
ABSTRACT

ORBIT: An Optimizing Compiler For Scheme

David Andrew Kranz

Yale University

1988

It has often been assumed that the performance of languages with �rst-class

procedures is necessarily inferior to that of more traditional languages. Both

experience and benchmarks appear to support this assumption. This work shows

that the performance penalty is only a result of applying conventional compiler

technologies to the compilation of higher order languages. These technologies

do not adapt well to the situation in which closures of unlimited extent can be

created dynamically.

The ORBIT compiler is based on a continuation-passing model instead of the

traditional procedure call/return. The problem of reducing heap storage is solved

using new algorithms for closure analysis, allowing many objects to be allocated

on a stack or, better still, in machine registers. Closure packing and hoisting

allow more than one procedure to share an environment without introducing

indirection. Move instructions and memory references are reduced by passing

arguments in registers and using a dynamic register allocation strategy. Register

allocation and code generation are accomplished at the same time, with environ-

ment pointers being treated as variables. Environment pointers are kept in a lazy

display, being brought into registers and cached when needed. The interaction

of this strategy with the closure analysis also allows many optimizations based

on type information to be performed.

Benchmarks are presented to show that, using these new techniques, the

performance of programs written in higher order languages almost equals that of

programs written in Pascal in both space and time. Thus the greater expressive

power of higher order languages and debugging ease of traditional LISP systems

need not be sacri�ced to attain good performance.

cCopyright by David A Kranz, 1990

ALL RIGHTS RESERVED

ACKNOWLEDGEMENTS

I would like to thank the many people who helpedme over the years. Foremost

were the other members of the T project: Norman Adams, Richard Kelsey, Jim

Philbin and Jonathan Rees. My advisor Paul Hudak gave me constant encour-

agement. I had many helpful discussions with Jonathan Young, Ben Goldberg,

Kai Li, my readers Alan Perlis and Will Clinger, Rick Mohr and John Ellis.

4

Contents

1 Compiling Scheme 9

1.1 Introduction : 9

1.2 Scheme : 10

1.3 Compiling Scheme E�ciently : 11

1.4 Orbit : 12

2 Preliminaries 13

2.1 Garbage Collection : 13

2.2 Calling Sequence : 14

2.3 Primitive Operators : 15

2.4 Overview : 16

3 The Front End 19

3.1 CPS conversion : 20

3.1.1 Consequences of CPS Conversion : : : : : : : : : : : : : : 21

3.1.2 CPS Algorithm : 23

3.2 Assignment Conversion : 25

3.3 Program Transformations and Early Binding : : : : : : : : : : : : 27

4 Closure Analysis 29

4.1 Storage Management : 29

4.1.1 Closures at Runtime : 31

4.1.2 Global Environment : 34

5

6 CONTENTS

4.2 Escape Analysis : 34

4.3 Preliminary Assignment of Strategies : : : : : : : : : : : : : : : : 36

4.4 Strategy Stack : 40

4.4.1 Strategy/continuation : 40

4.4.2 Strategy/downward : 42

4.5 Loops and Recursions : 43

4.5.1 Loops : 44

4.5.2 General Recursions : 45

4.6 Final Assignment of Strategies : 47

4.6.1 Strategy Analysis : 48

4.6.2 Live-variable Analysis : 50

4.7 Closure Hoisting : 59

4.8 Representation Analysis : 65

4.8.1 Representation of Variables : : : : : : : : : : : : : : : : : 65

4.8.2 Collapsing Cells : 67

4.8.3 Closure Representation Analysis : : : : : : : : : : : : : : : 68

4.9 Call-with-current-continuation : 70

5 Register Allocation and Code Generation 73

5.1 Fundamental Choices : 74

5.1.1 Where Should Parameters be Passed? : : : : : : : : : : : : 74

5.1.2 When Should Registers be Allocated? : : : : : : : : : : : : 79

5.1.3 Closures : 81

5.1.4 Procedure Calls : 82

5.2 Splits and Joins : 84

5.3 Register Allocation : 86

5.3.1 Parallel Assignment : 86

5.3.2 Value Lookup : 88

5.3.3 Generating In-line Code : : : : : : : : : : : : : : : : : : : 89

5.3.4 Register Assignment for Join Points : : : : : : : : : : : : : 90

CONTENTS 7

5.4 Assembly : 91

5.5 Order of Evaluation Revisited : 92

6 Examples and Benchmarks 95

6.1 Examples : 95

6.1.1 Strategy registers (iterative) : : : : : : : : : : : : : : : : : 96

6.1.2 Strategy registers (recursive) : : : : : : : : : : : : : : : : : 99

6.1.3 Strategy stack/loop : 102

6.2 Benchmarks : 105

6.2.1 Pascal : 106

6.2.2 Common Lisp : 107

7 Final thoughts 109

A Benchmarks in Pascal 111

B Benchmarks in T 123

C Closure benchmarks 131

8 CONTENTS

Chapter 1

Compiling Scheme

The programming language Scheme is much more expressive and general than

traditional languages such as Pascal. In spite of this fact, it is possible to compile

Scheme programs as e�ciently as those written in Pascal.

1.1 Introduction

Scheme [Steele 78, Clinger 85] has been around for a long time. It is an expres-

sive language which is easy to program in, and is often used in programming

and data-structure courses [Abelson 85]. Nevertheless, Scheme has never been

accepted as a \real" programming language because even moderately e�cient

implementations did not exist compared with other, more widely used languages

such as Pascal or C.

In his seminal Rabbit paper [Steele 78b], Steele recognized that a certain

model of compilation, based on \continuation-passing" instead of procedure call

and return, was a good model for compiling Scheme. This dissertation examines

the issues of code generation and e�cient allocation of closures that Rabbit did

not address. New techniques are used to build a production quality compiler

for Scheme which is as e�cient as a Pascal compiler. In fact, it turns out that

for a large class of programs the performance is better than Pascal, indicating

9

10 CHAPTER 1. COMPILING SCHEME

that the techniques used might be applied to the compilation of more traditional

languages.

1.2 Scheme

Scheme is a dialect of Lisp with several important properties:

1. It is lexically scoped.

2. It has �rst-class procedures and continuations.

3. It is tail-recursive.

Unlike Lisp, the procedure call position is evaluated along with all of the

arguments and in exactly the same way. Also, a lambda expression evaluates to

a procedure. When the procedure is called, the values of the variables free in

the lambda expression are the same as when the lambda was evaluated { this

is just what lexical scoping means. Procedures are �rst-class objects, meaning

they can be used freely in arbitrary contexts, thus providing an expressive power

that is absent in traditional Lisps. On the other hand, they also provide the

implementation with storage management problems (the \funarg" problem) that

are absent in traditional Lisp implementations: a procedure must contain both

code and an environment. Procedures are often referred to as closures. In addi-

tion, �rst-class continuations can be used to build interesting control constructs

[Wand 80, Haynes 84, Haynes 84b].

It has long been known that an iteration is equivalent to a tail-recursion.

To say that a language such as Scheme has the property of tail-recursion is

simply to say that an algorithm expressed as a tail-recursion is guaranteed by the

implementation to behave in the same way as if it had been expressed iteratively.

These behaviors are normally di�erent in traditional languages. In Scheme there

are no primitive iterative constructs like for or do. Iterative syntax may be used

in a program, but it is just syntactic sugar and expands into recursive procedure

calls.

1.3. COMPILING SCHEME EFFICIENTLY 11

1.3 Compiling Scheme E�ciently

Why is Scheme di�cult to compile? This question is partially answered by saying

that it is the same reason as for any language: code generation and register

allocation are di�cult problems. A Scheme compiler must deal with these issues,

but must also worry about the fact that procedures are not merely code addresses,

as in traditional languages, but real data objects which must be properly allocated

somewhere in the machine. Further problems are caused by the fact that Scheme

is dynamically typed, linked, and garbage collected. Dynamic typing and garbage

collection imply that the type of runtime objects must be identi�able at all times.

This overhead must be reduced by taking advantage of type information provided

by the programmer and/or inferred by the compiler.

The important thing to recognize is that Pascal and C are really just restricted

subsets of Scheme, in particular those parts of Scheme which can be e�ciently

implemented using conventional compiler technology! It seems reasonable that

a Scheme program that uses only the restricted subset should have the same

performance as the same program written in Pascal. What is needed is a \pay

as you go" implementation; the most general language constructs should be im-

plemented as e�ciently as possible, but should not reduce the e�ciency of less

general constructs. In other words, a simple loop written in Scheme should not

run more slowly than it would in Pascal just because Scheme allows �rst-class

procedures and continuations.

Implementations of languages with �rst-class procedures have been ap-

proached from two completely di�erent angles. Common Lisp [Steele 84] al-

lows �rst-class procedures and there have been successful compilers written for

it [Brooks 86]. These e�orts used conventional compilation techniques primar-

ily, with an implementation of closures added on. The result is that traditional

constructs are implemented quite e�ciently, but closures are not implemented

nearly as e�ciently as possible.

The other approach is to treat closures as fundamental, with loops and other

12 CHAPTER 1. COMPILING SCHEME

simple constructs being particular cases. This is the approach suggested by Rab-

bit and is the one described in the succeeding chapters. The compiler knows

nothing about particular kinds of loops, and it will be seen that many optimiza-

tions traditionally performed in and around loops apply to general recursions as

well.

1.4 Orbit

The compiler described in this thesis is called Orbit [Kranz 86] and it is written in

a dialect of Scheme called T [Rees 82, Rees 84, Slade 87]. Orbit runs in the latest

implementation of T called T3. Orbit is a replacement for the old T compiler

TC, which was based on [Brooks 82]. TC is another example of a compiler that

used conventional methods and added on closure handling.

The rest of the dissertation is organized as follows:

� Chapter 2 explains how Orbit is inuenced by the T system.

� Chapter 3 covers the front end of the compiler.

� Chapter 4 details the algorithms for doing closure analysis.

� Chapter 5 details the strategies for register allocation and code generation.

� In Chapter 6 some real examples of code are presented together with the

results of benchmarks.

Chapter 2

Preliminaries

A compiler for a dynamically typed and linked language such as Lisp or Scheme

must concern itself with generating code that satis�es the constraints of a large

runtime system. This chapter will describe those constraints for the T system

and Orbit, ending with an overview of various phases of the compiler.

2.1 Garbage Collection

Most of the constraints imposed on the compiler by the runtime system are due to

the garbage collector. The T3 system and Orbit are meant to support lightweight

processes. Because correctly polling for interrupts seemed more expensive, we

have imposed the requirement that the system be able to handle an interrupt

between any two instructions, unless they are in critical sections.

On the other hand, it is often necessary to manipulate non-tagged data. Even

if using non-tagged data is not necessary, the compiler may elect to do so for

reasons of e�ciency. When a garbage collection occurs, it must be possible to

identify all locations in the machine which contain tagged objects. These loca-

tions are said to be rootable, while all other locations are non-rootable. To satisfy

that condition, the registers are partitioned into two classes, one to hold rootable

data, and the other non-rootable. The compiler must enforce the partition at all

13

14 CHAPTER 2. PRELIMINARIES

times, locking out interrupts in some places if necessary. The data representa-

tions for Scheme objects must also be set up so that given a pointer to an object

in memory, the rootable and non-rootable components can be determined. The

overall structure of the tags and data representations are due to Jonathon Rees

[Rees].

2.2 Calling Sequence

In the T3 system, machine resources are divided into three classes: a heap, a

stack, and registers. The way Scheme objects are laid out is the same for both

the heap and the stack. The only di�erence is that the heap is maintained by

the garbage collector, while the stack is managed by the compiler. By registers,

we mean machine locations which can be addressed by name. It is assumed that

at least some of these registers are implemented in faster logic than the heap or

stack.

The T3 system, like any other, has a standard calling sequence for passing

arguments when a procedure call occurs. This calling sequence is always used

if the compiler does not know that a di�erent parameter passing mechanism is

expected by the procedure being called. In T3, the arguments are passed in

registers. If nothing is known about the procedure being called, the arguments

must be tagged objects, and hence must be passed in rootable registers. The

rootable machine registers are referred to as P and A1,A2,...AN. The P register

contains the procedure being called (code and environment), A1 contains the

�rst argument, and so on. The register AN is not used in the standard calling

sequence because it is needed for other purposes. If there are more than N � 1

arguments, the remainder are passed in a set of memory locations at an address

known by the compiler. This set of memory locations is treated as a global

resource, just like the machine registers are.

2.3. PRIMITIVE OPERATORS 15

2.3 Primitive Operators

Orbit achieves a degree of portability since it has a very small number of machine-

dependent primitive operators. These operators fall into several classes:

� ALU operations such as addition, subtraction, etc.

� References and assignments to locations in Scheme objects. Examples in-

clude: structure references, car and cdr, and vector references. All of these

constructs are handled by the same code generation routines.

� Special operators which are not part of Scheme but are used by the garbage

collector and debugger.

These primitive operators are de�ned using the primop special form. A

primop form evaluates to a Scheme object which can handle messages about

code generation, type, or anything else the compiler wants to know about. As

an example:

(define-constant fixnum-add

(primop fixnum-add ()

((primop.generate self node)

(generate-fixnum-binop node 'add))

((primop.simplify self node)

(simplify-fixnum-add node))

((primop.type self node)

'#[type (proc #f (proc #f fixnum) fixnum fixnum)])))

Unlike most LISP systems, the interpreter and compiler share the same de�nition

of �xnum-add. When this form is compiled two things happen:

1. The compiler will be able to associate the variable �xnum-add with a code

generation procedure, a simpli�cation procedure, and type information.

16 CHAPTER 2. PRELIMINARIES

2. A procedure is created that adds two �xnums and does type checking. In

the runtime system, this procedure will be bound to �xnum-add.

2.4 Overview

The compilation process in Orbit is divided into a number of phases, listed below

in the order in which they take place:

Alpha conversion creates a new version of the source program in which all

macros have been expanded and all bound variables have been given unique

names.

CPS conversion makes continuations explicit by transforming the program to

continuation passing style. Each lambda expression is given an additional

formal parameter bound to a continuation to be invoked with the result of

executing the body. Each call is provided with a corresponding extra argu-

ment, the continuation to the call. An intermediate node tree is produced.

Assignment conversion eliminates assignments to bound variables by a trans-

formation on the node tree. Explicit locations are introduced to hold the

values of assigned variables bound by a lambda.

Early binding incorporates information from other compiled modules into the

current compilation.

Program transformations either reduce the size of the node tree or simplify

the analysis and code generation phases.

Live variable analysis determines the set of variables live at each lambda in

the node tree.

Closure strategy analysis determines where each closure will be allocated at

runtime and how each closure will be called.

2.4. OVERVIEW 17

Representation analysis determines the actual structure of each closure and

how variables with a known type will be represented at runtime.

Register allocation and code generation are done in the same phase.

Assembly takes all of the instructions generated by the previous phase and

produces a code vector.

The compiler was written by several people. Richard Kelsey wrote the phases

up to and including early binding, and will be described in [Kelsey]. Norman

Adams wrote the assembler. I was responsible for the rest; most of the following

chapters will concentrate on closure analysis and code generation.

18 CHAPTER 2. PRELIMINARIES

Chapter 3

The Front End

The front end of Orbit converts the source program into an intermediate node tree

and then performs a series of passes over that tree. Each pass gathers information

and annotates the tree, possibly transforming it. The annotations are used in

later passes.

Conceptually, the compiler accepts three arguments:

1. A source expression in the form of a list of Scheme objects. The process of

converting a source program as a string of characters into such a list will

have already occurred.

2. A syntax table, that maps reserved words to syntax descriptors. A re-

served word is a symbol that, when appearing in the call position of an

S-expression, will be interpreted according to the syntax descriptor instead

of as a procedure call. A reserved word will be either a macro, that will

cause a source to source transformation, or syntax primitive to the compiler,

such as IF.

3. An early binding environment that maps symbols to information the com-

piler can use.

The �rst pass in the compilation is alpha conversion. Lexical variables in dif-

ferent scopes, but with the same name, are renamed with unique identi�ers. In

19

20 CHAPTER 3. THE FRONT END

addition macro-expansion is performed. The syntax table is consulted to deter-

mine which forms need to be macro-expanded. The early binding environment is

consulted for available information about variables free in the source code, often

referred to as global variables. For example, information about + might indicate

e.g., that (+ 1 2) could be replaced by 3 during the code transformation phase.

3.1 CPS conversion

Conversion to continuation passing style is a program transformation, apparently

due to van Wijngaarten. The following quote attributed to him [Felleisen 87]:

. . . this implementation [of procedures] is only so di�cult because you

have to take care of the goto statement. However, if you do this trick

I devised, then you will �nd that the actual execution of the program

is equivalent to a set of statements; no procedure ever returns because

it always calls for another one before it ends, and all of the ends of

all the procedures will be at the end of the program: one million or

two million ends. If one procedure gets to the end, that is the end of

all; therefore, you can stop. That means you can make the procedure

implementation so that it does not bother to enable the procedure

return. That is the whole di�culty with procedure implementation.

That's why this is so simple; it's exactly the same as a goto, only

called in other words.

CPS conversion was �rst used in the context of a \real" compiler by Steele

in his Rabbit Compiler [Steele 78b]. The transformation consists of adding an

extra argument, a continuation, to each combination. Each lambda expression

is similarly changed by introducing an extra formal parameter to correspond to

the continuation it will be passed. A complete algorithm for this transformation

is provided in Rabbit, and for Orbit will be detailed in [Kelsey]. After the

transformation the notions of procedure call and return have been uni�ed; i.e.,

3.1. CPS CONVERSION 21

procedures no longer return. Instead, a procedure does a computation and calls

its continuation with the result of the computation as argument. Note that a

continuation never receives a continuation as an argument.

As a simple example:

(define foo

(lambda (x y)

(+ (f x) (g y))))

might be transformed into

(define foo

(lambda (k x y) ;;; the procedure

(g (lambda (v) ;;; continuation #1

(f (lambda (w) ;;; continuation #2

(+ k w v))

x))

y))

In this example k is the variable introduced to hold the continuation passed to

foo. This procedure calls g with arguments y and continuation #1. Eventually

g calls its continuation, causing its result to be bound to v. Then f is called

with arguments x and continuation #2, the result of this call being bound to

w. Finally, + is called with the original continuation k, causing v and w to be

added together and the result passed to k.

