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Abstract

We study efficient algorithms for very large quadratic problems subject to box constraints and
propose some new convergent methods that permit the addition and deletion of many constraints
éach time a search direction is calculated. Numerical experiments, on problems of up to 10,000
variables, indicate that the performance of the proposed algorithms appears to be insensitive to
the number of binding constraints at the optimal solution or to the starting point. Also it
appears as if solving the box constrained problem is at worst marginally more expensive than

solving the same problem without constraints.



1. Introduction

Box constrained quadratic programming problems have the form

mintmize Q(z)= lf zTHz + Tz
(BQP) (1)
subject to l<z < u

where H is an (nXn)matrix and ¢, ! and u are given vectors in R". We assume throughout this
paper that H is positive definite, that is, there exists a constant u>0 such that z Hz > p|z|?

for all z in R".

Problems of this type arise very often in numerical analysis applications, optimal control and
operations research, as well as subproblems in general nonlinear optimization algorithms. Among
the applications in numerical analysis is the solution of partial differential equations arising in
Dirichlet problems with obstacles [11], the bar under torsion problem [10] (determining the zone
of elasticity and plasticity of a cylindrical bar), or free boundary value problems such as the
journal bearing problem [15] or the earthen dam problem [1, 11]. Many discrete time or
discretized continuous time optimal control problems lead to quadratic programs with box
constraints [39]. Another frequent source of problems of this type is in linear least squares when
bounds on the variables are imposed by the nature of the system being modeled. One example of
this arises in computerized tomography, where linear least squares problems have to be solved
subject to nonnegativity constraints (see [45] for example]). Quadratic programming models also
arise frequently in operations research applications and are an important component of portfolio

problems in finance (see [18]).

Our primary interest is however in the efficient solution of subproblems that arise when solving
general nonlinear optimization problems via successive (recursive) quadratic programming
methods [7, 8, 27, 41, 42, 43]. Box-constrained quadratic programming problems arise naturally
if the original problem is box-constrained but also if (exact) penalty methods are used where only
equality constraints are penalized. Even when solving general problems however, box-constrained
quadratic programming problems arise since the dual of a general, linearly-constrained and
strictly-convex QP, is box-constrained (see Nickel and Tolle [35] for example). We therefore feel

that the box-constrained problem plays a fundamental role in constrained optimization and a



thorough analysis of such problems is a necessary prerequisite in the study of algorithms for

large-scale optimization.

The importance of such problems has lead many researchers to develop quadratic programming
methods which can be readily applied to solve BQP. However, often these problems are large
(n = 10,000 is not atypical in numerical analysis or optimal control applications). They also
appear commonly as subproblems and therefore need to be solved (perhaps inexactly [43]) many
times. Hence efficiency is essential and, in light of the problem dimensions, storage may be at a
premium. First it is important to be able to identify a set of constraints that will be binding at
an optimal solution (particularly if the QP is not going to be solved exactly [43]). With the
exception of some projection methods [4, 32], most existing algorithms use active set strategies
which allow one either to add or to drop only one constraint per search direction computation
(see [25, 26] for example). This could make them prohibitively slow for large problems for which
the starting point and the optimal solution may have vastly different active sets. Algorithms
that use projection steps can usually drop many constraints with little overhead. However, they
drop constraints only after having solved some reduced problem to optimality and therefore they
may be doing a significant amount of work the "wrong” subspace. On the other hand the
gradient projection method of Goldstein [29] and Levitin and Polyak [31], which allows one to
add and drop many constraints at each iteration, may zigzag between constraint sets, particularly
on degenerate problems where the active set might never settle down. Furthermore, it reduces to
the unconstrained gradient or steepest descent method once a set of binding constraints at the
optimal solution is identified and therefore exhibits a (usually slow) linear rate of convergence.
To enhance the asymptotic behavior of this method, Bertsekas [5] proposed a Newton-like
projection method for general nonlinear programming problems with box constraints which has a
superlinear rate of convergence if the active set settles down. Without assuming strict
complementarity Bonnans [9] shows superlinear convergence for the same class of algorithms if
the €>0 which defines the e-active constraints tends to zero fast enough. However, these
algorithms require the solution of an equality-constrained quadratic programming problem at

each iteration.

In this paper we shall therefore aim to devise algorithms whose efficiency is comparable to that

of gradient projection methods when identifying an optimal active constraint set and that of



Newton-like methods once this set of constraints is identified. These algorithms use projected
gradient directions when the set of active constraints changes and conjugate gradient directions
otherwise. Conjugate reduced gradients are used as restricted directions, which implies efficient
finite convergence on a subspace. A bending type one dimensional search permits these
algorithms to pick-up many constraints per search direction computation. Finally, a forcing

sequence strategy [19] is used to permit inexact subspace minimization.

The organization of the remainder of this paper is as follows. In Section 2 we introduce some
notation and definitions. In Section 3 we describe a basic algorithmic framework and show how
existing algorithms fit into this framework. A second framework for inexact projection methods is
described in Section 4. Extensive computational experience on a variety of large-scale test

problems is summarized in Section 5.

