name the same singleton
suit, then the two cards of that suit form a key set and the protocol succeeds. If not,
then Eve holds the other card of each singleton suit named by either Alice or Bob.

Alice and Bob now select a subset of the deck for which they have a random deal and
they use this protocol recursively on the subset. The subset consists of all cards of
rank 0 and all suits k such that k is not one of the singleton suits named by either
Alice or Bob. Let (a′, b′, c′) be the numbers of cards in the subset held by Alice, Bob,
and Eve, respectively. If Alice previously named p singleton suits and Bob named q,
then a′ = (a − p)/2, b′ = (b − q)/2, and c′ = (c − p − q)/2. This is because after all
of the cards of singleton suits have been discarded, then every player that holds the
rank 0 card of a suit also holds the rank 1 card of the same suit.

This protocol always succeeds for (a, b, c) if either a, b ≥ 1 and c = 0, or if it always suc-
ceeds on all of the smaller deals that might be produced by the above rules. The recurrence
relation that results is not particularly well-behaved, but we can prove the following:

Theorem 4 There exists a deterministic (a, b, c) protocol for secret bit transmission if
a, b ≥ 1 and c ≤ min(a, b)/3.

7 Conclusion and Open Problems

This work is a first step at trying to understand the notion of the shared secret random
information contained in a deal of cards and to find protocols to make use of such shared
information. It also gives further insight into the power of private coins and multiround
interaction.

An obvious direction for further investigation is to find tighter bounds on triples (a, b, c)
for which randomized and deterministic (a, b, c) protocols do and do not exist. An obvious
extension is to consider the problem of sending more than one secret bit with a single deal of
cards and/or to relax some of the requirements we have imposed on a solution. For example,
one might allow a small probability of error in the protocol so that Bob sometimes fails to
learn the secret, or Eve sometimes does learn the secret, or Eve’s probability of correctly
guessing the secret increases by a small positive ε.

Another direction for further research, suggested by Peter Winkler, is to replace prob-
abilistic statements by knowledge statements. Thus, the problem becomes one of finding
an (a, b, c) protocol such that after running it, Bob knows the secret value but Eve does
not. Every secret bit transmission protocol satisfies these conditions, but the converse does
not hold, for even when Eve does not learn the secret bit for sure, she may nevertheless
have acquired partial information about it. Our lower bound theorem does not seem to
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apply to this case, and it appears that a detailed analysis of the knowledge structure will
be necessary.

A final avenue for further research is to look at even more restricted protocols. For
example, a one-way deterministic protocol is one in which Alice sends only a single message
to Bob, who then, on the basis of his hand, can figure out Alice’s secret but Eve learns
nothing about it. Andrew Berman has shown that such protocols can exist by exhibiting
one for a (5, 4, 1) deal. It is an open problem to find other non-trivial triples for which such
one-way protocols exist.
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