3.1.1 Consequences of CPS Conversion

CPS conversion makes the compilation process easier in a number of ways. First,

the variables that are bound by continuations correspond exactly to compiler

22 CHAPTER 3. THE FRONT END

\temporary variables", except that in Orbit there is no distinction made be-

tween these variables and variables introduced by the programmer. In addition,

there is no longer the restriction that a procedure return a single value. Continu-

ations can be generalized to receive any number of arguments just like any other

closure. Another bene�t of CPS conversion is that tail-recursion is automatically

uncovered and made explicit; a tail-recursive call (more properly a \tail-call") is

one in which the continuation is a variable, like the call to + in the example but

unlike the calls to f and g where the continuation is a lambda expression.

In fact, CPS code is perfectly correct Scheme code. All program transforma-

tions done by Orbit are performed on the CPS code, which makes those trans-

formations simpler to write due to the regular structure of CPS code. The result

of CPS conversion is an intermediate node tree with only four kinds of nodes:

lambda-nodes, call-nodes, reference-nodes, and constant-nodes. Call-nodes and

lambda-nodes simply correspond to calls and lambdas in the CPS converted ex-

pression, while reference-nodes correspond to variable references. Lambda-nodes

that result from CPS conversion are treated no di�erently from those that ap-

peared in the source code.

There are two kinds of constant-nodes:

� Literal-nodes represent literal values such as numbers and strings.

� Primop-nodes represent references to \primitive operators" for which the

compiler has information, and only appear in call position. These objects

are injected into the node tree in two ways:

{ as a result of primitive syntax in the source expression, such as an IF

or SET!. The compiler has built-in information about these kinds of

constructs.

{ as the replacement for a reference-node to a free variable because of

information about the free variable in the early-binding environment.

For example, a reference-node for the variable + might be replaced

3.1. CPS CONVERSION 23

by a primop-node that tells the compiler how to generate in-line code

for +.

Note that there is nothing in the node tree like a \while-node" such as might

be found in conventional compilers. All iterative constructs in Scheme are actu-

ally macros that expand into recursive function calls.

As a result of CPS conversion, the node tree has two important properties:

� Each child of a call-node is either a lambda-node, a reference-node, or a

constant-node; i.e., the subforms of a call cannot be combinations.

� A lambda-node has exactly one child: the call-node corresponding to the

body of the lambda.

These properties give the node tree a regular structure particularly easy to work

with.

There is a strong similarity between the CPS code and the \triples" that many

conventional compiler use as their intermediate representation. The primary

di�erence is that in CPS code continuations are explicit.

Another important consequence of CPS conversion is that the order of evalu-

ation of arguments to combinations is made explicit. In the standard semantics

of Scheme the order of evaluation of arguments is purposely left unde�ned, so the

compiler has complete freedom to choose an order. The heuristics used by Orbit

to choose an order will be discussed at the end of Chapter 5 (Register Allocation

and Code Generation).

3.1.2 CPS Algorithm

In the following description of the translation process, we assume that the reader

is familiar with conventional Lisp notation; in particular, the use of quote and

backquote, where, for example, `(a ,b c) is equivalent to (list 'a b 'c). The

CPS conversion algorithm takes as input two code fragments (i.e., syntactic ob-

24 CHAPTER 3. THE FRONT END

jects) - an expression and its continuation - and returns a third code fragment

representing the CPS code.

If the expression is an atom it is simply passed to the continuation:

(convert <atom> <cont>) => `(,<cont> ,<atom>)

If the expression is an application then the procedure and all the arguments must

be converted. The continuation is introduced as the �rst argument in the �nal

call:

(convert '(<proc> . <arguments>) <cont>) =>

(convert <proc>

`(lambda (p)

,(convert-arguments <arguments>

`(,p ,<cont>))))

(convert-arguments '() <final-call>) => <final-call>

(convert-arguments '(<argument> . <rest>) <final-call>) =>

(convert <argument>

`(lambda (k)

,(convert-arguments <rest>

(append <final-call> '(k)))))

Special forms have their own conversion methods. lambda expressions have

a continuation variable added that is used in converting the body:

3.1. CPS CONVERSION 25

(convert '(lambda (a b c) <body>) <cont>) =>

`(,<cont> (lambda (k a b c) ,(convert <body> 'k)))

The �rst expression in a block is given a continuation containing the second ex-

pression:

(convert '(begin <exp1> <exp2>) <cont>) =>

(convert <exp1> `(lambda (v) ,(convert <exp2> <cont>)))

Conditional expressions are transformed into calls to a test primitive procedure

that takes two continuations. This eliminates the need for a primitive conditional

node type in the code tree, while preserving the applicative-order semantics of

CPS code [Steele 78]. A new variable j is introduced to avoid copying the con-

tinuation. The result is:

(convert '(if <exp1> <exp2> <exp3>) <cont>) =>

(convert <exp1>

`(lambda (v)

((lambda (j)

(test (lambda () ,(convert <exp2> 'j))

(lambda () ,(convert <exp3> 'j))

v))

<cont>)))

26 CHAPTER 3. THE FRONT END

3.2 Assignment Conversion

The presence of a general assignment operator causes di�culties in all phases of

the compiler because assignment implies that variables denote locations instead of

values. It is easier for a compiler to assume that variables denote values because,

if so, beta-substitution can be performed freely in program transformations. In

addition, a variable (value) could then exist simultaneously in registers and the

environments of any number of closures without complicating the assignment

operation.

Orbit eliminates the assignment problem by doing a transformation on the

node tree which eliminates all assignments to bound variables. This transforma-

tion is called assignment conversion and is illustrated by the following example,

shown before CPS conversion:

(lambda (x)

... x ...

... (set! x value) ...)

which is then transformed into

(lambda (x)

(let ((x' (make-cell x)))

... (contents x') ...

... (set-contents x' value) ...))

A new variable x' has been introduced which is bound to a cell (created by

make-cell) containing the value of x. The operation contents fetches the value

in the cell and set-contents modi�es the value. The important result of the

transformation is that there are no longer any assignments to the variable x.

This transformation is applied to all bound variables which might be assigned.

3.3. PROGRAM TRANSFORMATIONS AND EARLY BINDING 27

Because Scheme is lexically scoped it is possible to identify all such variables.

Assignment conversion does simplify the compiler considerably, but there is

a cost: in general, storage will have to be allocated for the cells and there will

be an extra indirection to reference the value inside a cell. This problem will be

addressed in Chapter 4 (Closure Analysis), but it should be noted for now that

good Scheme programming style discourages the use of assignment.

Unbound (free) variables are treated di�erently. Because the compiler does

not know all the places they might be referenced, it must assume that they

could be assigned, and because not all references to free variables are known at

compile-time (due to incremental compilation), their cells can not be eliminated.

However, most free variables in a typical Scheme program are bound to constant

procedures which would only be changed by incremental rede�nition, which is

a debugging feature supported by most Scheme implementations. Because in-

cremental rede�nition is a debugging feature, we accept the fact that it will be

expensive, and thus assignment conversion is not performed on free variables.

Instead, the runtime system is given the burden of �nding all places where the

value exists and changing them when an assignment occurs! Making sure all

places can be found at runtime puts some constraints on the compiler which will

be explained in a later chapter, but the constraints are accepted to avoid having

cells for every free variable.

3.3 Program Transformations and Early Bind-

ing

The last phase in the \front end" is a series of program transformations, or

\optimizations", to simplify the node tree. Some transformations are \built-in"

to the compiler, such as:

1. ((lambda () body))) body.

28 CHAPTER 3. THE FRONT END

2. ((lambda (x) (... x ...)) exp)) (... exp ...) if x is referenced only

once or if it appears that the reduced cost of accessing exp o�sets the

increase in code size that results from duplicating exp.

3. Constant folding of primitive operations, including conditionals.

4. Removing unused arguments to procedures. Note that as a result of CPS

conversion, arguments cannot be calls and so cannot have side-e�ects.

5. Removing side-e�ect-free calls when the results are not used.

6. \Boolean short-circuiting" of conditional expressions.

Many other transformations are not speci�ed in the compiler, but rather are con-

tained in the early binding environment. For example, the symbol+ is associated

with information that allows constant folding for addition to be performed.

Early binding environments work much like \include �les" in other languages.

The di�erence is that the \include �le" is generated by the compiler. The result

of compiling a module is not only a compiled-code object, but also an object

containing information which could be used in compiling other modules. As an

example, in one module the programmer might declare some variable to have a

constant value. If the early binding environment of another compilation were

augmented with that information, then during the transformation phase refer-

ences to the variable would be replaced by that constant value. The early binding

environment may contain many di�erent kinds of information, including:

� A variable that has a constant value.

� A variable that is bound to a procedure where a call to the procedure

may be integrated; i.e., replaced by the body of the procedure with actual

arguments substituted for formal parameters.

� Type information about procedures.

3.3. PROGRAM TRANSFORMATIONS AND EARLY BINDING 29

� Any other (possibly machine-dependent) information that might be used

by the compiler.

30 CHAPTER 3. THE FRONT END

Chapter 4

Closure Analysis

During closure analysis Orbit chooses run-time representations for the closures

corresponding to each lambda-node in the node tree. In previous phases, we

have been concerned only with the abstract properties of a procedure, such as

the type of each argument or whether the procedure accepts a variable number

of arguments. It is crucial to represent lambda-nodes e�ciently because the

result of CPS conversion is a node tree with a very large number of such nodes.

Closure analysis has two parts: closure strategy analysis determines where in

the machine to allocate each closure, and representation analysis determines the

actual structure of each closure at runtime.

4.1 Storage Management

A compiler for any language has to address the problem of storage management.

Typically, in languages such as C or Pascal, this involves allocating static storage

for declared arrays and structures; procedures are simply addresses. A mechanism

for the dynamic allocation of objects must be present, but it can be very simple

because the di�erence between the abstraction of an array or structure is not very

di�erent from the concrete representation, i.e. an aggregate with constant-time

access to components.

31

32 CHAPTER 4. CLOSURE ANALYSIS

Dynamically created procedures in a lexically scoped language are muchmore

di�cult. The ability to create such procedures exists in Pascal, but in a limited

way: a procedure can be passed as an argument, but it cannot be returned as a

value, stored into a data structure or assigned to a variable. That is, a procedural

parameter may only be called. Even in with this restriction, generating e�cient

code for these kinds of procedures is di�cult. Implementation of this language

feature is normally \thrown in" in an ine�cient way with the expectation that

it will not be used very much, and certainly not if e�cient code is a concern.

We believe that in order to generate good code for dynamically created pro-

cedures, it is necessary to treat them as the fundamental objects to be examined

by the compiler. The storage management problem is to determine where the

code-pointer and environment (closure) for each procedure will be stored at run-

time. For the machines being considered, the three possibilities are the heap, the

stack, and spread through the registers.

Allocating procedures in the heap is undesirable because even after the pro-

cedure becomes inaccessible, the storage will not be reclaimed until a garbage

collection occurs. It is also the case that garbage collection is much more expen-

sive than reclaiming storage from the stack or registers. Furthermore, in order

to access the values of variables within a heap-allocated closure, a pointer to the

closure must be accessible as long as any of the variables are live. On the positive

side, heap-allocation is the most general strategy in the sense that any closure

can be heap-allocated.

Stack-allocating a procedure is better, because it can be cheaply reclaimed

by emitting code to pop it o� the stack as soon as it is known to be inaccessible.

In fact, in order for the implementation to remain properly tail-recursive, it

must be reclaimed as soon as possible. Enforcing proper tail-recursion presents

problems which will be addressed in another section. A further advantage of

stack allocation is that in some cases the stack-pointer can be used to reference

values in the closure.

It is best to keep values in a closure in registers. Register space does not

4.1. STORAGE MANAGEMENT 33

need to be reclaimed, and accessing a value in the closure does not generate a

memory reference. The register strategy is quite di�erent from the other two as to

when the cost of allocation is incurred. When a lambda-expression is evaluated

to produce a closure that is allocated in memory (heap or stack), the storage

must be allocated and the values must be moved into the closure. Calling such

a closure is inexpensive because the values of the free variables are packaged up.

Allocating an environment to registers is equivalent to treating the free vari-

ables as if they were arguments. Evaluating a lambda-expression to produce a

register-allocated closure does not cause any code to be generated. However,

when such a closure is called, the values of the free variables must be moved into

the registers where they have been assigned, just like the arguments to any clo-

sure. Since a closure will normally be invoked many times, it is important that a

call to a register-allocated closure be inexpensive. It is up to the register alloca-

tion and code generation phases to ensure that the number of moves generated

is minimized.

4.1.1 Closures at Runtime

All full closures, whether in the heap or on the stack, are represented as contigu-

ous chunks of memory. The �rst word in a closure is a code pointer that has one

or possibly two other functions:

1. It points to information such as:

� The number of arguments expected.

� Whether or not a variable number of arguments are allowed.

� How to get to debugging information about the closure.

� How to garbage collect the closure.

� How to invoke a generic operation on the closure.

2. If the expression evaluating to the closure has free variables, some of which

are global, it may point to the environment where the global variables are

34 CHAPTER 4. CLOSURE ANALYSIS

stored.

The way in which one closure inherits variables from a superior closure de-

pends on the relative strategies used to implement both. A heap-allocated closure

cannot inherit variables from a stack-allocated closure because, in general, point-

ers from the heap into the stack are not allowed. In this case the reason the

inferior closure was heap-allocated in the �rst place was that it was known that

it might outlive the context of the stack-allocated superior. If variables are inher-

ited from a heap closure they may be copied into the inferior closure or a pointer

to the superior may be kept. On the other hand, when one stack-allocated clo-

sure is inheriting from another, their relative locations are �xed permanently so

that the pointer to the superior is not needed. The pointer which is used to get

variables from the inferior closure can be used for the superior as well.

If any free variables are to be accessed from a superior closure, a pointer to the

superior will be stored in the second word. The remaining locations in the closure

contain variable values and possibly additional code pointers. Allowing multiple

code pointers in a single run-time structure allows both environment sharing and

the fastest access to variables. As an illustration consider the following code:

(define (f a b)

(lambda (c d) ;;; lambda #0

(list (lambda () (+ a b c d)) ;;; lambda #1

(lambda () (* a b c d))))) ;;; lambda #2

The closures, all in the heap, could look like:

4.1. STORAGE MANAGEMENT 35

| a |

|-------------|

| b |

|-------------|

closure #0 ------> | code for #0 |

| ---------------

--------------- |

closure #2 --> | code for #2 | |

|-------------- |

| d | |

|-------------| |

| c | |

|-------------| |

| link |----

|-------------|

closure #1 --> | code for #1 |

where memory grows from the bottom of the �gure towards the top.

Putting the two code pointers in the same closure allows them to share the

environment and saves three words in the heap. The drawback to this layout is

that an assumption is being made that closures #1 and #2 have similar lifetimes.

If that assumption proved to be incorrect { if one procedure became inaccessible

before the other { at least one word of heap storage would be wasted as long as

the other was retained. In actual code, the assumption is true much more often

than not.

36 CHAPTER 4. CLOSURE ANALYSIS

4.1.2 Global Environment

Recall that one of the advantages of assignment conversion was that the value

of a variable could exist in any number of closures or registers without regard to

assignments to the variable, but that assignment conversion was not performed

on global variables. We can divide global variables into two classes: mutable and

immutable. The variable is considered immutable if its value can only change

due to interactive debugging. Such a variable can be treated almost like a bound

variable; it can be assigned to a register or to a slot in a stack-allocated closure.

If the variable is assigned during debugging, the result of the change will be seen

eventually.

The situation is di�erent if a global variable is actually assigned as part of

the execution of a program. In that case, an assignment to the variable must be

e�ected before the next reference, by updating all machine locations that contain

the value of the variable, and this information must be available at run-time. This

is not feasible if the value of the variable can be scattered through registers and

closures, so these global variables are only allocated to the global environments

created when modules are installed in the run-time system.

The result is that an assignment to a mutable global variable takes time

proportional to the number of installed modules that reference it. The bene�t

of this strategy is that all references to global variables need not be indirect

through a cell. If it is important to have fast assignment to a global variable, the

programmer can provide a declaration that will cause a cell to be introduced for

that variable.

4.2 Escape Analysis

Escape analysis is the method for determining whether a closure may be stack or

register-allocated, or must be heap-allocated. A procedure is said to escape, with

respect to the compilation, if the compiler cannot identify all the places where

4.2. ESCAPE ANALYSIS 37

the procedure is being called. If all calls are not known, the procedure is said

to escape downward only if it is known that the current continuation will not be

invoked before the procedure becomes inaccessible. This condition is exactly the

condition placed on procedural arguments in Pascal by the language de�nition.

A procedure in call position is a known procedure if either:

� It is a lambda-node.

� It is a reference to a variable that the compiler can prove will be bound to

a particular lambda-node.

� It is bound to a variable for which there is early-binding information.

Otherwise, it is referred to as an unknown procedure.

Escape analysis is done on variables and lambda-nodes. A lambda-node es-

capes upward if one of the following hold:

� It is an argument to an unknown procedure.

� It is an argument to a known procedure and the corresponding formal

parameter escapes upward.

� It is stored into a data structure.

� It is assigned or bound to a variable that escapes upward.

It escapes downward only if none of the previous conditions hold but one of the

following does:

� It is an argument to a known procedure and the corresponding formal

parameter of that procedure does not escape.

� It is bound or assigned to a variable that escapes downward.

If none of the previous conditions hold, the lambda-node does not escape. A vari-

able escapes upward if it is a global variable or any of its references satisfy the

38 CHAPTER 4. CLOSURE ANALYSIS

same conditions that would indicate that a lambda-node escaped. In addition,

a variable escapes if it is referenced in the body of a lambda-node which es-

capes. Using these rules we can determine whether the arguments to any Scheme

procedure escape.

A subtle problem arises with variables introduced by the compiler during

CPS conversion to represent continuations. Remembering that a variable will

not escape if all places it is being called are known at compile-time, it is safe

to say that a continuation passed to a procedure which is open-coded does not

escape, because the compiler will be generating the only call to the continuation

after emitting the code for the procedure body. In most languages other than

Scheme, we could assume that no continuations escape upward, because the pro-

grammer has no access to continuations. Continuation variables introduced by

the compiler would always be either called or passed as a continuation argu-

ment to another procedure, and thus the assumption that continuations escape

downward is consistent. Unfortunately (for the implementor) Scheme provides

the procedure call-with-current-continuation, which allows a continuation to

be bound to a variable which may escape upward. The upward continuation

problem and its solutions will be discussed in a later section. For now, we will

assume that the presence of call-with-current-continuation does not prevent

continuations from being treated in a stack-like manner.