2. Notation and Definitions

In order to state the algorithmic framework we need to introduce some terminology. The
vector g(z) = Hz + ¢ denotes the gradient of @(z) at the point z. For any feasible point z it
is convenient to define the set of active constraints as

Az)={i|x,=1 or x, =u}
and the set of binding constraints as
B(z) ={i|x;,=1 and g(z) >0 or x;, =u, and g(z) <0}
The binding constraints are active constraints whose associated Lagrange multiplier estimates
have the correct (optimal) sign. The reduced gradient gR(z) at a feasible point z is defined as

Ry _ {0 if ieA(z)
(g™(=)); {gi(z) if ig A=)

and the projected gradient gFl (z) at the feasible point z is defined as

P 0 if ie B(z)
Z)) = p -
(o"(=2)); {gi(z) if i¢g B(z).
It is easy to see that z is a stationary point (a point satisfying the first order necessary
conditions for optimality) if and only if z is feasible and gF(z) =0, that is g(z) =0 for

i ¢ B(z), the non binding constraints. The problem BQP is called degenerate if at a stationary



point z*, g(z*) = 0 for some i € B(z). Finally we denote by [y]* the projection of the vector y
in R" onto the feasible box {z € R" |l < z < u}, that is (M#)i =min { v, max (L, y,)}.

Often we omit the argument z, and write g, instead of g(z,), A, instead of A(z,) etc.

We describe our algorithm using two types of feasible directions; relaxing directions, defined
as feasible descent directions along which one or more constraints may be dropped from the
current active set and restricted directions, which are defined as feasible descent directions
restricted to lie in subspace containing the current active set. That is, p is a restricted direction

at a feasible point z if p, = 0 for all i € A(z) and 9(z)Tp < 0.

3. Conjugate gradient projection methods

A basic algorithmic framework can now be defined. Starting at a feasible solution either a
gradient related relaxing or restricted direction is determined depending on whether or not a
constraint relaxation condition is satisfied (see [19] for a more detailed discussion of this
terminology). Then a step is computed such that the new solution is feasible and an Armijo
condition is satisfied. The advantage of specifying an algorithm in this way is that it is easy to
see how various parts of the algorithm may be replaced while still retaining the convergence

characteristics. It also provides a basis for comparing algorithms, as we demonstrate below.

3.1. Algorithmic Framework #1
START with z, a feasible solution
SET p,=0,8,=0,k=0,0€(0,1)and y€(0})
WHILE ’not optimal” DO
1. (Determine a feasible descent direction p,)

IF Hﬂf | <ny (constraint relaxation condition) (2)

THEN P, =— gf + B, P, (relaxing direction) (3)

where 8, = 0if B, % A, and B, = ||gf|*/llg}I*> otherwise

ELSE P, =— gf + B, P, (restricted direction) (4)



where 8, = 0if A, % A, | and B, = |lgfI%/llgRI* otherwise

2. (Determine an acceptable step-size o )

a, = ok af ,where af = — 9P (5)
PkTHPk
and m, is the smallest nonnegative integer such that
Qz, + o, pJ*) — Q(z,) < 7a,0,7p, | (8)
3. (Update)
SET z, , = [z, + o pk]# and k— k + 1. : (7)

We refer to methods conforming to this framework as conjugate gradient projection
methods, because all iterates will be feasible and the methods simplify to the conjugate gradient
method if the problem is unconstrained or if the active set settles down and to projection
methods if the active set constantly changes. Note that the forcing sequence n, in (2) has not
been specified. Different choices of sequences will lead us to different algorithms some of which,

to our knowledge, have not appeared elsewhere.

The first and simplest algorithm is when 15, = oo for allk. In this case only relaxing
directions in (3) will be used. If the set of binding constraints B changes then this direction is
equal to minus the projected gradient and equal to the conjugate projected gradient direction

otherwise. We refer to this method as conjugate gradient projection method (CGP).

If only projected gradient directions are used, that is n, = oo and ﬁk = 0 for all k, then we
obtain the Goldstein-Levitin-Polyak gradient projection method. Bertsekas has analyzed this
method in [4] using a modified Armijo step size rule in which ngpk in (6) is replaced by
ng([zk+akpk]#—zk). Since this method allows the algorithm to drop constraints at each
iteration it might zigzag on degenerate problems if the active set does not settle down. This
motivates the need for restricting search directions until some progress has been made on the
current subspace. One mechanism for doing so is to take 9, —0 as k— oo in (2) as
suggested by Dembo and Sahi [19]. We refer to this method as conjugate reduced gradient

projection method (CRGP). Here the active constraints are forced to remain active during



Table 3-1: Algorithms conforming to Framework #1

Choice of: Algorithm
N By
oo 0 modified Goldstein-Levitin-Polyak
oo as. CGP
n,—0(=0) as. CRG (Polyak)®
n, —0 a.s. CRGP

Key: a.s. = as specified in Framework #1.

the restricted iterations until the norm of the reduced gradient has been decreased sufficiently,
that is inexact subspace minimization is used. A further specialization is when n, =0 for
all k, that is exact subspace minimization is used. This could be viewed as a generalization

of Polyak’s algorithm [40] which uses a different linesearch, as discussed in Section 3.3.

3.2. Convergence of conjugate gradient projection methods

Before we prove the global convergence of any algorithm satisfying Framework #1 we show

that the backtracking line search is well defined.

Lemma 3.1: Let z be a feasible point of BQP and g=Hz+c. Assume the direction p
satisfies 9Tp<0 and p;=0 for i € B=B(z). Then

Q’(z;p)=lim L (Q(lz + apl*) - Q(2)] < g'p <0
and hence there exists an a>0 such that for all a € [0,&]

Q(z + aplt) - Q(z) < vag"p < 0.

Proof: The set of all indices for which x; = ([= + ap]#)i forany a > 0 is given by
Ap={i|xi=li and p, < 0 or x, = u; and p, >0}

%[ this cases the step size a, = min{e, ap®™} where af* =max{a >0 [ 1<z, +ap Su}l



Then there exists an & >0 such that

(= + ap]#)i =x; + ap; for 0<a<a and iEAp.