The three possibilites for allocating closures have been discussed and ordered

with respect to space e�ciency, as well as cost of allocation and deallocation.

As we will see, the situation is not as simple as determining the most e�cient

strategy according to these criteria, because the increase or decrease in code size

and number of memory references in the code must also be taken into account.

4.3 Preliminary Assignment of Strategies

As a �rst step, each lambda-node in the node tree is assigned a strategy from the

set fheap, stack, registersg. This initial assignment depends only on the lifetime

4.3. PRELIMINARY ASSIGNMENT OF STRATEGIES 39

of the procedure, i.e. whether or not it escapes. Allocating the environment in

the registers implies that a non-standard calling sequence may be used when the

procedure is called, which is only possible if the locations of all calls are known,

i.e. the procedure does not escape. If it does escape, but only downward, the

procedure can be stack-allocated. Otherwise, the procedure is of unlimited extent

and must be allocated in the heap.

As an example of a closure allocated to registers, consider the following code

which returns the longest tail of a list whose head is eq? to obj:

(define (memq obj list)

(letrec ((memq

(lambda (list)

(cond ((null-list? list) nil)

((eq? obj (car list)) list)

(else (memq (cdr list)))))))

(memq list)))

Assume that null-list?, car, cdr, and eq? are open-coded. Since all references

to the bound variable memq are calls, the free variable obj may be allocated to

a register. When the recursive call to memq is compiled, obj must be moved

into that register before jumping to the code for memq. The register allocator

can ensure that the move is unnecessary. The result is that obj will always be

in the same register.

This simple tail-recursion is obviously a loop by another name, and a conven-

tional optimizing compiler would surely achieve the same result. But being able

to allocate a free variable to a register is not limited to tail-recursion. Consider

the following more general recursion which destructively deletes all objects in a

list which are eq? to obj:

40 CHAPTER 4. CLOSURE ANALYSIS

(define (delq! obj list)

(letrec ((delq!

(lambda (list)

(cond ((null-list? list) '())

((eq? obj (car list))

(delq! (cdr list)))

(else (set! (cdr list)

(delq! (cdr list)))

list)))))

(delq! list)))

If obj is allocated to a register on entry to delq!, the register allocator can make

sure that it is never moved. As in the memq example, it is never the case that

a free variable in a register must be moved.

While analyzing the node tree according to the previous criteria tells us the

allowable strategy that is most space-e�cient, it may be best to use a more

general strategy than is required. Here is the memq example changed so that

the programmer provides a predicate to use instead of eq?:

4.3. PRELIMINARY ASSIGNMENT OF STRATEGIES 41

(define (mem pred obj list)

(letrec ((mem

(lambda (list)

(cond ((null-list? list) nil)

((pred obj (car list)) list)

(else (mem (cdr list)))))))

(mem list)))

It would be possible to keep the free variables pred and obj in registers because

all references to mem are calls, but each time pred was called, pred and obj

would have to be moved out of their registers because their values are needed by

the continuation to the call. When mem was called again, pred and obj would

have to be restored to their registers as part of the calling sequence. We would

have the bene�t of referencing the values of pred and obj in registers instead of

memory, but the cost of pushing the values into memory and then restoring them

is incurred each iteration. Instead, the closure for mem could be allocated on

the stack by pushing the values before the �rst call to mem. It is a funny kind of

closure because although stack space is needed for the values of pred and obj, a

code pointer is not necessary because the address of the code formem is known.

When the continuation to the letrec is invoked, these values will be popped o�

the stack. This example motivates several di�erent kinds of stack-allocated clo-

sures, each having di�erent behavior with respect to code generation, that will

be de�ned in the next section.

42 CHAPTER 4. CLOSURE ANALYSIS

4.4 Strategy Stack

A stack-allocated closure is classi�ed according to whether or not a code pointer

is needed and how variables in the closure are referenced. Four di�erent strategies

result from this classi�cation:

1. There is a code pointer in the closure and variable references are through

the stack pointer (SP). This case will be referred to as stack/continuation

and is only used for continuations. The continuation must be called using

the standard calling sequence for continuations.

2. There is a code pointer in the closure and variable references are through the

environment register (P). This case will be referred to as stack/downward

and is used for procedures that are not continuations and escape downward

only. The closure must be called with the standard calling sequence.

3. The closure has no code pointer and variable references are through SP.

This case will be referred to as stack/loop and is used for procedures that

are \loops", or \tail recursions".

4. The closure has no code pointer and variable references are through a frame

pointer that could be any register. This case will be referred to as stack/re-

cursion and is used for general recursions.

The last two cases are used only when the closure does not escape, so any calling

sequence can be used. It is important to notice that being able to use the stack-

pointer to reference closure variables is equivalent to the assertion that the closure

is always invoked with the same continuation, because the register pointing to

the continuation is SP.

4.4.1 Strategy/continuation

We have seen that a continuation must be stack-allocated if it, or a variable it

is bound to, is passed to a procedure that is not open-coded. There is another

4.4. STRATEGY STACK 43

case where stack-allocation is better than registers even though it is not required.

Consider the following fragment:

(lambda (x y)

(let ((z (if (baz x) x y)))

(bar (foo x) y z)))

After CPS conversion this becomes:

(lambda (k x y)

(let ((join-point (lambda (z)

(foo (lambda (v) (bar k v y z))

x))))

(baz (lambda (t)

(if (true? t)

(join-point x)

(join-point y)))

x)))

Assume that true? is open coded. Because all of the references to join-point

are calls, the environment for the closure it is bound to (the values of x and y)

could be kept in the registers. That would mean moving these values into reg-

isters when join-point is called. However, since the �rst thing that join-point

must do is save y and z because of the call to foo, allocating x and y to registers

would be pointless. It would be much better to assign stack/continuation to the

lambda-node join-point is bound to. Then x and y would be saved on the stack

before baz is called. This observation leads to the following heuristic:

A lambda-node is assigned stack/continuation if it, or a variable it is bound

to, appears as a continuation to a non-open-coded procedure, or the execution of

44 CHAPTER 4. CLOSURE ANALYSIS

the body of the lambda-node will cause the registers to be saved.

Variable references in a closure with stack/continuation are easy because no

explicit environment pointer is needed. The stack-pointer always points to the

environment. If a free variable needs to be fetched from a superior environment

that is also stack-allocated, a single instruction will do because nested continua-

tions are allocated on the stack contiguously.

4.4.2 Strategy/downward

In general stack/downward can be assigned to closures that do not escape upward,

but we have to be careful to remain properly tail-recursive. Consider the example:

(define (foo x list)

(map (lambda (z) (bar x z)) list))

After CPS conversion:

(define (foo k x list)

(map k

(lambda (k' z) (bar k' x z))

list))

If we knew that the second argument to map (after CPS conversion) did not es-

cape upward it could be assigned stack/downward. The closure would be pushed

on the stack before the call tomap, but when would the stack space be reclaimed?

To remain properly tail-recursive, before calling map the stack-pointer must be

restored to the value it had when foo started executing. Since the argument to

map must exist on the stack while map is executing, we have a contradiction.

This type of closure must be heap-allocated. On the other hand, if the code were:

4.5. LOOPS AND RECURSIONS 45

(define (foo x list)

(baz (map (lambda (z) (bar x z)) list)))

After CPS conversion:

(define (foo k x list)

(map (lambda (v) (baz k v)

(lambda (k' z) (bar k' x z))

list)))

the argument tomap could be allocated on the stack as a closure internal to the

continuation to map.

In closures with stack/downward, variables are referenced in the same way

as in those with stack/continuation because of the same easy reference to supe-

rior stack-allocated closures. The di�erence is that in the stack/downward case,

variable references must go through the environment register because the calling

sequence for a procedure is di�erent from that of a continuation.

4.5 Loops and Recursions

In the context of Scheme, what is a loop? In other languages, including LISP,

speci�c iteration constructs are provided. Compilers spend a lot of time optimiz-

ing the code for these constructs. The problem is that these loops are not very

general. In fact, these constructs are the only way iterations can be expressed

with a guarantee that the stack will not overow. In Scheme, as far as the com-

piler is concerned, all iterations are expressed as recursions, even if syntax is

provided which looks like the iterative constructs of other languages. The only

46 CHAPTER 4. CLOSURE ANALYSIS

constructs that Orbit analyzes are sets of mutually recursive procedures.

4.5.1 Loops

Some sets of mutually recursive procedures have the useful property:

De�nition 4.1 A set of mutually recursive procedures that are only called, and

always with the same continuation, is called a loop.

Because the stack-pointer always holds the continuation, it has the same value

each time one of the loop's procedures is called. This is precisely the condition

needed to assign a procedure stack/loop. It allows the free variables of the loop to

be pushed on the stack before entering the loop and to be referenced through the

stack-pointer. When one of the loop procedures �nally invokes its continuation

or passes it out of the loop, code is emitted to pop o� the free variables.

Note that any set of mutually recursive procedures satisfying the de�nition of

a loop could also be given strategy registers. The actual strategy used depends

upon whether or not the free variables will need to be saved and restored during

execution of the loop. The mem example looked at previously would be given

stack/loop, but if we change that example slightly to:

(define (memq obj list)

(letrec ((memq

(lambda (list)

(cond ((null-list? list) nil)

((eq? obj (car list)) list)

(else (memq (cdr list)))))))

(memq list)))

where eq? is open-coded, obj could be kept in a register throughout the exe-

cution of the loop, never being moved. Thus memq could be given strategy

4.5. LOOPS AND RECURSIONS 47

registers.

4.5.2 General Recursions

What happens if we relax the condition that requires each mutually recursive

procedure to be called with the same continuation? We are now considering code

such as:

(define (del! pred obj list)

(letrec ((del!

(lambda (list)

(cond ((null-list? list) '())

((pred obj (car list))

(del! (cdr list)))

(else (set! (cdr list)

(del! (cdr list)))

list)))))

(del! list)))

Two calls to del! pass the original continuation but one passes a continuation that

does a set! and invokes its continuation with argument list. It is still possible to

push the values of the free variables, pred and obj, before entering the recursion,

but they cannot be referenced through the stack-pointer because it will be at a

di�erent place each time del! is called. The values must be referenced through

a frame pointer that needs to be saved when pred is called. It is also no longer

possible to know at compile-time where code to pop o� the environment should

be emitted because it is impossible to tell when the recursion is \really ending";

i.e., we do not know whether the continuation being invoked is the original one

passed in to del! or one of the others.

48 CHAPTER 4. CLOSURE ANALYSIS

One solution would be to give the stack-allocated environment a code pointer

that would pop the closure o� the stack and return. In the del! example this

would work, but if we changed the code to:

(define (del! pred obj list)

(letrec ((del!

(lambda (list)

(cond ((null-list? list) (foo '()))

((pred obj (car list))

(del! (cdr list)))

(else (set! (cdr list)

(del! (cdr list)))

(foo list))))))

(del! list)))

the environment would not be popped o� until foo or some other procedure even-

tually invoked this \extra" closure.

The solution we have chosen is to push a special marker onto the stack after

pushing the environment [Rozas]. The code to return from del! checks to see if

the marker is at the top of the stack and, if so, it pops o� the environment before

invoking the \real" continuation, i.e. the one that was passed to del!. This

problem is really the same as the one that occurred with stack/downward, but in

that case there was no solution because we could not know that the procedure

being called would generate the runtime checks before invoking its continuation.

The properties of the various closure strategies are summarized in the follow-

ing table:

4.6. FINAL ASSIGNMENT OF STRATEGIES 49

Strategy Closure Calling Runtime

register convention check on

return?

Registers none any no

stack/Continuation SP standard no

stack/Loop SP any no

stack/Recursion FP any yes

stack/Downward P standard no

Heap P standard no

The closure register column indicates how free variable references are compiled,

i.e. which register points to the closure when it starts executing. The use of FP

in stack/recursion is very similar to the use of a frame pointer in a conventional

compiler, but in Orbit it can be any register and a frame pointer exists only while

in a closure with this particular strategy.

4.6 Final Assignment of Strategies

Consider the example:

50 CHAPTER 4. CLOSURE ANALYSIS

(define (f x y)

(letrec ((foo

(lambda (z)

(cond ((null? z) nil)

((bar x y)

(baz (lambda (w)

(if w x (foo w)))))

(else (foo (cdr z)))))))

(foo y)))

Even though all references to foo are calls, it cannot be assigned stack/recursion

(stack-allocated) because it is called from inside the procedural argument to baz,

which escapes upward. This example demonstrates that the strategy assigned to

a lambda-node bound to a variable depends on the type of closure the variable

might be called from.

4.6.1 Strategy Analysis

We place an ordering on the closure strategies for local recursions as follows,

where � indicates less general:

stack=loop � stack=recursion � heap

The strategy assigned to a procedure must be at least as general as any from

which it is called, unless it is strategy registers; it is always the case that any

procedure that is only called may be assigned strategy registers. This ordering

implies that the strategy initially assigned to a lambda-node must be modi�ed

based on the strategy of each lambda-node whose body it is called from. A

description of the restrictions imposed by being called from each strategy, and

4.6. FINAL ASSIGNMENT OF STRATEGIES 51

the strategy changes thus induced, are as follows:

strategy registers. Being called from a closure with strategy registers imposes

no restriction if the closure was not bound in a letrec or is a loop. If the

closure represents a recursion, then any procedure called from it cannot be

given stack/loop because the stack-pointer might be di�erent for di�erent

calls to that procedure.

stack/continuation and stack/loop. These cases use stack-allocated envi-

ronments. If a procedure with strategy registers were called from here

it would mean that the registers containing the environment would have

to be saved and restored. The strategy of such a procedure would thus be

changed to stack/loop if it were a loop, otherwise it would be changed to

stack/recursion.

stack/recursion. While executing a procedure with this strategy, the stack-

pointer could be anywhere. If it contains a call to a procedure with

stack/loop, that procedure must be changed to stack/recursion because

stack/loop assumes that the stack-pointer is always the same when the pro-

cedure is invoked.

stack/downward. If we had a call to a procedure with stack/loop here the call

would have to move the stack-pointer past this closure. Therefore that

called procedure must be changed to stack/recursion.

strategy heap. As in the previous example, a procedure called from here needs

to be changed to strategy heap unless it is strategy registers.

The algorithm for strategy analysis uses these rules by examining all calls to

procedures that are bound to variables, making changes to the assigned strategies,

and then iterating until no more changes in strategy are made.

However, the rules given are not quite adequate. To see why we have to look

at the question of live variables.

52 CHAPTER 4. CLOSURE ANALYSIS

4.6.2 Live-variable Analysis

In order to do closure analysis we must determine which variables are live for each

lambda-node in the node tree. As discussed previously, a pointer to a closure

is like a variable, in the sense that it needs to be accessible whenever one of

the variables in its environment needs to be accessible. For live-variable analysis

several functions are needed:

closure-variable takes a lambda-node as argument and returns the variable

that represents the closure corresponding to that node.

variable-known-lambda takes a variable as argument and returns the lambda-

node to which it is known to be bound, if any. Otherwise it returns false.

lambda-live takes a lambda-node and returns the set of variables previously

computed to be live at that lambda-node. This distinction is important if

the algorithm is performed iteratively.

reference-variable takes a reference-node and returns the variable it is a ref-

erence to.

set-of takes some number of values and returns a set containing those values.

The value global indicates that a pointer to the global environment is re-

quired. The following algorithm will �nd the set of live variables at each lambda-

node:

4.6. FINAL ASSIGNMENT OF STRATEGIES 53

(define (live-analyze node)

(case (node-type node)

((lambda)

(let ((live (live-analyze (lambda-body node))))

(if (empty-set? live)

global

(set-difference live (formal-parameters node)))))

((call)

(map-union live-analyze (call-proc+arguments node)))

((leaf)

(live-analyze-leaf node))))

(define (live-analyze-leaf node)

(case (type-of-leaf node)

((primop)

empty-set)

((literal)

(if (addressable? (literal-value node))

empty-set

global))

54 CHAPTER 4. CLOSURE ANALYSIS

((reference)

(let* ((variable (reference-variable node))

(lambda (variable-known-lambda variable)))

(if (not lambda)

(cond ((and (global-variable? variable)

(mutable? variable))

(set-of variable global))

((continuation-variable? variable)

empty-set)

(else

(set-of variable)))

(case (lambda-strategy lambda)

((registers)

(lambda-live lambda))

((loop continuation)

empty-set)

((recursion)

(set-of (closure-variable lambda)))

((heap)

(if (all-are-global? (lambda-live lambda))

global

(set-of (closure-variable lambda))))))))))

In the last case, the empty set is returned for stack/loop and stack/continuation

because we can always use the stack-pointer to reference the closure. Similarly,

we can ignore a variable that is bound to a continuation because fetching the

variable involves, at most, adjusting the stack-pointer. Recall that every clo-

4.6. FINAL ASSIGNMENT OF STRATEGIES 55

sure in an expression being compiled may have two environments where values

are obtained: the local environment, with variables that are bound within the

expression, and the \global" environment which contains:

� Variables not bound within the expression.

� Literal values (constants and quoted structure) that cannot be referenced

as an immediate operand in the instruction stream.

� Closures which are to be heap-allocated and have no free variables bound

within the expression.

Whenever the algorithm encounters a value that will be found in the global

environment and cannot be assumed constant, it just returns the value global.

These variables cannot be assigned to registers or closure slots because the result

of a side-e�ect would not be \seen".

It is important to note the way a variable, known to be bound to a lambda,

is treated in the analysis, i.e. that variable never occurs in a set of live variables.

Instead, the variable is identi�ed with the lambda to which it is bound. If that

lambda will have its environment in registers, the values in the environment must

be accessible at the point of the call. Hence the live variables associated with the

variable reference are those needed by the lambda to which it is bound.

If the environment is not in registers, all that is needed to reference the

variable is a reference to the lambda to which it is bound. Recall that each

lambda-node has a formal parameter that refers to itself; environment pointers

are treated like variables. If the lambda has stack/loop or stack/continuation,

nothing is needed to call it because the environment will be accessed through

the stack pointer. Otherwise, the variable representing the lambda must be

considered live. As an example of what this means, consider the code:

56 CHAPTER 4. CLOSURE ANALYSIS

(define (foo x)

(letrec ((bar (lambda (y)

(if (not y) x bar))))

bar))

Most compilers would take the view that the free variables of the lambda were

x and bar. Both of these values would be stored in the closure. The resulting

code might look like:

COMPARE-TO-FALSE A1 ;;; (not y)

JUMP-ON-EQUAL L1

MOVE X(P),A1 ;;; return x

RETURN

L1: MOVE BAR(P),A1 ;;; return bar

RETURN

But if we view the code as being:

(define (foo x)

(letrec ((bar (lambda (bar y)

(if (not y) x bar))))

bar))

and use the algorithm presented, there is only one free variable, x, and we get

the following code:

4.6. FINAL ASSIGNMENT OF STRATEGIES 57

COMPARE-TO-FALSE A1 ;;; (not y)

JUMP-ON-EQUAL L1

MOVE X(P),A1 ;;; return x

RETURN

L1: MOVE P,A1 ;;; return bar

RETURN

This example clearly shows how environment pointers are treated just like other

variables; the value being returned is just the value in the environment register

(P)!

This algorithm must iterate because procedures can be bound to variables.

The fact that it starts out with the assumption that the set of live variables

at each lambda node is empty implies that the algorithm must iterate until

convergence. It is desirable that the live-variable information be exact, i.e. no

variable is indicated as live where it is not. Minimal live variable sets are not

necessary for correctness, but they are necessary to achieve the goals of reducing

the size of heap-allocated closures and keeping as many variables in registers as

possible.

Clearly the live-variable analysis depends on what strategies have been as-

signed to lambda-nodes. Unfortunately, the converse is also true. To see why we

look at the del! example given in the last section again, but change it slightly:

58 CHAPTER 4. CLOSURE ANALYSIS

(define (del! pred obj list)

(letrec ((del!

(lambda (list obj)

(cond ((null-list? list) '())

((pred obj (car list))

(del! (cdr list) obj))

(else (set! (cdr list)

(del! (cdr list) obj))

list)))))

(del! list obj)))

The change is that obj is no longer free to del!. In the original example the best

strategy was stack/recursion, but if we have only one free variable that would

mean saving a pointer to a single variable across the call to pred. Obviously it

would be better to just save pred, i.e. use strategy registers. In this example,

as in the others, it is su�cient to do a static analysis of the code to arrive at the

best strategy. Unfortunately, this is not always the case. In the section with the

example:

4.6. FINAL ASSIGNMENT OF STRATEGIES 59

(define (f x y)

(letrec ((foo

(lambda (z)

(cond ((null? z) nil)

((bar x y)

(baz (lambda (w)

(if w x (foo w)))))

(else (foo (cdr z)))))))

(foo y)))

it was observed that foo could not be assigned stack/recursion, but what strategy

should it be assigned? The two possibilities are strategy registers and strategy

heap. If we use strategy heap the closure structure for foo and the argument to

baz would be:

60 CHAPTER 4. CLOSURE ANALYSIS

| x |

|------|

| y |

|------|

---> | code | <---- foo

| --------

-------- |

| |---

argument to baz -> | code |

If we used strategy registers it would be:

| x |

-------|

| y |

-------|

argument to baz -> | code |

With strategy heap the amount of space used is 3+(# of times baz is called)�2

and with strategy registers it is (# of times baz is called)�3. Which is better

depends on the dynamic behavior of the function f. This sort of decision, of

course, arises often in the compilation of any language. In Orbit we assume that

4.7. CLOSURE HOISTING 61

because foo is a recursive procedure, the closure for the argument to baz will be

created much more frequently than the closure for foo.

Obviously, the rules for strategy analysis have to be modi�ed to take the live

variable information into account. In order to get everything right the strategy

analysis and live-variable analysis have to be done at the same time. Therefore the

two algorithms are combined. If we are not careful, the combined algorithmmight

not terminate because changing the strategy of a procedure to strategy registers

may increase the number of live variables at the lambda-nodes containing calls

to it. That increase in live variables might cause a procedure to be changed

from strategy registers to one of the others. This change might cause the original

procedure to ip back to what it was, and so on. The solution is to disallow a

transition to strategy registers from any other.

4.7 Closure Hoisting

Thus far, the issue of when a heap or stack-allocated closure will be allocated has

not been addressed. The most straightforward approach would be to allocate the

storage when the lambda-node to which it evaluates is encountered in the node

tree. Two examples will show why a more complicated analysis is needed.

(letrec ((fact

(lambda (n)

(if (= n 0) 1 (* n (fact (- n 1)))))))

(fact 5))

After CPS conversion the procedure fact looks like:

62 CHAPTER 4. CLOSURE ANALYSIS

(lambda (k n)

(conditional (k 1)

(- (lambda (v)

(fact (lambda (w)

(* k n w))

v))

n

1)

(= n 0)))

Assume that+, -, and= are open coded and that fact has been assigned strategy

registers. The continuation to - will be strategy registers, but the continuation

to the call will have to be stack/continuation. Assuming that the argument n

of fac is allocated to the �rst argument register, A1, and remembering that the

�rst argument to a continuation goes in the �rst argument register, the code for

fact might look like:

4.7. CLOSURE HOISTING 63

FACT:

COMPARE-TO-ZERO A1 ;;; (= n 0)

JUMP-ON-EQUAL RETURN

MOVE A1,R2 ;;; (- n 1)

SUBTRACT 1,R2

PUSH A1 ;;; save n and push code

PUSH-ADDRESS CONT ;;; descriptor for continuation

MOVE R2,A1 ;;; call fact, n is in R1

JUMP FACT

CONT:

MULTIPLY 4(SP),A1 ;;; return (* n w)

POP-STACK 8 ;;; remove continuation

RET ;;; return

RETURN:

MOVE 1,A1 ;;; return 1

RET

The code at the label FACT has two extra move instructions in it. We could

not just subtract 1 from R1 because the value in R1 (n) was still live but only

because it was needed by the continuation. If the evaluation of the continuation

were moved up to the point before the subtraction, the following code would

result:

64 CHAPTER 4. CLOSURE ANALYSIS

FACT:

COMPARE-TO-ZERO A1 ;;; (= n 0)

JUMP-ON-EQUAL RETURN

PUSH A1 ;;; save n and push code

PUSH-ADDRESS CONT ;;; descriptor for continuation

SUBTRACT 1,R2 ;;; (- n 1)

JUMP FACT

This example is illustrative of the fact that a continuation should be allo-

cated as soon as it is known that it will have to be allocated and doing so would

reduce the number of live variables. We call this closure hoisting. For the case

of a continuation there would be no point in raising its evaluation above a con-

ditional expression. This is because the properties that make a stack useful for

continuations prevent these continuations from sharing closures.

The situation is di�erent with heap-allocated closures. Normally, when we

hoist a continuation, we do not have to keep track of a pointer to it because it is

contiguous with the current continuation. However, if a closure is heap-allocated,

we need to store its pointer somewhere until it is used, making early allocation

not as attractive. We also might want to hoist a heap-allocated closure above

a conditional expression if it could be merged with another. As an example

consider:

4.7. CLOSURE HOISTING 65

(lambda (x y)

(let ((foo (lambda (z)

(if (eq? z 'x)

(lambda () x) ;;; lambda #1

(lambda () y))))) ;;; lambda #2

foo))

If we evaluated the lambda-expression returned by calling foo after testing to see

which lambda-expression was being returned we would have to use heap space

whatever the result of the test, but if we raised the lambda-expressions above

the conditional expression we could have the closure structure look like:

| code for #2 |

|--------------|

| code for #1 |

|--------------|

| y |

|--------------|

| x |

|--------------|

| code for foo |

|---------------

This choice increases the size of foo by two words but calling foo now causes no

additional allocation at all. It simply returns a pointer to the appropriate slot

in the bigger closure. As before, we assume that lambdas #1 and #2 will be

evaluated many more times than the lambda bound to foo.

66 CHAPTER 4. CLOSURE ANALYSIS

Thus far we have been concerned with early evaluation of lambdas, but often

it is better to try to delay the evaluation as long as possible. As an example,

consider the following code:

(define (f x)

(let ((new-x (if (fixnum? x)

x

(get-a-fixnum))))

.. x .. new-x ..

))

After pseudo CPS conversion this becomes:

(define (f x)

(let ((j (lambda (new-x) .. x .. new-x ..)))

(if (fixnum? x)

(j x)

(get-a-fixnum j))))

Because j appears as the continuation to the call to get-a-�xnum, the closure for

j must be assigned stack/continuation. However, the code could be transformed

into:

(define (f x)

(let ((j (lambda (new-x) .. x .. new-x ..)))

(if (fixnum? x)

(j x)

(get-a-fixnum (lambda (x) (j x))))))

4.8. REPRESENTATION ANALYSIS 67

Now all of the references to j are calls and so j can be assigned strategy registers,

while the (lambda (x) (j x)) is given stack/continuation. The stack allocation

of j has been e�ectively pushed below the conditional, only ocurring if necessary.

The compiler performs this sort of transformation whenever possible.

4.8 Representation Analysis

After closure strategy analysis we know where each closure will be allocated.

The remaining task is to determine which closures should share an environment,

which variables should be in the environment, and how much space they need

to occupy. In addition, we need to determine which cells, introduced for bound

variables that might be side-e�ected, can be eliminated.

4.8.1 Representation of Variables

The fact that each value in a program must be represented as a tagged pointer

can lead to great ine�ciencies in compiled code, because conventional machine

architectures do not provide intentional support for manipulating tagged quanti-

ties. One can play various tricks with pointer tags to minimize the problem but,

on conventional machine architectures, it cannot be avoided. In the T3 system

the low order two bits of a pointer are used as the tag �eld. In particular, these

two bits are zeroes for �xnums. Thus most arithmetic and boolean operations

can be done directly on the tagged pointers, with overows detected naturally.

There are several important exceptions, however, multiplication of �xnums being

a good example. To multiply two tagged �xnums to yield a tagged �xnum, the

tag �eld of one of them must be right-shifted out. Consider iterative factorial as

an example:

68 CHAPTER 4. CLOSURE ANALYSIS

(define (factorial n)

(letrec ((fac

(lambda (result i)

(if (= i 0)

result

(fac (* result i) (- i 1))))))

(fac 1 n)))

By default, result and i would be represented as tagged values and the result

of the multiplication would have to be shifted left 2 bits. Rather than doing

the shift in each iteration, the variable i could be represented in unshifted form,

eliminating the need for the shift after the multiply. Of course, this could only

be done if it were known from type declarations that the result would always be

a �xnum.

Representation analysis determines which variables can be handled more ef-

�ciently using a non-tagged representation. Non-tagged representations are only

a possibility for variables with a known type. The type information is either sup-

plied by the programmer, or is inferred from a simple �rst-order analysis. The

analysis is based on the various primops, with each primop supplying informa-

tion about what representations it would prefer or require from its operands and

which it can or must deliver to its continuation. A character, for example, could

be stored as an eight bit ascii value, and several of them could be packed into

a single word of a closure. This analysis is especially important in order to do

oating-point operations e�ciently, because converting a number from the form

used by machine instructions to a T pointer requires allocating storage.

4.8. REPRESENTATION ANALYSIS 69

4.8.2 Collapsing Cells

The front-end of Orbit introduced cells for all bound variables that might be

assigned. In general, each cell has to be allocated in the heap although this

might not be necesary. Indeed, it is possible to do arbitrarily large amounts of

analysis, as conventional optimizing compilers do, in order to �gure out exactly

which cells are not really needed. I decided to analyze only the cases that would

occur in programs written in the normal \Scheme style". A bound variable could

be assigned for one of two reasons:

1. It represents the local state of an object.

2. The programmer decided to give a new value to the variable by reassign-

ment rather than by rebinding.

The code produced for programs that use assignments to do rebinding, which is

unfortunately a common practice in traditional Lisp code, will be relatively poor.

The other case is illustrated by the example:

(define random

(let ((seed 34343))

(lambda ()

(set! seed (make-new-seed seed))

seed)))

A cell will be introduced for the assigned variable seed, but because this variable

is only referenced in one closure the cell can be collapsed. As a result, the closure

contains the value of seed instead of a pointer to a cell containing the value.

This saves both the heap space for the cell and the time required for indirection

when manipulating the value. The following heuristic is used for collapsing cells:

A variable holding an introduced cell may be collapsed if all of the following

hold:

70 CHAPTER 4. CLOSURE ANALYSIS

1. The value of the variable will only be in one closure.

2. That closure is in the heap.

3. All references to the variable are either to get the contents of the cell or

change the contents.

If the third condition fails it means that the cell may be being used by the

programmer as a location, and so cannot be collapsed. Because of call-with-

current-continuation, cells bound to variables in stack-allocated closures may

not be collapsed, as is shown in the next section.

4.8.3 Closure Representation Analysis

There are three di�erent layouts for heap-allocated closures at runtime. Which

one is used depends on the nature of the live variables of each closure. If there

are no live variables or all are global, the closure will be internal to the global

environment. Evaluating the lambda-expression will cause a pointer into the

global environment to be fetched. If none of the live variables are global, the

closure will have an ordinary code descriptor, but if there are some global and

some non-global live variables, the code descriptor will also be a pointer into

the global environment. This trick is used because many closures reference the

global environment in addition to their local environment. This optimization is

important because lexical scoping of global variables implies that a procedure

referring to global variables must hold a pointer to the global environment.

Each closure residing on the stack or in the heap at runtime has a parallel

structure in the compiler with the following information:

code-descriptors A list of the lambda-nodes whose code descriptors will share

the closure, starting with the one whose code descriptor will be the �rst

slot.

variables A list of all the variables with values in this closure and their respective

o�sets in the closure.

4.8. REPRESENTATION ANALYSIS 71

rootable The number of rootable slots.

non-rootable The number of non-rootable slots.

global o�set If variables are being referenced in the global environment then

the code descriptor in the �rst slot will also be a pointer into the global

environment as described previously. The global-o�set is the o�set of this

code descriptor in the global environment.

link If the closure will have a pointer to a superior closure, this value is the

compiler representation of that superior closure.

Each lambda-node knows of which closure structure it is a part as well as the

runtime o�set of its code descriptor.

The compiler structure for lambda-nodes with strategy registers is simpler,

containing:

variables A list of the arguments and free variables and places for the corre-

sponding register assignments. These places will be �lled in during code

generation.

link If some variables will be accessed from another closure this �eld contains

the structure representing that closure.

Closure representation analysis is performed via a top-down walk over the

node tree. Lambda-nodes (except for those with strategy registers), evaluating

to closures that will be packed together, are collected and the compiler structure

is created for that closure. All lambda-nodes that occur as arguments to the

same call node are assigned to the same closure. This includes grouping together

lambda-nodes bound in a let or letrec, but only those that escape need to have

code descriptors in the closure.

When a closure is to be created, we need to decide whether a value that is

needed by the closure, but which has already been stored in a superior closure,

will be copied or referenced through a pointer to the superior closure. Because

72 CHAPTER 4. CLOSURE ANALYSIS

of assignment conversion, any variable may be copied without worrying about

possible assignments. As we walk down the tree, each lambda-node is presented

with two sets of variables:

1. Those that have already been placed in a superior stack-allocated closure.

2. Those that have already been placed in a superior heap-allocated closure.

These sets must be maintained separately because a variable live at a heap-

allocated closure must be copied into the heap if it has been stored on the stack.

The costs of copying (move instructions and extra storage requirements) must

be balanced against the cost of leaving a pointer (more expensive variable ref-

erences). Heap storage is so expensive that variables are never copied from one

heap closure to another, unless there is only one. For closures with stack/loop

and stack/recursion, only stack space is used. Furthermore, the closure has to be

�lled with values only once, though it will presumably be called many times. For

these reasons no pointers are kept in such closures, except possibly for a pointer

to the global environment. Such a pointer must always be maintained at a point

where a global variable might be modi�ed. The same reasoning applies if the

environment will be kept in registers.

For the other cases, namely stack/continuation and stack/downward, it is not

possible to be sure what will be best. A form of strictness analysis [Mycroft 81]

could be done, and variables that were certain to be referenced could be copied,

but I judged, for just this case, that analysis not to be worth doing.

4.9 Call-with-current-continuation

The Scheme procedure call-with-current-continuation is a very powerful con-

struct that can be very expensive to implement. Because this language feature

allows continuations to be manipulated by the programmer in arbitrary ways,

continuations cannot, in general, be treated in a stack-like manner. The most

4.9. CALL-WITH-CURRENT-CONTINUATION 73

straightforward approach is to actually heap-allocate continuations. This strat-

egy is prohibitively expensive in both time and space, even if no calls to call-with-

current-continuation are ever made. An alternative is to \freelist" continuations

(stack frames). This improves the heap storage problem but still must always be

paid for.

The other alternative, the one used here, is to have a single stack. When

a continuation is captured by a call to call-with-current-continuation, the

active portion of the stack is copied into the heap. Each time the continuation is

invoked, the stack which was copied into the heap is copied back into the stack.

The advantage of this strategy is that the presence of this language feature incurs

almost no cost is, unless it is actually used. The only restriction imposed is that

once an object is allocated on the stack, it must not be updated to ensure that all

stack references are consistant whenever a continuation is invoked. In particular,

this means that cells corresponding to variables in stack closures may not be

collapsed. The disadvantage of the stack copying strategy is that the copying

and copying back of stacks can be very expensive if they are large.

74 CHAPTER 4. CLOSURE ANALYSIS

Chapter 5

Register Allocation and Code

Generation

Over the years a systematic method of code generation has been developed for

programming languages that allow recursion. Aspects of this method include:

� Parameters to procedures are passed on a stack.

� Register allocation is a separate pass that occurs before the actual genera-

tion of code.

� If closures are allowed, the method of referencing the variables in the closure

is determined during register allocation (by environment chaining) or is

�xed (by using a display).

� The procedure call is a fundamental concept. Procedures return a single

value in a register or on the stack.

There is reason to believe that some of these aspects might have actually im-

peded the development of programming languages, e.g., the lack of support for

procedures returning more than one value and for \�rst-class" procedures. Im-

plementation of these features in the \conventional" model would be ine�cient

or di�cult, or both. The widely held view that procedure calls are expensive has

75

76 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

certainly inuenced the way programs are written. In this chapter I will argue

that all of the above aspects of the conventional model are either unnecessarily

restrictive or inherently ine�cient.