Now let p be given by

~_ (0 ifiecd
i {pi if ig A

Then
Q'(zp) =lm L [Q(z + apl?) - Q)]
=lm_[Q + ap) - Q(z)] = 0'p.
By the definition of A b and the choice of p, = 0 for i € B it follows that B C Ap and
gp, =0 for ieB and gp; >0 for ie.ﬂp\B.
Therefore

0>gTp=9g"p+ Y gp, >0'p=Q(zp)
icA \B

q.e.d.
Proposition 3.1: Let {z,} be a sequence generated by any algorithm satisfying
Framework #1. Then there either exzists a k>0 such that z, = z*or lim z, =z where
k—o0
z*is a stationary point of BQP.
Proof: First we show that the algorithm is well defined. Assume z, is not a stationary point,

that is gP (:k)#o. Observe that if the active set does not change ngpk-l = 0, since the step size

ak"‘ minimizes the quadratic in direction p, ,. Thus
ﬂkTPk = -||0P(=k)||2 <0
if p, is a relaxing direction, or, using (2),
9,7p, =-lgf(=z I <-n2 <0
if p, is a restricted direction. Hence, ngpk < 0. Since B, C A, it follows that (p, ), = 0 for all

i€B,. By Lemma 3.1 the backtracking line search and therefore z,  , are well defined.

Now assume that the algorithm does not stop at a stationary point after a finite number of
iterations and generates an infinite sequence {z, }. Note that since the objective function is

quadratic the conjugate reduced gradient method will find an optimal solution in a finite number



of steps if the active set remains unchanged. Therefore, for any forcing sequence {nkZO}, there
exists an infininite subsequence of relaxing steps with p, = -gP (zk). Since H is positive definite,
the set

Co={zll<e<uamdQe) < Qs )

is compact. Hence there exists a subsequence {z, } such that
)

lim z, =z* and pkj = -gP(zk,_) for all j.

jmoo T

We will show now that z* is a stationary point of BQP.

By the definition of the step size, {Q(zk)} is monotonically decreasing and therefore
Q(zk)>Q(zk+1)>...>Q(z*) and

0 =lim {Q(lz, + o, pH) — Q) < lim 7ey9,Tp, < 0.

Furthermore we have for the subsequence {z, } that
j
. T . P . -
0=lim o g, 'p, = - lim o™ren, *llg (==kj)l|2 < - lim o™y H| lIla"'(zkj)ll2 <o.

j—oo

Hence, if {m, } is bounded, it follows that
j
lo"(z")I? = lim [lg"(z, )l = o.
If im m, = oo then by definition of m, in the backtracking line search (6) it follows
jmoo j

that for j large enough
@1z, - (e /2) 671z, 1H) — Q(z, /(e fo) > - ] (®)

Taking limits in (8) and using Lemma 3.1 yields
- 17z > @ (z*+0F(=*)) > - g (=)
and therefore
(1-9) lg"(=)? < 0.
Since (1-4) > 0 it follows that [|gF{z*)||> = 0. Therefore z* is a stationary point of BQP and

(#(z*)T(z-2z*) >0 forall ze {z|]l<z<u}

Hence, since H|_ is positive definite



Q(z,) — Q(z*) = (Az*)(z - z*) + } (z, - z)TH(z, - =*) >} u |z, - z*|*.
Now, since lim Q(z,) = Q(z*) it follows that lim z, = z*. qed.

k—o0
For quadratic objective functions we can state that an algorithm conforming to our framework
satisfies the finite termination property if the forcing sequence tends to zero or strict
complementarity holds at the solution. This is a direct extension of the finiteness of conjugate

gradient methods for unconstrained quadratic programming problems.

Proposition 3.2: Assume that the forcing sequence in (2) satisfies n, — 0 as k— oco.
Then any algorithm con forming to the Framework #1 stops afler a finite number of iterations

with z, = z*, a stationary point of BQP.

Proof: Note that, for quadratic objective functions, the conjugate reduced gradient method
finds an optimal solution on any subspace of active constraints in a finite number of steps and
hence it is a discrete method on each subspace. Therefore, if the forcing sequence n, in (2)
satisfies 11;1-!3» n,= 0, for k large n, is small and a relaxing step will be taken only after the
minimum on some subspace of active constraints is found. As there are only finitely many
different sets of active constraints and since the objective function in any algorithm conforming
to Framework #1 is strictly decreasing, the optimal active set will be identified after a finite

number of iterations. Thus the algorithm will terminate at a stationary point in a finite number

of steps. q.e.d.

Proposition 3.3: Assume that the quadratic programming problem BQP is nondegenerate,
that is all stationary points z* satisfy g, 7# 0 for all i€ B(z¥). Then any algorithm
con forming to the Framework #1 stops after a finite number of iterations with z, = z*% a

stationary point of BQP.

Proof: By Proposition 3.1 it follows that iim z, = z* a stationary point, that is,
gP (z*) = 0. We show that, for nondegenerate p_l::blems, the set of active constraints A(z,)
settles down after a finite number of iterations, that is, there exists a kOZO such that
A(z,) = A(z*) for all k>k,. The result then follows since conjugate gradient directions are

used when the active set remains constant.
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Note that, for nondegenerate problems, the set A(z*) = B(z*). Now let ieB(z*), and assume
without loss of generality that x*=I, and g(z*)>0. Since il_lgo z, = z* there exists a k>0 such
that

gi(zk)>0 forall k > k.
Assume (:l:k)i > I forallk > k. Then iEBk for all k > k, and this implies that
0 =lim [|gfz)] > lim |g(z,)] = lg(=*)| > 0
a contradiction. Therefore there exists a k; > k; such that (:::kl)i = L. Since g(z,)>0 for all
k > kl’ it follows that
(z,), =1, and hence ieB, C A, forall k > k,.