5.1 Fundamental Choices

This section will examine some of the fundamental design decisions that have to

be made regarding code generation. These decisions cannot be made indepen-

dently because of their strong interaction.

5.1.1 Where Should Parameters be Passed?

Traditionally, arguments to procedure calls have been passed on a stack. In the

early days of computing, machines did not have general purpose registers, and

passing arguments on a stack �ts naturally into the implementation of recursion

using a stack. Even though modern, optimizing compilers put great e�ort into

register allocation in order to use the higher-speed registers as much as possible,

arguments are still generally passed on the stack. Two important exceptions are

the MACLISP and PSL [Griss 82] compilers which used registers for argument

passing. These two compilers were also noted for the e�ciency of the code they

generated.

The two approaches take di�erent views of the machine architecture. The

compiler that uses the stack for argument passing treats the stack as the funda-

mental storage for variable values. Values are cached in registers when possible

because register operations are faster. On the other hand, a register-based com-

piler assumes computation is done in registers. Only when a context-switch

(unknown procedure call) occurs is it necessary to force values out of registers

onto the stack.

Passing arguments on a stack simpli�es the compiler because arguments are

located using a frame pointer, but may force arguments to be in memory when

5.1. FUNDAMENTAL CHOICES 77

not necessary. Passing arguments in registers requires more work from a register

allocator, but the code generator now has an opportunity to place the results

of computations in the the registers where they will be passed as arguments to

other procedures.

On the other hand, it is possible to construct code that would run more

e�ciently if arguments were passed on the stack. For example:

(define (f x y z)

(g)

(bar x y z))

In this example, if arguments are passed on the stack the code for the body might

look like:

JSR G

JMP BAR

but if arguments were passed in registers, it would look like:

PUSH R1

PUSH R2

PUSH R3

JSR G

POP R3

POP R2

POP R1

JMP BAR

Fortunately, a simple empirical analysis will show that passing arguments in reg-

78 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

isters should signi�cantly increase performance for \typical" code.

Passing arguments on the stack has two clear disadvantages compared to

using registers:

� A referenced argument will always have to be fetched from memory at least

once.

� In a tail-recursive call, even though some arguments might not need to

be pushed onto the stack, any argument manipulation will be in memory

instead of in registers.

For the purposes of the analysis, these two disadvantages will be ignored; tail-

recursive calls are assumed to be optimized even if arguments are passed on the

stack. What will be measured is how often values must be pushed onto the stack.

For the analysis it is also necessary to make a distinction between user vari-

ables and \temporaries", i.e. variables that are bound by continuations. This

distinction is necessary because the \temporary" values are treated the same,

regardless of the argument passing strategy used. These values are always gen-

erated in registers and, if needed after an unknown procedure call, will have to

be pushed on the stack in either case.

As it generates code, the compiler keeps track of:

1. The number of times any value appears as an argument to a non tail-

recursive procedure call.

2. The number of formal parameters that are live across a procedure call. Pa-

rameters of continuations are not counted because they are the \temporary"

variables.

In the �rst case, if arguments are passed in registers there is no memory reference

cost for an argument. Although a move from memory might be needed in this

case, the stack case will require the same move, but onto the stack. So, for the

stack case, one push is charged for each such argument. Actually it is only fair to

5.1. FUNDAMENTAL CHOICES 79

charge if, in the register case, the argument is passed in a machine register. Thus,

for each procedure call, the charge is the minimum of the number of arguments

and the number of machine registers used for argument passing. In practice this

doesn't make much di�erence because most procedures have a small number of

arguments. In the stack case, formal parameters to procedures never need to

be moved onto the stack, so for the register case one push is charged for each

parameter which needs to be saved.

Several modules in the compiler were used as \average code" for the experi-

ment. The following table shows the results of compiling four modules:

arguments pushed (n) arguments saved (m) m/n

210 37 .18

323 33 .10

136 25 .18

89 14 .16

Of course these are measurements based on static analysis of the code, but there

is little reason to believe that the dynamic behavior will be, on average, any

di�erent.

To interpret the data we use the MC68000 processor as an example. In the

register case, saving a formal parameter means pushing the contents of a register

onto the stack, which costs 16 cycles. To evaluate the cost of pushing an argument

there are three relevant cases:

1. The argument is already in the register that it needs to be passed in. There

is no cost in such a case.

80 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

2. The argument is in a register but must be moved to another. The cost is a

register to register move: 4 cycles.

3. The argument is in memory. The cost is a memory to register move: 16

cycles.

In the case of passing arguments on the stack, there is no cost to save a

formal parameter because the value in question is already on the stack. When

arguments are being passed on the stack, the �rst case is generally not possible

and the cost of the second is that of pushing the contents of a register onto the

stack: 16 cycles. The third case is now the cost of a push from memory: 26

cycles. These costs are summarized in the following table:

arguments in registers arguments on stack

argument in right register 0 not applicable

argument in wrong register 4 16

argument in memory 16 26

Let n be the number of arguments passed and m be the number of formal

parameters saved. If rcost is the cost of a register argument and scost is the

cost of a stack argument, we have the following formula:

cost of registers = n * rcost + 16 * m

cost of stack = n * scost

5.1. FUNDAMENTAL CHOICES 81

If we assume that each of the three argument cases is equally likely, one computes

an average rcost of about 7 and an average scost of about 19 cycles. Using these

values in the above formulae gives the result that the costs are equal when the

number of values saved (m) is equal to three fourths the number of arguments

passed (n). In other words, it is better to use registers whenever m=n < :75.

Referring back to the table of results, one can see that for the code pro�led, this

condition was always true by quite a margin.

Although the 68000 was used as an example, the relevant machine parameter

is obviously the relative cost of moves from and to memory, compared to refer-

ences to values in registers. The static analysis indicates that passing arguments

in registers should lead to faster running code than passing arguments on the

stack. Benchmarks to support this data will be presented in the �nal chapter.

5.1.2 When Should Registers be Allocated?

Two register allocation strategies that have become popular in compilers for Lisp

as well as other languages are graph coloring [Chaiten 81] [Chaiten 82] [Chow 84]

and TN binding [Wulf 75]. In both of these methods, register allocation is viewed

as the process of assigning a register or memory location to each user-de�ned

variable or compiler-generated temporary variable. The goal is to make these

assignments in such a way as to minimize the number of move instructions,

usually by trying to ensure that a value is computed in a location where it can

be used in a subsequent operation. Memory references are reduced by allocating

frequently used variables to machine registers. After assigning a single machine

location to each variable the process of code generation is simple, but the resulting

code can have glaring ine�ciencies. Consider this simple example of C code:

82 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

f(x)

int x;

g();

return (x+x);

In almost all existing C compilers, x will be on the stack after the call to g returns.

A typical sequence would be:

jsr g ;;; call g

move x(sp),r0 ;;; move x into return register

add x(sp),r0 ;;; why not add r0,r0 ?

pop x ;;; pop off the value of x

ret ;;; return from f

This example shows the main aw in TN binding or graph coloring: a variable is

assigned to exactly one register or exactly one memory location. In other words,

each variable is assigned a single home. The code generator knows that x is on

the stack. After the move instruction it still knows that x is on the stack, but it

doesn't know that it is now in a register also.

In a language like C this is perhaps not too troublesome, since the worst

thing that can happen is a reference is made to memory when it could have

been to a register. However, the situation becomes much more severe if closures

are allowed. In that case each reference to a variable in a closure might require

several move instructions. This problem could be avoided by using a display to

reference variables in closures, but that strategy has problems to be discussed

in the next section. The reason for the popularity of these register allocation

strategies is that they can generate very good code in the absence of closures.

5.1. FUNDAMENTAL CHOICES 83

Also, it is clear that in order to do global register allocation, some registers must

be allocated before code is actually generated.

An alternative is to do code generation and register allocation at the same

time; \on-the-y register allocation". This is not a new idea, having been dis-

cussed elsewhere [Aho 86]. It was also discussed from a theoretical point of view

[Karr 84] but apparently never implemented. As described in the next section,

on-the-y register allocation can be adapted to deal well with closures. To date,

no one has shown how the other register allocation strategies can be extended to

languages with �rst-class procedures in an e�cient manner.

Together with appropriate techniques for dealing with closures, the single-

home problem can be avoided by doing register allocation and code generation

at the same time. The problem is that a global view of register allocation is lost.

This problem is ameliorated somewhat by the use of a form of trace scheduling

to be discussed.

5.1.3 Closures

As far as register allocation is concerned, the di�erence between a language like

Scheme and one like C is the presence of variables that must be fetched from

dynamically-created lexical environments. Two methods have been used to gen-

erate references to variables that do not reside in registers or stack-allocated

temporary locations:

The use of a display. A display is the traditional method for handling closures

in Algol-like languages. Each procedure keeps a set of pointers to each en-

closing environment which has variables that might need to be referenced.

This strategy makes register allocation and code generation for these vari-

ables easy and inexpensive, but there are some severe problems:

� The display has to be updated each time a new lexical scope is entered.

� If the display is kept in memory, updating it is more expensive, as is

referencing a variable in the display. If it is kept in machine regis-

84 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

ters, these registers are not available for general allocation, e�ectively

reducing the number of registers whether or not the display is ever

used.

� If it cannot be determined at compile-time whether an environment

variable will be referenced, the display register corresponding to that

environment must be loaded even though it may turn out not to have

been necessary.

Environment chaining. If a variable may be referenced from an inferior clo-

sure, the inferior closure maintains a link to the superior closure containing

that variable. Fetching a value involves traversing these links, bringing

each link into a register, until the value is accessable. The advantage of

this strategy is that no registers are reserved for the special purpose of

accessing values in environments, i.e. the potential presence of closures

adds no cost unless the closures are used. The disadvantage is that, as

we saw previously, if conventional register allocation is used several move

instructions may be generated for each variables reference.

Orbit obtains the bene�ts of both of these strategies by using a lazy display

strategy, combined with on-the-y register allocation. The lazy display strategy

is a combination of a display and environment chaining. Environment links are

kept but are used to load display registers. The two important facts are:

1. A display register is not loaded with an environment pointer until a refer-

ence is made to a variable in that environment.

2. The number of registers allocated to the display may vary dynamically (at

runtime).

In other words, the environment pointers in the display compete for registers

with other values, i.e. they are treated like all other variables. The �rst time a

closure variable is referenced, environment links are followed with each environ-

ment pointer potentially being assigned to a register. A subsequent reference to

5.1. FUNDAMENTAL CHOICES 85

the variable, or any other in the same closure, might �nd the outermost pointer

already in a register, obviating the need to bring that pointer into a register. The

result is that almost all of the bene�ts of a display are obtained, but there is no

overhead due to the display unless it is used.

5.1.4 Procedure Calls

In the traditional compiler's view, a procedure is a computation that takes some

number of arguments| on the stack because of the possibility of recursive calls|

and returns a value, usually in a register. The compilation of a procedure could

be:

1. Allocate storage on the stack for compiler-generated temporaries, and ad-

just the frame pointer.

2. Generate code for the procedure body.

3. Pop o� the temporary locations and arguments. Restore the frame pointer.

4. Pop the return address and transfer control to the caller.

The compilation of a procedure call could be:

1. Generate code to evaluate the arguments.

2. Save in the temporary area all live values in registers.

3. Push the arguments on the stack.

4. Push the return address and jump to the procedure.

This model of compilation is so ingrained that almost all processors provide spe-

cial instructions to do the call and return. Some provide special instructions to

allocate a stack frame and save the frame pointer. Some even provide \regis-

ter windows" that serve to restrict the usage of high-speed register memory to

compilers using this model. We contend that there is little to be gained from

86 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

this view of compilation and a great deal to be lost, both in clarity and in the

e�ciency of generated code!

An alternative view of compilation is o�ered by CPS conversion. A proce-

dure call (or return) is just a goto that passes parameters [Steele 76] [Steele 76b]

[Steele 77], where one or more of the arguments may be continuations. The dis-

tinction between compiler-generated temporaries and user variables is discarded,

as is the frame pointer, which was redundant with the stack pointer anyway.

Generating code for a procedure becomes:

� Generate code for the procedure body and call the continuation.

and for a procedure call:

� Move the arguments into registers and transfer control.

The code generator in Orbit, through adopting a style di�erent from the

above, is di�erent from others because all of the uses choices that �t together

into a coherent whole:

� Parameters to calls are passed in registers.

� Register allocation and code generation are done at the same time.

� Closure variables are referenced by treating environment pointers just like

other variables (using a lazy display).

� The call is a fundamental concept and any call may have any number of

arguments.

The details of these design decisions are discussed in the remainder of this chapter.

5.2 Splits and Joins

The code generation phase is a simple walk over the node tree, generating code

for each procedure call, the goal being to simulate the dynamic behavior of the

5.2. SPLITS AND JOINS 87

program. The walk would be trivial (register allocation aside) were it not for the

presence of splits and joins in the code. A split is represented by a call-node with

more than one continuation. When the code generator encounters such a node,

it must choose which continuation to generate code for �rst. Using conventional

compilation techniques, the choice of which branch of a conditional to generate

code for �rst is not important because all decisions which could be a�ected by the

choice (register assignments) have already been made. When register allocation

and code generation are being done at the same time, however, order does make

a di�erence because the branches may eventually join. It may be useful to have

the same variable in di�erent locations on di�erent branches.

A join point is a lambda-node in the node tree that can be arrived at by more

than one path. Such a join point is represented by a lambda-node that is bound

to a variable. Paths through the code join together at such a point by a call to the

variable. At each call to such a variable, the actual parameters and free variables

of the bound lambda can be in arbitrary machine locations, but when control is

transferred they must all be synchronized; i.e., the actual parameters and free

variables must be moved into the same locations on all paths before control is

transferred to the join point. This is done by having the �rst path to arrive at the

join point during code generation determine where the arguments to the join will

be passed and, it the join point was assigned strategy registers, to which registers

the free variables should be assigned. In fact, the �rst time the code generator

reaches a join point, it ignores the fact that other paths through the code may

join there. All other paths must then conform to the register assignments made

by the �rst. Of course, the information about assignments is used by the code

generator as it generates code for the other paths.

Since, for all paths but the �rst, it may be necessary to insert move instruc-

tions to synchronize the registers at join points, the choice of which path to

generate code for �rst is an important one. That choice is made by using a form

of trace scheduling [Fisher 81, Ellis 85], in which the code generator tries to sim-

ulate the dynamic behavior of the program by choosing the branch most likely to

88 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

be taken when the program is executed. This information could be provided by

the programmer, but usually some simple heuristics are used, the most obvious

being that a branch which is a call to a \loop" is more likely to be taken than

a branch which returns a value (invocation of an unknown continuation). Such

information is often not available and other heuristics must be used. A useful

heuristic is to calculate the \harm" that is likely to be caused by a wrong choice.

For example, if one branch were a sequence of open-coded operations and the

other contained a call to an unknown procedure, the open-coded branch should

be examined �rst since an unknown procedure call would force all values out of

registers before the join point was reached. If all values are in memory when

the join point is reached, there is no useful information that depends on the fact

that the particular branch was taken. On the other hand, much can be gained

by generating code for the path with open-coded operations while ignoring the

other paths.

5.3 Register Allocation

In ORBIT, register allocation is a part of code generation and is a mechanism

for answering several questions that the code generator asks:

� Given a procedure call, how are the arguments forced to be in the registers

where the procedure expects them to be?

� Given a procedure to be coded in-line, how are the arguments made ad-

dressable by machine instructions and where should the result be placed?

� For procedures that are not required to use the standard calling convention,

which registers should its formal parameters (and possibly its free variables)

be passed in?

� Which machine register should be \spilled" if one is needed but none are

available?

5.3. REGISTER ALLOCATION 89

In this section the mechanisms that answer these questions will be described.

5.3.1 Parallel Assignment

In the simplest case, generating code for function calls is simply a matter of shuf-

ing the arguments until each argument is in the register where its corresponding

formal parameter expects it to be. We refer to this as parallel assignment. The

problem is that all the registers might be receiving values, so care must be taken

in register usage. The one exception is the register called AN. The closure analy-

sis ensures that all closures appearing in a call, which need to be heap-allocated,

are merged into one actual runtime structure. The internal routine that allo-

cates the space for this closure returns the structure in the register AN. In the

algorithm to be presented, the environment variables for closures with strategy

registers are treated as if they were arguments.

The shu�ing algorithm is straightforward, and will generate little or no code

if the register allocation has been good. If there are n arguments being passed

we have n pairs of register assignments to perform. These assignments can be

accomplished using at most one extra location. If AN (the rootable register that

is not used for argument passing) is not being used to hold a closure, it can be

the extra location, otherwise a memory location is used. The steps are:

1. Remove all pairs in which the source and target are the same.

2. Find all pairs in which the target is not the same as the source of any other

pair and generate the move instruction.

3. Take one of the remaining pairs and look at the target which must match

the source of some other pair. If the target of the new pair is not the source

of some other, generate move instructions for both pairs. If it is, continue

this process of building up a chain.

4. If a cycle is formed, break it by moving one of the registers involved in

the cycle into the extra location and generate moves for the others. Then

90 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

generate a move from the extra location where it should go.

The assumption being made is that all arguments to a procedure are in reg-

isters. Unfortunately, this is only true in some instances. In general, arguments

may be in several di�erent types of locations; more speci�cally, the argument

may be:

� In a register.

� A value that can be referenced as part of a machine instruction (e.g. a

�xnum).

� A closure that might be in a register or might be internal to another closure.

� In the environment of a closure, but not in any register.

How the �rst case is handled has already been explained. The second case is not

a problem because arguments that are pulled from the instruction stream can be

moved into their registers just before jumping to the procedure. The third case,

where the argument is a closure, is handled in one of two ways. If the closure

has just been allocated, it is either in the register AN or is at some o�set from

that register. This case can be treated exactly like the immediate operand case.

The hard case is when the closure is internal to the global environment. Just like

the last case, a value must be fetched from a closure. The di�culty is that the

registers needed to do indirection are the same registers to which arguments are

being passed. How is it ensured that any are available?

This is the most serious aw in the lazy display strategy. In the worst case

we can at least ensure that there will be one machine register available to use

in environment chaining: if a continuation is being invoked, the P (procedure)

register is available, otherwise it can be made available by making sure that the

procedure is the last value moved into its register. In this worst-case situation a

large number of move instructions might be generated to accomplish the parallel

assignment.