3.3. Relationship to existing algorithms

Many existing algorithms in the literature can be shown to fit into the Framework #1 by
specifying the constraint relaxation condition, relaxing or restricted directions and the step size
rule. These algorithms include gradient projection methods, algorithms based on pivoting using

direct or iterative methods and modified conjugate gradient methods.

Gradient projection methods are a special case of our Framework #1 in which only projected
gradient directions are used in (3), that is n, = oo and B, = 0 for all k. An example is the
Goldstein-Levitin-Polyak gradient projection method [4]. This method consists of the iteration

Zp4 = 7 — oy g ¥ ‘ (9)
In the original algorithms of Goldstein [29] and Levitin and Polyak [31] the step size o, was
choosen to be constant for all k. An alternative method for selecting the step size o was
proposed later by McCormick [32] in the context of feasible direction methods in order to avoid
zigzagging. He extended his results of [32] to the case of general linear constraints and general
closed convex sets in [33, 34]. McCormick suggested determining o, by finding the first
minimum of the objective function on the feasible arc {[z, - o gk]# | @ > 0 }. Since the exact
minimization even in one dimension is impractical, Bertsekas' convergence result in [4], using a
modified Armijo one dimensional search, was a significant contribution to making these

algorithms useful in practice. Our linesearch is cheaper than the modified Armijo search in
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Bertsekas [4], since it does not require the computation of an inner product each time the step is

reduced.

Most other feasible descent methods have one aspect in common, namely they perform the one
dimensional search along the direction p, such that the new iterate lies on the ray defined by z,
and p,. In other words, they limit the step size in order to remain feasible without performing a
projection onto the feasible region. For quadratic problems this corresponds to a step size
a, = min{a}, a*} where o = max {a > 0|l <z, +tap < u } Therefore, unless
there is some symmetry in the problem, these methods will usually add only one constraint at a
time. Note that for such a step size

sy =l t o plf ==z +oyp (10)
and no projection takes place. The methods differ only in their choice of descent directions and

their rule for relaxing constraints.

Most algorithms for the solution of quadratic programs:determine at each iteration one
constraint to be dropped from the current active set and then compute a feasible step restricted
to the subspace defined by the remaining active constraints. These include the primal methods
of Beale [2, 3], Dantzig [17], Fletcher [22], Gill and Murray [24, 26], Goldfarb [28], and Wolfe [47],
the principal pivoting methods of Cottle and Dantzig [13], the dual methods of Lemke [30] and
Whinston [46, 44]. Under certain conditions most of these algorithms generate the same sequence

of points, as shown by Best [8] and Pang [38].

Typically these methods require the solution of a linear system of equations to get a feasible
descent direction and then the new iterate is obtained using (10). The difference between these
various methods lies then in which constraint is to be dropped, how the linear systems are to be
solved and how to take advantage of the special structure of some very large problems. Fletcher
and Jackson [23] use a partial LDLT factorization of H and describe how to update these factors
efficiently. For a special class of very large quadratic programming problems (BQP), where the
objective functions have nonpositive mixed partial derivatives, iterative methods, like block SOR,

have been proposed (see, for example, Céa and Glowinski [10], Cottle and Goheen [14] or Cryer
[16]).

Another class of algorithms for problem BQP is based on modifications of the conjugate
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gradient method. Polyak [40] proposed the use of negative projected gradients as relaxing
direction and conjugate reduced gradients as restricted directions combined with the step size (10)
and solving the restricted subproblems to optimality. In our Framework #1 his algorithm is
obtained by setting », = 0 for all k in (2), B, =0 for all k in (3) and using the one
dimensional search (10) instead of (6), that is no projection is used. The solution of the
restricted, equality-constrained subproblems in Polyak's algorithm may be improved upon using
scaled conjugate reduced gradients as shown by O’Leary [36,37]. It is easy to show that
Polyak’s algorithm converges in a finite number of iterations. It finds the minimum on each
subspace in finitely many steps; there are only finitely many subspaces and being a descent

method it never returns to the same subspace twice.

A feature of these algorithms is that they are able to drop many constraints in a single relaxing
step and they do so only after having solved some reduced problem to optimality. O’Leary notes
in [36] that it is not necessary to solve the subproblems to a high level of accuracy since their
primary purpose is to provide some information on the next subspace to consider. However, she
does not indicate how the tolerances are to be set for the subspace minimization and does not
prove convergence. Furthermore, since all the methods above use the linesearch (10), they

usually pick-up only one constraint at a time.

4. Truncated projection methods

Algorithms conforming to Framework #1 take into account all the constraints during
restricted iterations. There are other active set methods, that include only a subset of the
constraints at each major iteration in order to determine a search direction. In the following

framework we solve the subproblems inexactly using a forcing sequence.

4.1. Algorithmic Framework #2
START with z) a feasible solution
SET k=0,0€(0,1)and v € (0,%—)

WHILE "not optimal” DO
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1. (Determine a feasible descent direction p,)

Find some approzimation, p,, to the optimal
solution of the quadratic program (QFP),

mintmize Q,(p) = %‘ PTHP + ﬂkTP

(@P), (11)
subject to p;=0 forallieB,

such that Qk(Pk) <0 and® "[Hpk + ﬂk]R" < nkllop(zk)ll (12)

2. (Determine an acceptable step-size o)

9. p

T
p, Hp,
where m, is the smallest nonnegative integer such that

— * .
ak—amk oy , where oy =

Q([zk + o Pk]#) - Q(zk) <7 ngPk (13)

3. (Update)

SET z, , = [z, + o pk]# and k—k+ 1.

Note that Q(z, + p) = Q(z,) + Q,(p)-

There is no justification to solve the subproblems in Step 1 exactly when far away from the
optimal solution. We propose solving the subproblems approximately using a conjugate reduced
gradient method which is truncated when the norm of the reduced gradient has been decreased

"sufficiently”. The resulting method is referred to as a truncated projection method (TP).

Remark 4.1: If a conjugate gradient method is used for solving the subproblems in
Framework #2 then the initial step size in the one dimensional search is ay =1 for all k,
because conjugate gradient methods determine the minimum of a quadratic on the subspace
generated by the previous gfadients (see for example [12]) and the new descent direction p, liesin

this subspace.

3Here |H P+ gk]R is the reduced gradient at p, of the problem (QP)k where the reduction is taken with respect to
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Remark 4.2: Since the subproblems are equality constrained the one dimensional
backtracking search needs to be performed only once per major iteration. In Framework #1
this one dimensional search had to be performed at every iteration. This might be
prohibitively expensive for more general problems where the projection may be expensive to

compute.

Proposition 4.1: Let {z,} be a sequence generated by any algorithm satisfying
Framework #2 with n, <n<1. Then there either ezists @ k>0 such that z, =z* or lim
k—

© T, = z*, where z* is a stationary point of BQP.

Proof: First we show that the algorithm is well defined. If z, is not a stationary point, that is

gP(zk)aéO, then p, 70 because n, <1. Furthermore
Qp)=4+p Hp +9Tp, <.
and since H, is positive definite it follows that
0P, <-+pHp <-Lulpl?<o0. (14)
By definition of the subproblems (p,), = 0 for all i in B, and therefore by Lemma 3.1 the

backtracking line search and hence z, +1 are well defined.

Now assume that there exists a subsequence {z, } which converges to a nonoptimal point Z of
: i

BQP. Since H| is positive definite the objective function is bounded from below and therefore
lim [Q2,,) - Qz,)] =0.
Hence the Armijo condition (13) implies that
I Tp =o0. 15
kl—{l:o o0, Py (15)
It follows from inequality (14) that

limsup 9kiTPki < 0,

i—o00

and therefore equation (15) implies that

liminf &, = 0.
i—o00 ki
Let {k.} be subsequence such that lim e, = 0. Since o, = 0™ * and by (14) “k*z%' it
J j—oo j
k

follows that lim m" = oco. Therefore the definition of m, in the backtracking line search (13)

j—oo

implies that, for j large enough,
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[Q([avkj + (akjla) pkjl#) - Q(zkj)]/(akj/a) > 'mijpkj, (16)
that is, the step is reduced at least once. Since H is positive definite {p, } is bounded and there
exists a further subsequence {k} of {kj} such that ll:lg P, = p. Now taking limits in (16) and
using Lemma 3.1 yields

9'p > Q’(Z;p) > ~2'P and hence (1-7) 37 > 0
a contradiction to (1-4) > 0 and g'p < 0. Therefore any limit point of {z,} is a stationary
- point of BQP.

Since H is positive definite the sequence {z,} is bounded and therefore has a limit point z*
which is a stationary point of BQP and, as in the proof of Proposintion 3.1, it follows that
Q(zk) - Q(z*) > %‘ v "zk - z*||2

and therefore lim z, = z*. qed.
k—o0

Similar to Proposition 3.3 we have for nondegenerate problems that any algorithm conforming

to Framework #2 has the finite termination property.

Proposition 4.2: Assume that the quadratic programming problem BQP is nondegenerate.
Then any algorithm conforming to Framework #2, with n, <n<1 for all k and using any
finte method (such as conjugate gradient method) on the subproblems, stops after a finite

number of iterations with z, = z* a stationary point of BQP.

5. Numerical Experiments

In order to test the above algorithms we implemented our Framework #1 in a FORTRAN
code on a DEC-20 computer running under the TOPS-20 operating system. Through simple
switches in the code the following algorithms were obtained.

(a) CRGP - conjugate reduced gradient projection method
as described in Framework #1;

(b) CRG - conjugate reduced gradient method as described in
Framework #1 using the optimal feasible step size (9);

(c) CGP - conjugate gradient projection method
as described in Framework #1 with n, = oo; and



16

(d) TP - truncated projection method
as described in Framework #2.

Except for the CGP algorithm, in all cases we tested two versions of the algorithms, namely
one using exact subspace minimization and one which performed truncated subspace
minimization using a forcing sequence. For exact subspace minimization the CRG reduces to
Polyak’s reduced conjugate gradient method [40] and TP reduces to Bertsekas’ Newton

projection method [5] where e-active sets with e=0 are used.

In all algorithms, unless indicated otherwise, we used the forcing sequence?

ny = min { n g1, g% (17)
with = .03 for controlling the truncated subspace minimization in (2) of Framework #1 and
(12) of Framework #2. With the exception of the CRG, where the optimal feasible step size (10)
was implemented, we used the linesearch parameters o = .8 in (5) and 4 =1 in (6) for
controlling the bending one dimensional search. The stopping criterion for all algorithms on all

problems tested required the norm of the projected gradient gP to be less than an error tolerance

of 107,

6.1. The obstacle problem

There are many partial differential equation problems where the nature of the underlying
physical problem imposes some bounds on the solution. Dirichlet problems with obstacles as
discussed by Ciarlet [11] are an example of this. The obstacle problem consists of finding the
equilibrium position of an elastic membrane which passes through a curve I That is, the
boundary of an open set 2 of a “horizontal” plane, is subjected to the action of a “vertical” force
J and must lie over an obstacle which is represented by a function x:ﬁ—+R, and under a

second obstacle which is represented by a function |b:§—tR as illustrated in Figure 5-1.