5.3. REGISTER ALLOCATION 91

This kind of poor worst-case behavior may be expected when use of a resource

is decided dynamically. In this case we want to use machine registers that are

holding pointers both to pass arguments and to hold a display. When the number

of machine registers available for this is not much greater than the average number

of arguments passed to a procedure, these problems can arise. In practice, since

most procedures take only a few arguments, a machine with 32 general purpose

registers would be more than adequate to prevent the collapse of the display

strategy.

The process of parallel assignment is further complicated by the fact that

variables can have non-standard representations. As an example, suppose x is

known to be a �xnum and is being represented as a machine number (tag has been

shifted out). If x is the �rst argument to an unknown procedure, the tag will have

to be shifted onto x before moving it to the �rst argument register. So in general,

each register in the shu�ing algorithm is really a register and a representation.

A conversion has to be done if the source and target representations are di�erent.

5.3.2 Value Lookup

Each operation that will be open-coded addresses its operands. Part of generating

a machine instruction is generating machine references to the operands, which

can be in several di�erent machine locations. If a value is to be part of the

instruction stream (e.g. a �xnum) there is nothing to do, otherwise there are

three possibilities for referencing the value, in order of increasing cost:

1. Fetch it from of a machine register.

2. Fetch it from a register that is actually memory.

3. Fetch it from the environment of a closure.

In the �rst two cases no extra instructions need to be generated. To get

a value from an environment, links are followed from the current environment

to the innermost environment holding the value, i.e. use the lazy display. If a

92 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

pointer to that innermost environment is in a machine register, we can indirect

through that register. If the pointer is not in a register, it must be brought into a

register. We look at the next innermost link to see if it is in a register, and so on.

Eventually the environment pointer for the current closure will be reached; the

compiler guarantees that any environment pointer is reachable if a value from

the environment it points to may be needed.

The continuation variables introduced during CPS conversion were ignored

in the live variable analysis described in Chapter 4 and are fetched di�erently

from other values. A continuation variable can only appear in call position or as

a continuation argument. Referencing a continuation variable normally involves

restoring the continuation register (stack pointer) to what it was when the pro-

cedure binding the variable was invoked. The exception is when the continuation

is being invoked from a closure with stack/recursion. In this case an instruction

must be emitted to test the value in the continuation register. If the continua-

tion register contains a stack-allocated environment it is removed, exposing the

continuation to which the continuation variable is really bound.

5.3.3 Generating In-line Code

The only code generation information wired into the compiler is for compiling

procedure calls, generating variable references, and allocating closures. All other

information is obtained from the early-binding environment passed as an argu-

ment to the compiler. Information about generating in-line code for a procedure

is contained in primops. A typical de�nition for the MC68000 processor might

be:

5.3. REGISTER ALLOCATION 93

(define-constant fixnum-logand

(primop fixnum-logand ()

((primop.generate self node)

(generate-logical-and node))

((primop.arg-specs self) '(data data))))

which describes the bitwise logical and operation.

In the default early-binding environment, �xnum-logand will be bound to

a primop object that tells the compiler everything known about generating code

for bitwise logical and. When the code generator encounters a call to a primop,

it calls primop.generate on the primop and the call-node instead of generating

code for a procedure call. In this case a call to generate-logical-and will

occur. As required by the 68000, this routine will force one of the argments

into a Data register and the other into anything but an Address register and

then generate an and instruction. It chooses the target register for the and

instruction by examining the references to the variable being bound to the result

of the call and the locations of the arguments. The primop.arg-specs clause of

the primop de�nition tells the code generator to try to compute the arguments

to this operation in Data registers so that generate-logical-and can satisfy the

68000 constraint without extra move instructions.

5.3.4 Register Assignment for Join Points

When a call to a join point is reached for the �rst time, the variables representing

its formal parameters and (if the join point was assigned strategy registers) its

free variables must be assigned to registers. The registers are assigned using

heuristics based on trace scheduling, frequency of use information gathered for

variables, and the locations of the actual parameters and free variables at the

point of the �rst call. When a machine register is needed during code generation

94 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

and none are free, similar heuristics are used to choose a register to be spilled

into memory.

5.4 Assembly

Orbit has its own assembler, written in T, that provides communication between

the assembler and code generator. The code generator, modulo machine restric-

tions, emits blocks of code in an order determined by the trace information it

has collected. But on the VAX, for example, branch displacements are limited to

an eight bit, signed �eld. The assembler may have to introduce extra jump in-

structions and rearrange certain code blocks [Szymanski 78]. It uses information

provided by the code generator in order to make the best choices for ordering

code blocks. The most useful information provided by the code generator is that

a particular branch is or is not to a \loop top". This information allows the as-

sembler to order blocks so that all loops are entered by a jump to the end-of-loop

test, reducing the size of all loops by one instruction.

A call to Orbit returns two objects: a compiled-code object and an early-

binding object. As described in Chapter 3, the early-binding object contains

information about variables, de�ned during the compilation, that may be used

by other compilations. A compiled-code object contains a code vector and a data

section descriptor. The code section is a bit-vector, returned by the assembler,

that contains the instructions stream. The data section descriptor tells the linker

(static or dynamic) what values the environment for the code should contain.

This compiled-code object can be linked into the scheme system at once, or may

be dumped into an \object �le" to be linked into a scheme system at some other

time.

5.5. ORDER OF EVALUATION REVISITED 95

5.5 Order of Evaluation Revisited

With an understanding of how register allocation and code generation are per-

formed, we can look more closely at the heuristics used to order subforms of calls

during CPS conversion.

Remember that in the standard calling convention, arguments to procedures

are passed in a set of registers and values are returned in those same registers.

The following discussion refers to source code before CPS conversion. Orbit uses

a few simple heuristics to choose an order for evaluation of subforms:

1. It is better to �rst evaluate the subforms that will cause all values to be

forced out of registers, unknown procedure calls being the obvious examples.

If an in-line procedure call were done �rst, the result would just have to be

saved on the stack prior to the unknown call.

2. When choosing between subforms that are unknown calls, it is better to

choose an order that is likely to cause a returned value to be in the same

register where it will be used as an argument to another call. Move instruc-

tions may be avoided by making a good choice.

3. When choosing between subforms that will cause in-line code to be gener-

ated, information about data-dependency can be used.

In the following examples we assume that all arithmetic is on �xnums. The

second case is well illustrated by the infamous benchmark procedure TAK:

96 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

(define (tak x y z)

(if (not (< y x))

z

(tak (tak (- x 1) y z) ;;; call #1

(tak (- y 1) z x) ;;; call #2

(tak (- z 1) x y)))) ;;; call #3

An order must be chosen for compiling the three recursive calls to tak. If we

choose either #2 or #3 to do �rst, the arguments x, y and z will have to be

shu�ed in their registers, but if we do #1 �rst no moves are necessary. However,

after the �rst call it makes no di�erence which call is done next because the ar-

guments will necessarily be on the stack and not in registers. On the other hand,

if all other things were equal, it would be better to do the �rst call last because

then the value would be returned in the register where it is being used for the

�nal call to tak.

The heuristic is very simple: evaluate �rst that call in which variable argu-

ments occur in the same position in the call as in the formal parameter list of the

lambda that binds them. If there is no preference by this criterion, do the �rst

call last. In this example, the �rst call has the arguments y and z in the same

positions as they appear in the parameter-list of tak.

The third heuristic involves the issue of data dependencies. As an example

consider iterative factorial:

5.5. ORDER OF EVALUATION REVISITED 97

(define (factorial n)

(letrec ((fac (lambda (result i)

(if (= i 0)

result

(fac (* result i) (- i 1))))))

(fac 1 n)))

It would be most e�cient to have result and i sit in registers throughout the

iteration. For that to happen the multiplication subform would have to be gen-

erated before the subtraction because the subtraction will destroy the value of i

needed for the multiplication. In this heuristic we look at the lambda to which

fac is bound. The formal parameters of this lambda are result and i, so we have

the parallel assignment equations: result result� i and i i�1. If there is a

parallel assignment equation whose left hand side is not used on the right hand

side of some other equation in the same set, that call whould be ordered �rst. In

this example result is not used by the second equation but i is used by the �rst

equation, thus the multiplication is done �rst.

98 CHAPTER 5. REGISTER ALLOCATION AND CODE GENERATION

Chapter 6

Examples and Benchmarks

To get a feel for what is produced by the closure analysis and code generation

algorithms discussed in the previous chapters, several examples will be presented

in this chapter. Following that the results of two sets of benchmarks will be

presented, comparing Orbit running in T3 with commercial Pascal and Common

Lisp systems.

6.1 Examples

Though Orbit generates code for the MC68000, Vax, and NS32032 processors, a

pseudo assembly language will be used for the examples. There will be two exam-

ples of strategy registers, one recursive and the other iterative, and an example

of stack/loop. Several symbols in the pseudo code need explanation (assume that

N is the number of arguments passed to a procedure or continuation):

NARGS A register that holds N + 1 for a procedure call and �(N + 1) for

a call to a continuation. This number is used to indicate the number of

arguments supplied to an n-ary procedure. It is also used to do number of

argument checking if desired.

NIL A register that always contains the empty list, which is the same as the

false value.

99

100 CHAPTER 6. EXAMPLES AND BENCHMARKS

PEA The pseudo-instruction for push e�ective address.

P,A1,A2,.. The argument registers in the standard calling sequence.

CONTINUE Invoke the continuation pointed to by the stack pointer.

CALL Call the procedure in the P register.

The examples ultimately expand into letrec and only that part of each procedure

will be shown. First the procedure will be presented, then the CPS code, and

�nally the CPS code with pseudo assembly code intermixed. In the CPS code,

the �rst two arguments to if are the succeed and fail continuations.

6.1.1 Strategy registers (iterative)

As an example of strategy registers in the iterative case we use the MEMQ

function:

(define (memq obj list)

(letrec ((memq

(lambda (list)

(cond ((null? list) '())

((eq? obj (car list)) list)

(else (memq (cdr list)))))))

(memq list)))

After CPS conversion:

6.1. EXAMPLES 101

MEMQ: (lambda (k list) (if L1 L2 null? list))

L1: (lambda () (k '()))

L2: (lambda () (car L3 list))

L3: (lambda (v) (if L4 L5 eq? obj v))

L4: (lambda () (k list))

L5: (lambda () (cdr L6 list))

L6: (lambda (w) (memq k w))

The lambda bound tomemq is assigned strategy registers. The environment

consists of obj. On entry to memq, list is allocated to A1 and obj is allocated

to A2. The generated code is as follows:

102 CHAPTER 6. EXAMPLES AND BENCHMARKS

MEMQ: (lambda (k list) (if L1 L2 null? list))

CMP A1,NIL

BNE L2

L1: (lambda () (k '()))

MOVE NIL,A1 * move nil to first argument register

MOVE #-2,NARGS * one argument to continuation

CONTINUE

L2: (lambda () (car L3 list))

* (car LIST) delayed

L3: (lambda (v) (if L4 L5 eq? obj v))

CMP CAR(A1),A2 * (eq? (car LIST) OBJ)

BNE L5

L4: (lambda () (k list))

* LIST is already in A1

MOVE #-2, NARGS * one argument to continuation

CONTINUE

6.1. EXAMPLES 103

L5: (lambda () (cdr L6 list))

MOVE CDR(A1),A1 * LIST (in A1) is dead after the cdr

L6: (lambda (w) (memq k w))

JUMP MEMQ * this jump is eliminated by the assembler

6.1.2 Strategy registers (recursive)

As an example of strategy registers in the genuinely recursive case we use the

DELQ! function:

(define (delq! obj list)

(letrec ((delq!

(lambda (list)

(cond ((null? list) '())

((eq? obj (car list)) (delq! (cdr list)))

(else (set! (cdr list) (delq! (cdr list)))

list)))))

(delq! list)))

After CPS conversion:

104 CHAPTER 6. EXAMPLES AND BENCHMARKS

DELQ!: (lambda (k list) (if L1 L2 null? list))

L1: (lambda () (k '()))

L2: (lambda () (car L3 list))

L3: (lambda (v) (if L4 L5 eq? obj v))

L4: (lambda () (cdr L6 list))

L6: (lambda (v) (delq! k v))

L5: (lambda () (cdr L7 list))

L7: (lambda (v) (delq! L8 v))

L8: (lambda (w) (set-cdr L9 list w))

L9: (lambda ignore (k list))

The lambda bound to delq! is assigned strategy registers. The environment con-

sists of obj. On entry to delq!, list is allocated to A1 and obj is allocated to

A2. The generated code is as follows:

6.1. EXAMPLES 105

DELQ!: (lambda (k list) (if L1 L2 null? list))

CMP A1,NIL

BNE L2

L1: (lambda () (k '()))

MOVE NIL,A1 * move nil to first argument register

MOVE #-2,NARGS * one argument to continuation

CONTINUE

L2: (lambda () (car L3 list))

* (car LIST) delayed

L3: (lambda (v) (if L4 L5 eq? obj v))

CMP CAR(A1),A2 * (eq? (car list) obj)

BNE L5

L4: (lambda () (cdr L6 list))

MOVE CDR(A1),A1 * LIST (in A1) is dead after cdr

L6: (lambda (v) (delq! k v))

JUMP DELQ! * this jump is eliminated by the assembler

106 CHAPTER 6. EXAMPLES AND BENCHMARKS

L5: (lambda () (cdr L7 list))

PUSH A1 * save LIST on the stack

PEA L8 * continuation L8 has been hoisted to here

MOVE CDR(A1),A1 * LIST (in A1) is dead after cdr

L7: (lambda (v) (delq! L8 v))

JUMP DELQ!

L8: (lambda (w) (set-cdr L9 list w))

MOVE LIST(SP),P * get LIST into a register

MOVE A1,CDR(P) * set (cdr LIST) to returned value

L9: (lambda ignore (k list))

MOVE P,A1 * move LIST to first argument register

ADD #8,SP * remove continuation L8 from stack

MOVE #-2,NARGS * one argument to continuation

CONTINUE

6.1.3 Strategy stack/loop

As an example of stack/loop we use the MEM function:

6.1. EXAMPLES 107

(define (mem pred obj list)

(letrec ((mem

(lambda (list)

(cond ((null? list) '())

((pred obj (car list)) list)

(else (mem (cdr list)))))))

(mem list)))

MEM: (lambda (k list) (if L1 L2 null? list))

L1: (lambda () (k '()))

L2: (lambda () (car L3 list))

L3: (lambda (v) (pred L4 obj v))

L4: (lambda (b) (if L5 L6 true? b))

L5: (lambda () (k list))

L6: (lambda () (cdr L7 list))

L7: (lambda (w) (mem k w))

The lambda bound tomem is assigned stack/loop. The environment consists

of obj and pred. Before enteringmem, pred and obj are pushed on the stack,

along with a header describing the closure. On entry to mem, list is allocated

to A1. The generated code is as follows:

108 CHAPTER 6. EXAMPLES AND BENCHMARKS

MEM: (lambda (k list) (if L1 L2 null? list))

CMP A1,NIL

BNE L2

L1: (lambda () (k '()))

MOVE NIL,A1 * move nil to first argument register

ADD #12,SP * remove environment (pred,obj,header)

MOVE #-2,NARGS * one argument to continuation

CONTINUE

L2: (lambda () (car L3 list))

PUSH A1 * save LIST on stack

PEA L4 * L4 has been hoisted to here

MOVE CAR(A1),A2 * (car LIST) into A2 for second arg

L3: (lambda (v) (pred L4 obj v))

MOVE OBJ(SP),A1 * OBJ is first argument

MOVE PRED(SP),P * PRED is procedure

MOVE #3,NARGS * two arguments to procedure

CALL

6.2. BENCHMARKS 109

L4: (lambda (b) (if L5 L6 true? b))

CMP A1,NIL * compare result to nil

BEQ L6 * if equal the true? test fails

L5: (lambda () (k list))

MOVE LIST(SP),A1 * move LIST into first argument register

ADD #20,SP * remove loop environment (12) and L4 (8)

MOVE #-2,NARGS * one argument to continuation

CONTINUE

L6: (lambda () (cdr L7 list))

MOVE LIST(SP),A1 * get LIST into a register

MOVE CDR(A1),A1

L7: (lambda (w) (mem k w))

ADD #8,SP * remove continuation L4

JUMP MEM * this jump is removed by the assembler

6.2 Benchmarks

In some sense, the assembly code produced by a compiler is the best way to con-

sider its performance. The code in the examples shown is pretty close to optimal.

It is also useful to compare the performance with other systems. In particular,

since the thesis was that a Scheme compiler can produce code competitive with

110 CHAPTER 6. EXAMPLES AND BENCHMARKS

Pascal, Orbit should be benchmarked against a good Pascal compiler. It was also

benchmarked against a Common Lisp compiler.

6.2.1 Pascal

The Pascal benchmarks were taken from a set of Modula-2 benchmarks used at

DEC Western Research Laboratory [Powell 84]. The benchmarks were translated

into Pascal from Modula-2 and are in Appendix A. They were then translated

into T, and appear in Appendix B. These benchmarks were run on an Apollo

DN3000 with 4 megabytes of memory. The Apollo Pascal Compiler release 9.2.3

was used, which is Apollo's standard optimizing compiler (Apollo relies heavily

on Pascal since most of its operating system is written in it).

Benchmarking fairly is di�cult, but every e�ort was made to be fair including

the following: the T code was compiled without number of argument checking

and it was allowed to assume that procedures would not be rede�ned. In addition,

Orbit was not allowed to integrate procedures unless they were declared as local

procedures in the Pascal code. The results of the benchmarks were (time is in

seconds):

Benchmark Pascal T

perm .95 .69

towers 1.24 1.03

quick .35 .26

�b .17 .12

tak .57 .30

bubble .73 .67

puzzle 3.17 3.33

intmm 2.41 2.45

6.2. BENCHMARKS 111

The comparisons fall into two groups. The bubble, puzzle, and intmm bench-

marks have no recursive procedure calls. The results are similar for both T and

Pascal, indicating that for iterative code the performance is comparable. When

there are lots of procedure calls in the Pascal code, T does considerably better.

This is because it is much better at compiling procedure calls, where an iteration

is just a special kind of procedure call.