4This forcing sequence worked well on the problems tested but it has a significant drawback in that it is scale
dependent.
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Figure 5-1: The obstacle problem

Unknown
contact zone

The basic mathematical problem may be stated as
minimize J(v) = [ |lgrad v||® - fv dx
n

subject to ve{weHé(.Q)[x_(_wgd)}

where H(l)(n) is the space of those functions in Lz(ﬂ) for which all first partial derivatives (in
the distribution sense) belong to the space Lz(ﬂ) and the functions are zero on I' the boundary of
£2. The function fis in L(£2) and the obstacles x and ¢ are in H!(£2), x <0 and ¥ >0 on

I'and x < ¢ almost everywhere on £2 (for more details see Ciarlet [11]).

For our tests we let £2 be the unit square in R?, discretized with parameter h = (m+1)!.
The finite difference approximation to this problem using the five point symmetric Laplace
operator yields a quadratic programming problem of the form BQP where the Hessian H is
block tridiagonal with minus the identity off the diagonal and tridiagonal matrices on the
diagonal which have fours on the diagonal and minus ones off the diagonal. The linear term in
the quadratic objective ¢ has as elements ¢, = -(xn+l)'2 if we choose the force to be equal to 1 on

- 12, that is fiz) =1 for all z in the unit square of R2. The lower bound l and the upper bound
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u are defined by the discretization of the obstacles x and ¢ respectively. The number of

2

variables in this problem is n = m* since the functions v are zero on I" the boundary of £2.

5.2. Computational Results on the Obstacle Problem

In our first series of test problems, Tables 5-2, 5-3 and 5-4, we only consider the obstacle from
below. The lower bound I is the discretization of x(z) = p, [sin(3.2x,) sin(3.3x,) |Pz where the
numbers p, and p, specify the parameters of the obstacle x. The upper bound is redundant for
this problem and we therefore set u, = 2000. for all i. The initial starting points are either
z, = |, where many constraints are binding and have to be dropped during the iterations, or

z, =1, the vector with all elements equal to 1, with no constraints binding.

In the second series of test problems, Tables 5-5 and 5-6, both obstacles are active at the
optimal solution. In Table 5-5 similar obstacles are used. Namely, the lower bound { is the
discretization of x(z) = [ sin(9.2x,)sin(9.3x,) |P1 and the upper bound u is the discretization of
¥(z) = [ sin(9.2x,)sin(9.3x,) |’z + .02. For the obstacles in Table 5-8 we chose polonomial
functions. Namely, the lower bound I is the discretization of the lower obstacle x(z) = [ 16
x,(1-x;) x,(1-x,) |1 and the upper bound w is the discretization of the upper obstacle
¥(z) = [ 16 x,(1-x) x,(1-x,) |’z + .01. The pattern of the constraints active at the optimal

solution for both these problems are shown in Figure 5-2 and 5-4.

In all tables, #B(z) indicates the number of binding constraints at the point z. The column
||0(I,) || gives the norm of the projected gradient at the initial solution z,, which is a measure of
how close the initial estimate is to the optimal solution. As a benchmark we use the number of
conjugate gradient iterations it takes to solve the problem if the correct set of active
constraints A(z*) would have been known, that is, (z,), = (z*), for all i € A(z*) (see
column CAS). We also use the number of conjugate gradient iterations needed to solve the
unconstrained problem from the the same starting point z, (see column UC). The remaining
columns show the number of minor iterations needed by the four different algorithms tested to
reduce the norm of the projected gradient to the error tolerance indicated above. Minor
iterations refer to the number of restricted steps taken in Framework #1 and to the number of

iterations on the quadratic subproblem in Framework #2. With the exception of Table 5-2, the
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numbers in brackets indicate the number of major (relaxing) iterations for the CRGP, TP and
the CRG algorithms. Note that the CGP algorithm uses only relaxing steps.

5.2.1. The effect of the bending one dimensional search

- The CRG method uses the optimal feasible step size (9) and therefore can usually only add
one constraint at a time. All tables indicate immediately that if the optimal active set contains
many more constraints than the initial active set, then the CRG algorithm requires at least that
many iterations. Hence, for example, in Table 5-3 for the 10,000 variable obstacle problem over
6,000 constraints are binding at z* and the starting point is totally unconstrained. It takes over
7,000 iterations for CRG to identify an optimal binding set. All the other three methods
however use the bending one dimensional search (7) which allows them, using a projection onto
the feasible region, to pick-up many constraints per search direction computation. This leads to
radical improvements over CRG when constraints have to be added. However, when constraints
are only to be dropped from the binding set, as is the case for the initial guess z, =l in Tables
5-2, 5-4 and 5-3, then the bending one dimensional search yields no improvement over the
linesearch in the CRG algorithm. The CRG algorithm with n, =0 for all k is Polyak’s
algorithm [40] and use of the forcing sequence (inexact subspace minimization) does improve its

performance, although not radically so.

5.2.2. Effect of the forcing sequence

After having discussed the problem of adding constraints we now examine the problem of
dropping constraints from the active set. In Table 5-2 the number in brackets for the CRGP,
TP and the CRG is the number of minor iterations that were required to solve the problems
when exact subspace minimization was peformed. This means the forcing sequence n, = 0 for
all k and CRG corresponds to the original Polyak algorithm [40] and TP reduces to a special
case of Bertsekas’ Newton projection method. It is easily seen from Table 5-2 that the effect of
inexact subspace minimization the forcing sequence (17) is to reduce the total number of minor
iterations, and therefore the work required to solve the problem, by a factor of two. This
remains true for CRG only in the case when z, = l, which means that many constraints are
binding at z, and that constraints only need to be dropped. For the starting point z, =1,

where all the constraints that are binding at the optimal solution have to be added, the poor



20

performance of an optimal feasible linesearch overshadows the gains made by inexact subspace

minimization.

Other forcing sequences have been tried as well, for example n = .1 in (17) as used in the
runs for Tables 5-5 and 5-6 or the sequence n = nk ||g(f [I. Generally speaking the performance
of the algorithms is not very sensitive to the forcing sequence, as long as it does not go to
zero too fast. This is particularly important if many constraints are to be dropped, as the
example of CGP shows. This method consists solely of relaxing iterations (n), = oo for all k)
and thefefore is superior to all the other algorithms for the starting point z, = I, (as can be seen

in Tables 5-2, 5-3 and 5-4).

65.2.3. Comparison of CRGP, TP and CGP

As noted above for problems in which constraints are only dropped from the initial active set
CGP outperforms any of the other algorithms tested. This remains true on average if many
constraints are to be dropped and added during the iterations. When many constraints are to be
added, as for the starting point z, =1 in Tables 5-2, 5-3 and 5-4 or for the starting point
z, = 17(l+u) in Tables 5-5 and 5-6, the performance of the CGP lies between that of CRGP

and that of TP for most of the larger problems.

The performance of CGP on the obstacle problem with the parameters py=3andp,=1in
Tables 5-3 and 5-4. is uncharacteristically very poor. It appears as if the reason for this is that
the problem is (numerically) degenerate as can be seen in Figure 5-5 where there are binding
constraints with very small multipliers. Degeneracy affects CGP more than the other algorithms
because the zigzagging between constraints results in many steps being projected gradient steps.
Hence CGP never gets the benefit of conjugate gradient directions. The other algorithms are
less affected by this because they are required to take restricted steps, which have a stabilizing

effect. Perhaps it is best to use a very mild forcing sequence.

For the larger problems the difference between in the performance of CRGP and TP may be
summarized as follows. If many constraints are binding at the optimal solution then TP seems
to be able to add constraints more easily. This may be due to the fact that the solution of the
unconstrained problem is computed and projected back onto the feasible region. However, if

fewer constraints are binding at z* then TP appears to add too many constraints at a time
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which then have to be dropped again. Therefore CRGP outperforms TP when the starting
point is strictly feasible (see Tables 5-3 , 5-4, 5-5 and 5-6).

5.3. A network flow problem of 916 variables

For the second series of tests we used the test problem generator for large scale unconstrained
optimization of Dembo and Steihaug [20] to generate quadratic programming problems. We then
added box constraints to these problems so as to create some problems with widely differing
optimal active sefs. Some of our experiments are reported in Table 5-1. Again CRGP, TP and
CGP are essenfially insensitive to the number of constraints binding at the optimal
solution, whereas the CRG algorithm, as expected needs as least as many iterations as there are

constraints to be added to the set of binding constraints at the optimum.

Conclusions

An important aspect of the new algorithms that have been introduced in this paper is the
projection linesearch. We have been able to show that a standard Armijo-type termination test
(6) and (13), respectively, 1s sufficient to guarantee CONVErgence. This result extends to more
general objective functioﬁs and will be presented in a subsequent paper. The termination rules
(8) and (13) are more convenient and cheaper to evaluate than those introduced by Bertsekas

(4, 5].

Although we have assumed throughout that the matrix H is positive definite there exists
simple modifications to these algorithms that would handle indefinite matrices in a practical
implementation. One such idea, which involves an additional test in the corjugate gradient

algorithm, is described in Dembo and Steihaug [21].

On the empirical side, the algorithms CRGP, TP and CGP appear to be all remarkably
insensitive to the number of constraints that are active at the optimum. In all cases they
required on average between two and four times the work needed to solve the same problem with
the optimal active set known a priori. This was not the case for CRG which uses a
traditional active set strategy and is very semsitive to the number of constraints active at the

optimum.
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The conjugate gradient projection algorithm (CGP) was by far the best method overall and its
only drawback appears to be its sensitivity to degeneracy. It definitely merits further attention.
The conjugate reduced gradient projection method (CRGP) appears to be less sensitive to
degeneracy and not much slower than CGP in many cases. For general purpose codes it would

probably be preferable to CGP.

We did not attempt to test the affect of preconditioning on the behavior of these algorithms
since the choices of preconditioner would have made it more difficult to interpret the outcomes.
Undoubtedly, a careful choice of preconditioner will enhance their behavior and possibly alter

their relative performance.

There are a number of factors in our numerical experiments that caution against extrapolating
from these results. Firstly, only a limited class of test problems was solved. Secondly, for more
general constraint sets the use of conjugate gradient iterations is likely to be a poor measure