6.2.2 Common Lisp

It also seems reasonable to benchmark against a Common Lisp system. I used

the published [Sun 86] timings on the Gabriel benchamrks [Gabriel 85] for Lucid

Common Lisp running on a Sun 3/160M with 12 megabytes of memory and

code generated for the MC68020. The T code was run on a Sun 3/160 with 4

megabytes of memory and code generated for the MC68000 only. The results

were:

112 CHAPTER 6. EXAMPLES AND BENCHMARKS

Benchmark Lucid CL T

tak .44 .22

puzzle 7.70 2.40

triangle 131.72 79.18

idiv2 .92 .50

rdiv2 1.46 .76

destru 2.14 .98

deriv 3.68 2.44

dderiv 5.44 3.02

fprint 1.56 1.80

fread 4.20 3.08

tprint 1.94 1.46

curry 1.1 .40

kons 2.20 .94

The Common Lisp times are a little faster than they should be because of

the use of MC68020 instructions as reported with the published �gures. Several

of the Gabriel benchmarks were left out because they use features which have

not yet been implemented e�ciently in T, but are implemented e�ciently in

production systems. In addition, Orbit does not generate in-line oating point

instructions at the present time. One way in which the Gabriel benchmarks are

de�cient is that none of them have any closures which must be heap-allocated.

The last two benchmarks, curry and kons, were used to check performance on

closures. The code for these two is in Appendix C.

Chapter 7

Final thoughts

It has been demonstrated that it is possible to implement Scheme as e�ciently

as Pascal. One obvious bene�t of this fact is that many programmers can choose

to use Scheme to do real programming without worrying about the performance

being poor.

This work also has several immediate applications:

Numerical Computation. Lisp and Scheme have normally been associated

with symbolic computation but the same techniques which have been used

in Orbit can be easily extended to do oating-point computations e�ciently.

In the near furture it is entirely possible that Fortran programmers could

use Scheme for scienti�c computation.

Functional Languages. Work in functional languages and would-be users of

functional languages have been impeded by the fact that e�cient imple-

mentations do not exist. Orbit can serve as the back end of a compiler for

a lazy functional language doing strictness analysis and other optimizations

for e�cient execution [Hudak 84, Hudak 84b].

Parallel Scheme. Orbit can be the back end for a compiler generating code

for a MIMD machine with a front end taking care of the static part of

task distribution. In such a system good sequential performance on the

113

114 CHAPTER 7. FINAL THOUGHTS

individual processors is obviously important.

Appendix A

Benchmarks in Pascal

program bench(INPUT, OUTPUT);

(* This is a suite of benchmarks that are relatively short,
both in program size and execution time. It requires no
input, and prints the execution time for each program, using
the system- dependent routine Getclock, below, to find out
the current CPU time. It does a rudimentary check to make
sure each program gets the right output. These programs were
gathered by John Hennessy and modified by Peter Nye.

*)

const
(* Towers *)
maxcells = 18;

(* Puzzle *)
size = 511;
classmax = 3;
typemax = 12;
d = 8;

(* Bubble, Quick *)
sortelements = 5000;
srtelements = 500;

type
(* Perm *)
permrange = 0 .. 10;

(* Towers *)
discsizrange = 1..maxcells;
stackrange = 1..3;
cellcursor = 0..maxcells;
element =

record
discsize:discsizrange;
nxt:cellcursor;

end;
emsgtype = string (* %PACKED *) {array[1..15] of char};

115

116 APPENDIX A. BENCHMARKS IN PASCAL

(* Puzzle *)
piececlass = 0..classmax;
piecetype = 0..typemax;
position = 0..size;

(* Bubble, Quick *)
listsize = 0..sortelements;
lstsize = 0..srtelements;
sortarray = array [listsize] of integer32;
srtarray = array [lstsize] of integer32;

var
(* global *)
timer: integer32;
xtimes: array[1..10] of integer32;
i,j,k:integer32;
seed: integer32;

(* Perm *)
permarray: array [permrange] of permrange;
pctr: 0..65535;

(* Towers *)
stack: array [stackrange] of cellcursor;
cellspace: array[1..maxcells] of element;
freelist: cellcursor;
movesdone: integer32;

(* Puzzle *)
piececount: array [piececlass] of 0..13;
class: array [piecetype] of piececlass;
piecemax: array [piecetype] of position;
puzzl: array [position] of boolean;
p: array [piecetype,position] of boolean;
m,n: position;
kount: integer32;

(* Bubble, Quick *)
sortlist: sortarray;
srtlist: srtarray;
biggest, littlest: integer32;
bggest, lttlest: integer32;
top: lstsize;

procedure writef(foo: text; s: string; num: integer32);
begin

write(s);
writeln;
write(num/100:5:2);
writeln;

end;

(* global procedures *)

117

procedure initclock; EXTERN;
procedure stopclock; EXTERN;

function getclock : integer32; EXTERN;

procedure Initrand;
begin
seed := 74755;
end {Initrand};

function Rand : integer32;
begin
seed := (seed * 1309 + 13849) mod 65536;
rand := seed;
end {Rand};

procedure Perm;

(* Permutation program, heavily recursive,
written by Denny Brown. *)

procedure Swap(var a,b : permrange);
var t : permrange;
begin
t := a; a := b; b := t;
end {Swap};

procedure Initialize;
var i : permrange;
begin
for i := 1 to 7 do begin

permarray[i]:=i-1;
end;

end {Initialize};

procedure Permute(n : permrange);
var k : permrange;
begin (* permute *)
pctr := pctr + 1;
if n<>1 then BEGIN

Permute(n-1);
for k := n-1 downto 1 do begin

Swap(permarray[n],permarray[k]);
Permute(n-1);
Swap(permarray[n],permarray[k]);
end;

end;
end {Permute}; (* permute *)

begin (* Perm *)
pctr := 0;
for i := 1 to 5 do begin

Initialize;
Permute(7);

118 APPENDIX A. BENCHMARKS IN PASCAL

end;
if pctr <> 43300 then BEGIN

writef (output, ' Error in Perm.\n',0); end;
end {Perm}; (* Perm *)

procedure Towers;

(* Program to Solve the Towers of Hanoi *)

procedure Error (emsg:emsgtype);
begin

{ writef (output, ' Error in Towers: %s\n', emsg); }
writef(output, ' Error in Towers: ',0);
writef(output, emsg,0);
writeln;
end {Error};

procedure Makenull (s:stackrange);
begin
stack[s]:=0;
end {Makenull};

function Getelement :cellcursor;
var nxtfree:cellcursor;
begin
if freelist>0 then BEGIN

nxtfree := freelist;
freelist:=cellspace[freelist].nxt;
getelement := nxtfree;

END else BEGIN
Error('out of space '); end;

end {Getelement};

procedure Push(i:discsizrange;s:stackrange);

var
errorfound:boolean;
localel:cellcursor;

begin

errorfound:=false;
if stack[s] > 0 then BEGIN

if cellspace[stack[s]].discsize<=i then BEGIN

errorfound:=true;
Error('disc size error');
end; end;

if not errorfound then BEGIN

localel:=Getelement;
cellspace[localel].nxt:=stack[s];

119

stack[s]:=localel;
cellspace[localel].discsize:=i;

end; end {Push};

procedure Init (s:stackrange;n:discsizrange);

var
discctr:discsizrange;

begin
Makenull(s);
for discctr:=n downto 1 do begin

Push(discctr,s); end;
end {Init};

function Pop (s:stackrange):discsizrange;

var
popresult:discsizrange;
temp:cellcursor;

begin
if stack[s] > 0 then BEGIN

popresult:=cellspace[stack[s]].discsize;
temp:=cellspace[stack[s]].nxt;
cellspace[stack[s]].nxt:=freelist;
freelist:=stack[s];
stack[s]:=temp;
pop := popresult;

END else BEGIN
Error('nothing to pop '); end;

end {Pop};

procedure Move (s1,s2:stackrange);
begin

Push(Pop(s1),s2);
movesdone:=movesdone+1;
end {Move};

procedure Towers(i,j,k:integer32);
var other:integer32;
begin

if k=1 then BEGIN
Move(i,j);

END else BEGIN

other:=6-i-j;
Towers(i,other,k-1);
Move(i,j);
Towers(other,j,k-1);
end;

end {Towers};

120 APPENDIX A. BENCHMARKS IN PASCAL

begin (* Towers *)
for freelist:=1 to maxcells do begin

cellspace[freelist].nxt:=freelist-1; end;
freelist:=maxcells;
Init(1,14);
Makenull(2);
Makenull(3);
movesdone:=0;
Towers(1,2,14);
if movesdone <> 16383 then BEGIN

writef (output, ' Error in Towers.\n',0); end;
end {Towers}; (* Towers *)

procedure Puzzle;

(* A compute-bound program from Forest Baskett. *)

function Fit (i : piecetype; j : position) : boolean;

var k : position;
label 999;
begin
for k := 0 to piecemax[i] do begin

if p[i,k] then BEGIN if puzzl[j+k] then
BEGIN fit := false; goto 999 end; end; end;

fit := true;
999:
end {Fit};

function Place (i : piecetype; j : position) : position;

var k : position;
label 999;

begin
for k := 0 to piecemax[i] do begin

if p[i,k] then BEGIN puzzl[j+k] := true; end; end;
piececount[class[i]] := piececount[class[i]] - 1;
for k := j to size do begin

if not puzzl[k] then BEGIN place := (k);
goto 999 end; end;

place := (0);
999:
end {Place};

procedure Remove (i : piecetype; j : position);

var k : position;

begin
for k := 0 to piecemax[i] do begin

if p[i,k] then BEGIN puzzl[j+k] := false; end; end;
piececount[class[i]] := piececount[class[i]] + 1;

121

end {Remove};

function Trial (j : position) : boolean;

var i : piecetype;
k : position;

label 999;

begin
kount := kount + 1;
for i := 0 to typemax do begin

if piececount[class[i]] <> 0 then BEGIN
if Fit (i, j) then BEGIN

k := Place (i, j);
if Trial(k) or (k = 0) then BEGIN

trial := (true);
goto 999;

END else BEGIN Remove (i, j); end;
end; end; end;

trial := (false);
999:
end {Trial};

begin
for m := 0 to size do begin puzzl[m] := true; end;
for i := 1 to 5 do begin for j := 1 to 5 do
begin for k := 1 to 5 do begin

puzzl[i+d*(j+d*k)] := false; end; end; end;
for i := 0 to typemax do begin for m := 0 to size do
begin p[i, m] := false end end;

for i := 0 to 3 do begin for j := 0 to 1 do
begin for k := 0 to 0 do begin

p[0,i+d*(j+d*k)] := true; end; end; end;
class[0] := 0;
piecemax[0] := 3+d*1+d*d*0;
for i := 0 to 1 do begin for j := 0 to 0 do
begin for k := 0 to 3 do begin

p[1,i+d*(j+d*k)] := true; end; end; end;
class[1] := 0;
piecemax[1] := 1+d*0+d*d*3;
for i := 0 to 0 do begin for j := 0 to 3 do
begin for k := 0 to 1 do begin

p[2,i+d*(j+d*k)] := true; end; end; end;
class[2] := 0;
piecemax[2] := 0+d*3+d*d*1;
for i := 0 to 1 do begin for j := 0 to 3 do
begin for k := 0 to 0 do begin

p[3,i+d*(j+d*k)] := true; end; end; end;
class[3] := 0;
piecemax[3] := 1+d*3+d*d*0;
for i := 0 to 3 do begin for j := 0 to 0 do
begin for k := 0 to 1 do begin

p[4,i+d*(j+d*k)] := true; end; end; end;
class[4] := 0;

122 APPENDIX A. BENCHMARKS IN PASCAL

piecemax[4] := 3+d*0+d*d*1;
for i := 0 to 0 do begin for j := 0 to 1

do begin for k := 0 to 3 do begin
p[5,i+d*(j+d*k)] := true; end; end; end;

class[5] := 0;
piecemax[5] := 0+d*1+d*d*3;
for i := 0 to 2 do begin for j := 0 to 0 do
begin for k := 0 to 0 do begin

p[6,i+d*(j+d*k)] := true; end; end; end;
class[6] := 1;
piecemax[6] := 2+d*0+d*d*0;
for i := 0 to 0 do begin for j := 0 to 2 do
begin for k := 0 to 0 do begin

p[7,i+d*(j+d*k)] := true; end; end; end;
class[7] := 1;
piecemax[7] := 0+d*2+d*d*0;
for i := 0 to 0 do begin for j := 0 to 0 do
begin for k := 0 to 2 do begin

p[8,i+d*(j+d*k)] := true; end; end; end;
class[8] := 1;
piecemax[8] := 0+d*0+d*d*2;
for i := 0 to 1 do begin for j := 0 to 1 do
begin for k := 0 to 0 do begin

p[9,i+d*(j+d*k)] := true; end; end; end;
class[9] := 2;
piecemax[9] := 1+d*1+d*d*0;
for i := 0 to 1 do begin for j := 0 to 0 do
begin for k := 0 to 1 do begin

p[10,i+d*(j+d*k)] := true; end; end; end;
class[10] := 2;
piecemax[10] := 1+d*0+d*d*1;
for i := 0 to 0 do begin for j := 0 to 1 do
begin for k := 0 to 1 do begin

p[11,i+d*(j+d*k)] := true; end; end; end;
class[11] := 2;
piecemax[11] := 0+d*1+d*d*1;
for i := 0 to 1 do begin for j := 0 to 1 do
begin for k := 0 to 1 do begin

p[12,i+d*(j+d*k)] := true; end; end; end;
class[12] := 3;
piecemax[12] := 1+d*1+d*d*1;
piececount[0] := 13;
piececount[1] := 3;
piececount[2] := 1;
piececount[3] := 1;
m := 1+d*(1+d*1);
kount := 0;
if Fit(0, m) then BEGIN n := Place(0, m);
END else BEGIN writef (output, 'Error1 in Puzzle\n',0); end;
if not Trial(n) then

BEGIN writef (output, 'Error2 in Puzzle.\n',0); END
else BEGIN if kount <> 2005 then BEGIN writef

(output, 'Error3 in Puzzle.\n',0); end; end;
end {Puzzle};

123

procedure qInitarr;
var i:integer32;
begin
Initrand;
biggest := 0; littlest := 0;
for i := 1 to sortelements do begin

sortlist[i] := Rand mod 100000 - 50000;
if sortlist[i] > biggest then

BEGIN biggest := sortlist[i];
END else BEGIN if sortlist[i] < littlest then

BEGIN littlest := sortlist[i]; end; end;
end;

end {Initarr};

procedure Quick;

(* Sorts an array using quicksort *)

procedure Quicksort(var a: sortarray; l,r: listsize);
(* quicksort the array A from start to finish *)
var i,j: listsize;

x,w: integer32;
begin
i:=l; j:=r;
x:=a[(l+r) DIV 2];
repeat

while a[i]<x do begin i := i+1; end;
while x<a[j] do begin j := j-1; end;
if i<=j then BEGIN

w := a[i];
a[i] := a[j];
a[j] := w;
i := i+1; j:= j-1;
end;

until i>j;
if l <j then BEGIN Quicksort(a,l,j); end;
if i<r then BEGIN Quicksort(a,i,r); end;
end {Quicksort};

begin
Quicksort(sortlist,1,sortelements);
if (sortlist[1] <> littlest) or (sortlist[sortelements] <> biggest)

then BEGIN
writef (output, ' Error in Quick.\n',0); end;

end {Quick};

procedure bInitarr;
var i:listsize;
begin
Initrand;

124 APPENDIX A. BENCHMARKS IN PASCAL

bggest := 0; lttlest := 0;
for i := 1 to srtelements do begin

srtlist[i] := Rand mod 100000 - 50000;
if srtlist[i] > bggest then BEGIN bggest := srtlist[i];
END else BEGIN if srtlist[i] < lttlest then

BEGIN lttlest := srtlist[i]; end; end;
end;

end {Initarr};

procedure Bubble;
(* Sorts an array using bubblesort *)

begin
top:=srtelements;

while top>1 do begin

i:=1;
while i<integer(top) do begin

if srtlist[i] > srtlist[i+1] then BEGIN
j := srtlist[i];
srtlist[i] := srtlist[i+1];
srtlist[i+1] := j;
end;

i:=i+1
end;

top:=top-1;
end;

if (srtlist[1] <> lttlest) or (srtlist[srtelements] <> bggest)
then BEGIN
writef (output, 'Error3 in Bubble.\n',0); end;

end {Bubble};

procedure Fib;

function lfib (n: integer32) : integer32;
begin
if (n = 0) or (n = 1)

then lfib := 1
else lfib := lfib(n - 1) + lfib(n - 2);

end;

begin
if lfib(20) <> 10946

then writef (output, 'Error3 in Fib.\n',0);
end{Fib};

procedure Tak;

function ltak (x: integer32; y: integer32; z: integer32) :
integer32;

125

begin
if not (y < x)

then ltak := z
else ltak := ltak(ltak(x-1,y,z),ltak(y-1,z,x),ltak(z-1,x,y));

end;

begin
if ltak(18,12,6) <> 7

then writef (output, 'Error3 in Tak.\n',0);
end;

begin
initclock;

Perm; timer := Getclock; Perm;
writef (output, 'Perm',timer-Getclock);

Towers; timer := Getclock; Towers;
writef (output, 'Towers',timer-Getclock);

Puzzle; timer := Getclock; Puzzle;
writef (output, 'Puzzle',timer-Getclock);

qinitarr; Quick;
qinitarr; timer := Getclock; Quick;

writef (output, 'Quick',timer-Getclock);
binitarr; bubble;
binitarr; timer := Getclock; Bubble;

writef (output, 'Bubble',timer-Getclock);
Fib; timer := Getclock; Fib;

writef (output, 'Fib',timer-Getclock);
Tak; timer := Getclock; Tak;

writef (output, 'Tak',timer-Getclock);
writeln;

stopclock;

end {bench}.