of performance because the overhead will vary considerably among algorithms.
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Table 5-1: The network problem (n = 918).
Benchmarks | Algorithms
#8(z) | wu |[gfl cAs uc ! craP TP CRG CGP
number of minor iterations (number of major iterations)®
(] -1.1 100. 10° 31 50 45 (6) 41 (6) 748 (7) 45
(i} -1.3 100. 10° 36 50 57 (8) 49 (6) 550 (8) 56
0 -1.6 100. 10° 40 50 63 (6) 49 (6) 262 (6) 62
Table 5-2: The obstacle problem (n = 2,601): Lower bounds only.
Benchmarks | Algorithms
Bz) p, P ' CAS UC | CRGP TP CRG -
#8(=) », 2 ﬂ%ﬁlbﬂ of minor iterations (number minor iterations if n,=0 for all k fF
2276 1. 1 .84 52 103 | 151 (305) 151 (305) 154 (306) 79
1846 3 1 .84 58 93 | 191 (335) 101 (335) 193 (335) 142
843 . 2 .7 85 105 | 241 (496) 238 (495) 243 (496) 128
55¢ 1. 3 .15 90 107 | 275 (563) 270 (561) 279 (565) 115
0 L1 14. 70 84 212(334) 196 (376) 1765 (1846) 253
0 3 1 14 81 84 | 277 (458)  232(418) 1570 (1744) 508
0 1. 2 14 108 84 | 200(360) 288 (583) 570 ( 611) 202
0 1. 3 14 116 84 | 203(382) 318 (632) 457 ( 505) 201
The lower obstacle is x(z) == p,[sin(3.2x,)sin(3.3x,)|Ps and the upper obstacle is (z) == 2000.
Table 5-3: The obstacle problem (n = 10000): Lower bounds only.
Benchmarks | Algorithms
z p CAS UC | CRGP TP CRG CGP
#8=) P, 2 Hﬂ(ﬂl number of minor iterations (number of major iterations)?
8548 1. 1 .4 104 195 | 479 (19) 475 (19) 483 (19) 310
6954 31 4 110 176 | 558 (19) 551 (18) 616 (18) 352
3220 1. 2 .1 163 203 | 714 (15) 704 (15) 851 (15) 470
2159 1. 3 .1 167 197 1756 (15) 734 (15) 794 (15) 464
0 . 1 2. 134 164 | 789 (12)  504(14) 7231 (20) £81
0 3 1 20 157 164 | 960 (10)  873(17) 6060 (12) 1733
0 . 2 2. 208 164 | 661 (5) 483(10) 1956 ( 5) 596
0 1. 3 2. 221 164 | 423(6) 833 (15) 1527 (5) 661

b

704

The lower obstacle is x(z) = p,[sin(3.2x,)sin(3.3x,)[Ps and the upper obstacle is ¥(z) = 2000.

3The underlined numbers indicate runs within 10% of the best.
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Table 5-4: The obstacle problem (n = 5,041): Lower bounds only.

Benchmarks ) Algorithms
z, #8(") #8(z) », b, Il cas uc lcrep TP CRG cgp
number of minor iterations (number of major iterations)*
I 3150 4328 1. 1 .99 76 142 | 268 (14) 266 (14) 271 (14) 147
I 2389 3543 3 1 .33 80 126 |340 (15 329 (15) 339 (15) 204
I 679 1608 1. 2 .14 17 145 | 397 (11) 393 (11) 434 (12) 237
I 311 1014 1. 3 .10 122 145 | 451 (11) 442 (11) 467 (12) 193
1 3150 o0 . 117 96 117 [s01 (9) 338 (15) 3356 (5) 243
1 2389 0 3 1 11 12 17 |532 (13)  397(14) 3124 (8) 701
1 679 0 . 2 1% 149 117 | 334(5) 461 (12) 1010 (5) 366
1 3n 0 1. 3 1% 158 117 | 285( 4) 504 (12) 7687 (4) 418
The lower obstacle is x(z) = pl[sin(3.2xl)sin(3.3x2)_]p3 and the upper obstacle is $(z) == 2000.
Table 5-5: The obstacle problem (n = 5,041).
Benchmarks | Algorithms
z B(z*) #B(= CAS UC | CRGP TP CRG CGP
o #8(=") RO "g‘ﬂl number of minor iterations (number of major iterations)*
u 1339 3041 3 2 15 87 145 |232 (12)  202(12) 526 (13) 216
I 1339 2348 3 2 13 86 138 |268 (12) 210 (12) 1197 (12) 108
Y1339 0 3 2 13 81 148 | 120(5) 132( 6) 1539 (6) 143
The lower obstacle is x(z) = [ sin(9.2x,)sin(9.3x,) |P1
and the upper obstacle is 9(z) = [ sin(9.2x,)sin(9.3x,) |P2 + .02.
Table 5-8: The obstacle problem (n = 5,041).
- Benchmarks | Algorithms
z B(z* B(z CAS UC | CRGP TP CRG CGP
o #B(=) #8(=) p p "gﬂl number of minor iterations (number of major iterations)?
w 1781 2708 3 2 .18 68 100 |289 (13) 267 (12) 378 (13) 207
I 1781 1345 3 2 .13 68 88 |255 (11) 213 (11) 388 (11) 144
‘% 1781 0 3 2 .2 65 97 |110(5) 191 (7) 204 (4) 122

The lower obstacle is x(z) = [ 16 x,(1-x,) x,(1-x,) |P1

and the upper obstacle is ¥(z) = [ 16 x,(1-x,) x,(1-x,) |Ps + .01

4The underlined numbers indicate runs within 10% of the best.
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Figure 5-2: The obstacle problem (n = 5,041): Pattern of active constraints #1.
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The lower obstacle is x(z [ sin(9.2x,)sin(9.3x, ]3
and the upper obstacle is l/) = [ sm(9 2x )sm(9 3x,) ]2 + .02.
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Figure 5-3: The solution (m = 71, n = 5,041)
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The lower obstacle is x(z) = [ sin(9.2x)sin(9.3x,) Ik
and the upper obstacle is x(z) = | sin(9.2x, )sin(9.3x,) P+,
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Figure 5-4: The obstacle problem (n = 5,041): Pattern of active constraints #2.
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The lower obstacle is x(z) = [ 18 x,(1-x,) x,(1-x,) ) B
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Figure 5-5: The obstacle problem (n = 5,041): Numerical degeneracy.

- : free varibles, =: lower bound is binding,
# : lower bound is binding and |g(z*| < 10°°.

The lower obstacle is x(z) = .3 [ sin(9.2x,)sin(9.3x,) |
and the upper obstacle is )(z) = 2000.
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