126 APPENDIX A. BENCHMARKS IN PASCAL

Appendix B

Benchmarks in T

;;; Quick and Bubble

(define-constant sortelements 5000)
(define-constant srtelements 500)

(lset seed 0)
(lset biggest 0)
(lset littlest 0)
(lset bggest 0)
(lset lttlest 0)
(lset top 0)
(declare local seed biggest littlest top bggest lttlest)

(define sortlist (make-vector sortelements))
(define srtlist (make-vector srtelements))

(define (initrand) (set seed 74755))
(define (rand)

(set seed (mod (fx+ (fx* seed 1309) 13849) 65536))
seed)

(define (qinitarr)
(initrand)
(set biggest 0)
(set littlest 0)
(do ((i 0 (fx+ i 1)))

((fx>= i sortelements) (return))
(set (vref sortlist i) (fx- (mod (rand) 100000) 50000))
(cond ((fx> (vref sortlist i) biggest)

(set biggest (vref sortlist i)))
((fx< (vref sortlist i) littlest)
(set littlest (vref sortlist i))))))

(define (binitarr)
(initrand)
(set bggest 0)
(set lttlest 0)
(do ((i 0 (fx+ i 1)))

((fx>= i srtelements) (return))
(set (vref srtlist i) (fx- (mod (rand) 100000) 50000))

127

128 APPENDIX B. BENCHMARKS IN T

(cond ((fx> (vref srtlist i) bggest)
(set bggest (vref srtlist i)))
((fx< (vref srtlist i) lttlest)
(set lttlest (vref srtlist i))))))

(define (-quicksort a l r)
(let ((x (vref a (fx/ (fx+ l r) 2))))
(iterate loop ((i l) (j r))

(cond ((fx> i j)
(if (fx< l j) (-quicksort a l j))
(if (fx< i r) (-quicksort a i r)))
(else
(do ((i i (fx+ i 1)))

((fx>= (vref a i) x)
(do ((j j (fx- j 1)))

((fx>= x (vref a j))
(cond ((fx<= i j)

(exchange (vref a i) (vref a j))
(loop (fx+ i 1) (fx- j 1)))

(else
(loop i j))))))))))))

(define (quick)
(-quicksort sortlist 0 (fx- sortelements 1))
(if (or (fxn= (vref sortlist 0) littlest)

(fxn= (vref sortlist (fx- sortelements 1)) biggest))
(error "in Quick")))

(define (bubble)
(set top (fx- srtelements 1))
(do ((top (fx- srtelements 1) (fx- top 1)))

((fx<= top 0)
(if (or (fxn= (vref srtlist 0) lttlest)

(fxn= (vref srtlist (fx- srtelements 1)) bggest))
(error " in Bubble")))

(do ((i 0 (fx+ i 1)))
((fx>= i top) (return))

(if (fx> (vref srtlist i) (vref srtlist (fx+ i 1)))
(exchange (vref srtlist i) (vref srtlist (fx+ i 1)))))))

;;; Tak

(define (%tak x y z)
(labels (((tak x y z)
(if (not (fx< y x))

z
(tak (tak (fx- x 1) y z)

(tak (fx- y 1) z x)
(tak (fx- z 1) x y)))))

(tak x y z)))

(define (tak) (%tak 18 12 6))

;;; Fib

129

(define (%fib n)
(labels (((fib n)
(cond ((fx= n 0) 1)

((fx= n 1) 1)
(else (fx+ (fib (fx- n 1)) (fib (fx- n 2)))))))

(fib n)))

(define (fib) (%fib 20))

;;; Puzzle

(define-constant size 511)
(define-constant classmax 3)
(define-constant typemax 12)
(lset index 0)
(lset iii 0)
(lset kount 0)
(define-constant d 8)
(declare local kount iii index)
(define piececount (vector-fill (make-vector (fx+ 1 classmax)) 0))
(define class (vector-fill (make-vector (fx+ 1 typemax)) 0))
(define piecemax (vector-fill (make-vector (fx+ 1 typemax)) 0))
(define puzzle-vec (make-vector (fx+ 1 size)))
(define p (make-vector (fx* (fx+ 1 typemax) (fx+ 1 size))))

(define-integrable (pidx i j) (fx+ (fx* 512 i) j))

(define (puzzle)
(labels (

((fit i j)
(let ((end (vref piecemax i)))

(iterate fit1 ((k 0))
(cond ((fx> k end) t)

((and (vref p (pidx i k))
(vref puzzle-vec (fx+ j k)))

nil)
(else (fit1 (fx+ k 1)))))))

((place i j)
(let ((end (vref piecemax i)))

(do ((k 0 (fx+ k 1)))
((fx> k end))

(if (vref p (pidx i k)) (set (vref puzzle-vec (fx+ j k)) t)))
(set (vref piececount (vref class i))

(fx- (vref piececount (vref class i)) 1))
(iterate place1 ((k j))
(cond ((fx> k size) 0)

((not (vref puzzle-vec k)) k)
(else (place1 (fx+ k 1)))))))

((puzzle-remove i j)
(let ((end (vref piecemax i)))

(do ((k 0 (fx+ 1 k)))
((fx> k end))

130 APPENDIX B. BENCHMARKS IN T

(if (vref p (pidx i k)) (set (vref puzzle-vec (fx+ j k)) nil)))
(set (vref piececount (vref class i))

(fx+ (vref piececount (vref class i)) 1))))

((trial j)
(set kount (fx+ kount 1))
(iterate trial1 ((i 0))

(cond ((fx> i typemax) nil)
((and (not (fx= (vref piececount (vref class i)) 0))

(fit i j))
(let ((k (place i j)))

(cond ((or (trial k) (fx= k 0)) t)
(else (puzzle-remove i j)

(trial1 (fx+ i 1))))))
(else (trial1 (fx+ i 1))))))

((definepiece iclass ii jj kk)
(set index 0)
(do ((i 0 (fx+ 1 i)))

((fx> i ii))
(do ((j 0 (fx+ 1 j)))

((fx> j jj))
(do ((k 0 (fx+ 1 k)))

((fx> k kk))
(set index (fx+ i (fx* d (fx+ j (fx* d k)))))
(set (vref p (pidx iii index)) t))))

(set (vref class iii) iclass)
(set (vref piecemax iii) index)
(if (not (fx= iii typemax)) (set iii (fx+ iii 1))))

)

(do ((m 0 (fx+ 1 m)))
((fx> m size))

(set (vref puzzle-vec m) t))
(do ((i 1 (fx+ 1 i)))

((fx> i 5))
(do ((j 1 (fx+ 1 j)))

((fx> j 5))
(do ((k 1 (fx+ 1 k)))

((fx> k 5))
(set (vref puzzle-vec (fx+ i (fx* d (fx+ j (fx* d k)))))

nil))))
(do ((i 0 (fx+ 1 i)))

((fx> i typemax))
(do ((m 0 (fx+ 1 m)))

((fx> m size))
(set (vref p (pidx i m)) nil)))

(set iii 0)
(definePiece 0 3 1 0)
(definePiece 0 1 0 3)
(definePiece 0 0 3 1)
(definePiece 0 1 3 0)
(definePiece 0 3 0 1)
(definePiece 0 0 1 3)

131

(definePiece 1 2 0 0)
(definePiece 1 0 2 0)
(definePiece 1 0 0 2)

(definePiece 2 1 1 0)
(definePiece 2 1 0 1)
(definePiece 2 0 1 1)

(definePiece 3 1 1 1)

(set (vref pieceCount 0) 13.)
(set (vref pieceCount 1) 3)
(set (vref pieceCount 2) 1)
(set (vref pieceCount 3) 1)
(let ((m (fx+ 1 (fx* d (fx+ 1 d)))))

(set kount 0)
(if (not (fit 0 m))

(format t "~%Error."))
(if (not (and (trial (place 0 m)) (fx= kount 2005)))

(format t "~%Failure.")))))

;;; Perm

(define-constant permrange 10)

(define permarray (make-vector permrange))
(lset pctr 0)
(declare local pctr)

(define-constant (swapp n m)
(exchange (vref permarray n) (vref permarray m)))

(define (perm)
(labels (

((initialize)
(do ((i 1 (fx+ i 1)))

((fx> i 7) (return))
(set (vref permarray i) (fx- i 1))))

((permute n)
(set pctr (fx+ pctr 1))
(cond ((fxN= n 1)

(permute (fx- n 1))
(do ((m (fx- n 1) (fx- m 1)))

((fx= m 0) (return))
(swapp n m)
(permute (fx- n 1))
(swapp n m)))))

)
(set pctr 0)
(do ((i 0 (fx+ i 1)))

132 APPENDIX B. BENCHMARKS IN T

((fx>= i 5) (return))
(initialize)
(permute 7))

(if (fxN= pctr 43300) (format t "~&Error in Perm. ~a ~%" pctr))
(return)))

;;; Towers

(define peg-vector (make-vector 3))
(lset move-count 0)
(declare local move-count)

(define (towers)
(labels (
((init ndiscs)
(set (vref peg-vector 0) nil)
(set (vref peg-vector 1) nil)
(set (vref peg-vector 2) nil)
(set move-count 0)
(do ((disc-size ndiscs (fx- disc-size 1)))

((fx<= disc-size 0) t)
(push-disc disc-size 0)))

((ltowers n i j)
(cond ((fx= n 1)

(move-disc i j))
(else
(let ((k (fx- (fx- 3 i) j)))

(ltowers (fx- n 1) i k)
(move-disc i j)
(ltowers (fx- n 1) k j)))))

((move-disc peg-i peg-j)
(push-disc (pop-disc peg-i) peg-j)
(set move-count (fx+ move-count 1))
(return))

((pop-disc i)
(let ((disc (pop (vref peg-vector i))))
(if (null? disc)

(error "nothing to pop")
disc)))

((push-disc disc i)
(let ((top (car (vref peg-vector i))))

(cond ((and (fixnum? top) (fx> disc top))
(error "disc size error"))
(else
(push (vref peg-vector i) disc))))))

(init 14)
(ltowers 14 0 1)
(if (fxN= move-count 16383)

(error "in List-towers: move-count = ~a" move-count)
move-count)))

133

;;; Intmm

(define-constant aref
(object (lambda (array i j)

(vref array (fx+ (fx* i rowsize) j)))
((setter self)
(lambda (array i j val)

(set (vref array (fx+ (fx* i rowsize) j)) val)))))

(define-constant rowsize 64)

(define ima (make-vector (* rowsize rowsize)))
(define imb (make-vector (* rowsize rowsize)))
(define imr (make-vector (* rowsize rowsize)))

(define (intmm)
(labels (

((initmatrix matrix)
(do ((i 0 (fx+ i 1)))

((fx>= i rowsize))
(do ((j 0 (fx+ j 1)))

((fx>= j rowsize))
(set (aref matrix i j) (fx* i j)))))

((innerproduct a b row column)
(do ((i 0 (fx+ i 1))

(sum 0 (fx+ sum (fx* (aref a row i) (aref b i column)))))
((fx>= i rowsize) sum))))

(initmatrix ima)
(initmatrix imb)
(do ((i 0 (fx+ i 1)))

((fx>= i rowsize))
(do ((j 0 (fx+ j 1)))

((fx>= j rowsize))
(set (aref imr i j) (innerproduct ima imb i j))))))

134 APPENDIX B. BENCHMARKS IN T

Appendix C

Closure benchmarks

;;; Curry

(define (c3+ x)
(lambda (y)

(lambda (z)
(fx+ (fx+ x y) z))))

(define (3+ x y z)
(((c3+ x) y) z))

(define (fib3 x)
(iterate fib3 ((x x))
(cond ((fx<= x 3) 1)

(else
(3+ (fib3 (fx- x 1)) (fib3 (fx- x 2)) (fib3 (fx- x 3)))))))

(define (curry) (fib3 18))

;;; Kons

(define (kons x y)
(lambda (key)

(xcase key
((car) x)
((cdr) y))))

(define list-of-ones
(do ((i 10000 (fx- i 1))

(l '() (kons 1 l)))
((fx= i 0) l)))

(define (kar x) (x 'car))
(define (kdr x) (x 'cdr))

(define (sumlist)
(do ((l list-of-ones (kdr l))

(sum 0 (fx+ (kar l) sum)))
((null? l) sum)))

135

136 APPENDIX C. CLOSURE BENCHMARKS

(define (sum)
(+ (sumlist) (sumlist) (sumlist) (sumlist) (sumlist)))

Bibliography

[Abelson 85] Abelson, H. and Sussman G.J. with Sussman, J.

Structure and Interpretation of Computer Programs.

MIT Press, Cambridge, 1985.

[Aho 86] Aho, A. V., Sethi, R. and Ullman, J.D.

Compilers Principles, Techniques, and Tools.

Addison Wesley, 1986.

[Brooks 82] Brooks, R.A., Gabriel, R.P. and Steele, G.J. Jr.

An optimizing compiler for lexically scoped LISP.

Proc. Sym. on Compiler Construction, ACM, SIGPLAN Notices

17(6), June, 1982, pp. 261-275.

[Brooks 86] Brooks, R.A., Posner, D.B., McDonald, J.L., White, J.L., Ben-

son, E. and Gabriel, R.P.

Design of an Optimizing, Dynamically Retargetable Compiler for

Common Lisp.

In Conference Record of the 1986 ACM Symposium on Lisp and

Functional Programming, pages 67-85.

[Chaiten 81] Chaiten, G.J. et al.

Register Allocation via Coloring.

Computer Languages, Vol. 6, pp. 45-47, 1981, Great Britain.

137

138 BIBLIOGRAPHY

[Chaiten 82] Chaiten, G.J

Register Allocation and Spilling via Graph Coloring.

SIGPLAN Symp. on Compiler Construction, June 23-25, 1982,

Boston, Mass.

[Chow 84] Chow, F. and Hennessy, J.

Register Allocation by Priority-based Coloring.

In Proceedings of the SIGPLAN '84 Symposium on Compiler

Construction, pages 222{232. ACM, June 1984.

[Clinger 85] Clinger, W. editor.

The revised revised report on Scheme, or an uncommon Lisp.

MIT Arti�cial Intelligence Memo 848, August 1985.

Also published as Computer Science Department Technical Re-

port 174, Indiana University, June 1985.

[Ellis 85] Ellis, J.R.

Bulldog: A Compiler for VLIW Architectures.

Ph.D. Th., Yale University., 1985. available as Research Report

YALEU/DCS/RR-364.

[Felleisen 87] Felleisen, M., Friedman, D.P., Kohlbecker, E. and Duba, B.

A Syntactic Theory on Sequential Control.

Tech. Report. 215, Indiana University, Feb., 1987.

[Fisher 81] Fisher, J.A.

Trace Scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers C-30(7):478-490, July 1981.

[Gabriel 85] Gabriel, R.P.

Performance and Evaluation of Lisp Systems.

MIT Press, Cambridge, Mass., 1985.

BIBLIOGRAPHY 139

[Griss 82] Griss, M.L. and Benson, E.

Current Status of a Portable Lisp Compiler.

SIGPLAN Symp. on Compiler Construction, June 23-25, 1982,

Boston, Mass.

[Haynes 84] Haynes, C.T., Friedman, D.P. and Wand, M.

Continuations and coroutines.

In Conference Record of the 1984 ACM Symposium on Lisp and

Functional Programming, pages 293{298.

[Haynes 84b] Haynes, C.T. and Friedman, D.P.

Engines build process abstracions.

In Conference Record of the 1984 ACM Symposium on Lisp and

Functional Programming, pages 18{24.

[Hudak 84] Hudak, P.

ALFL Reference Manual and Programmers Guide.

Dept of Computer Science, University of Yale, Technical Report

YALEU/DCS/TR-322 Second Edition October 1984

[Hudak 84b] Hudak P. and Kranz, D.A.

A combinator-based compiler for a functional language.

Conference Record of the Eleventh Annual ACM Symposium on

Principles of Programming Languages.

January, 1984.

[Karr 84] Karr, M.

Code Generation by Coagulation.

In Proceedings of the SIGPLAN '84 Symposium on Compiler

Construction, pages 1{12. ACM, June 1984.

[Kelsey] Kelsey, R.

Ph.D. dissertation expected June 1988.

140 BIBLIOGRAPHY

[Kranz 86] Kranz D.A., Kelsey, R., Rees J.A., Hudak P., Philbin, J. and

Adams, N.I.

Orbit: An optimizing compiler for Scheme.

In Proceedings of the SIGPLAN '86 Symposium on Compiler

Construction, pages 219{233. ACM, June 1986.

[Mycroft 81] Mycroft, A.

Abstract Interpretation and Optimizing Transformations for Ap-

plicative Programs.

Ph.D. Th., Univ. of Edinburgh, 1981.

[Powell 84] Powell, M.L.

A portable optimizing compiler for Modula-2.

Proc. Sym. on Compiler Construction,ACM, Sigplan Notices

19(6), June 1984, pp. 310-318.

[Rees 82] Rees, J.A. and Adams, N.I.

T: A dialect of Lisp or, lambda: The ultimate software tool.

In Conference Record of the 1982 ACM Symposium on Lisp and

Functional Programming, pages 114{122.

[Rees 84] Rees, J.A., Adams, N.I. and Meehan, J.R.

The T manual, fourth edition.

Yale University Computer Science Department, January 1984.

[Rees] Rees, J.A. (personal communication)

[Rozas] Rozas, W. (personal communication).

[Slade 87] Slade, S.

The T Programming Language.

Prentice-Hall, Inc. 1987.

BIBLIOGRAPHY 141

[Steele 76] Steele, G.L. Jr. and Sussman, G.J.

Lambda, the ultimate imperative.

MIT Arti�cial Intelligence Memo 353, March 1976.

[Steele 76b] Steele, G.L. Jr.

Lambda, the ultimate declarative.

MIT Arti�cial Intelligence Memo 379, November 1976.

[Steele 77] Steele, G.L. Jr.

Debunking the \expensive procedure call" myth, or procedure

call implementations considered harmful, or lambda, the ulti-

mate GOTO.

In ACM Conference Proceedings, pages 153{162. ACM, 1977.

[Steele 78] Steele, G.L. Jr. and Sussman, G.J.

The revised report on Scheme, a dialect of Lisp.

MIT Arti�cial Intelligence Memo 452, January 1978.

[Steele 78b] Steele, G.L. Jr.

Rabbit: a compiler for Scheme.

MIT Arti�cial Intelligence Laboratory Technical Report 474,

May 1978.

[Steele 84] Steele, G.L. Jr. Common Lisp: The Language. Digital Press,

Burlington MA, 1984.

[Sun 86] Sun Common Lisp Performance report.

Sun Microsystems, Inc.

July 11, 1986.

[Szymanski 78] Szymanski.

Assembling code for machines with span-dependent instructions.

CACM 21, 4 (April 1978), pp. 300-308.

142 BIBLIOGRAPHY

[Wand 80] Wand, M.

Continuation-based multiprocessing.

In Conference Record of the 1980 Lisp Conference, pages 19{28.

The Lisp Conference, August 1980.

[Wulf 75] Wulf, W., Johnson, R., Weinstock, C., Hobbs, S. and Geschke,

C.

The Design of an Optimizing Compiler.

American Elsevier, 1975.

