Path Analysis and the Optimization
of Non-strict Functional Languages
Adrienne Gael Bloss
YALEU/DCS/RR-704
May 1989

A dissertation presented to the faculty of the Graduate School of Yale
University in candidacy for the degree of Doctor of Philosophy.
©Copyright by Adrienne Gael Bloss, 1989.

All rights reserved.

Path Analysis and the Optimization of Non-strict Functional Languages

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of

Doctor of Philosophy

by
Adrienne Gael Bloss
May 1989

ABSTRACT
Path Analysis and the Optimization of Non-strict Functional Languages

Adrienne Gael Bloss
Yale University
1989

The functional programming style is increasingly popular in the research world,
but functional languages still execute slowly relative to imperative languages. This
is largely because the power and flexibility of functional languages restrict the
amount of information readily available to the compiler, hindering its ability to
generate good code. This dissertation demonstrates that information about the or-
der of evaluation of expressions can be statically inferred for non-strict functional
programs, and that optimizations based on this information can provide substantial

speedups at runtime.

We present an exact, non-standard semantics called path semantics that models
order of evaluation in a non-strict sequential functional language, and its com-
putable abstraction, path analysis. We show how the information inferred by path
analysis can be used for two important optimizations: destructive aggregate updat-
ing, in which updates on functional aggregates that are provably not live are done
destructively; and more efficient thunks, in which the evaluation status of delayed
objects is determined statically whenever possible, eliminating the need for runtime
tests. Benchmarks for these optimizations are presented, along with benchmarks
for the analyses themselves. Although the full analysis is found to be impractical

for large programs, it should serve as the basis for further abstraction.

Alternative models of order of evaluation are also discussed, including a less
expensive but less general model for a sequential system, and the extensions that

would be required to apply path analysis to a parallel system.

©Copyright by Adrienne Gael Bloss 1989

All rights reserved.

Acknowledgements

I would first like to thank my advisor Paul Hudak, whose insight and guidance
were invaluable to this thesis. I would also like to thank the other members of
my committee, Alan Perlis and Paul F. Reynolds, Jr., for their timely and careful

reading of this document and their helpful comments.

Financial support for this work was provided inpart by the National Science Foun-

dation Presidential Young Investigator Grant #DCR-8451415.

This work benefited greatly from many enlightening discussions with Jonathan
Young. It also benefited from the stimulating environment and suggestions pro-
vided by other members of the Lisp and functional programming group at Yale,
including Ben Goldberg, Jim Philbin, David Kranz, Steve Anderson, Juan Guz-
man, Richard Kelsey, and Lauren Smith. I would like to thank my officemate Rick
Mohr, who assured me daily that I would in fact finish eventually (and who was
right!), and my other friends at Yale for making my graduate school years enjoyable

as well as productive.

Most of all, I would like to thank my family: my husband Andy, who got me through
all the ups and downs of graduate school, and without whom this thesis never would
have been written; my brother Greg, who provided much support and inspiration;
my mother, who encouraged my graduate school career in every way and never lost
faith in me; and my father, who gave his daughter his love of puzzies and problems

and who would have been very proud. This thesis is dedicated to his memory.

Contents

1 Introduction
1.1 Overview o e e e e e
1.2 Functional Languages

1.3 The Role of Order of Evaluation in Optimizing Lazy Functional Lan-

BUBGES © v v v v v vt e e e e e e e e e e e e e e
1.4 Abstract Interpretation
1.5 A Generic Functional Language
1.5.1 A First-Order Lazy Functional Language
1.5.2 A Higher-Order Lazy Functional Language
1.6 Outline e

2 The Path Model of Order of Evaluation

21 TheBasicModel
2.2 First-Order Path Semantics
2.3 First-Order Path Analysis
2.3.1 DomainlIssues

| 2.3.2 Semantic Description.,

vi

2.3.3 Complexity of Path Analysis

2.3.4 Relational vs. Independent Attribute Methods

2.3.5 Using a Non-Flat Path Domain
2.4 Pathsof Occurrences
2.5 Paths for a Higher-Order Language
2.5.1 Higher-Order Path Semantics
2.5.2 Higher-Order Path Analysis

Aggregate Updating
3.1 Overview

3.2 Trailers

3.3 Destructive Updating

331 Overview,
3.3.2 Update Semantics
3.3.3 Update Analysis
3.3.4 Applying Update Analysis

3.3.5 Cleaning Up With Trailers

Other Applications of Path Analysis

4.1 Overview

4.2 Strictness Apalysis
421 Definition,
4.2.2 Applying Path Analysis

4.3 Optimizing Thunks

CONTENTS

CONTENTS

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

4.3.7

Overview

The Costs of Using Thunks

Representing Thunks

The Closure Mode (CL)

The Cell Mode (C)

The Optimized Cell Mode (CO)

Applying Path Analysis at Code Generation.

5 Implementation Issues

5.1 Implementating Path Analysis
5.1.1 Representing and Manipulating Paths
5.1.2 Interactions with Other Analyses
5.1.3 Choosing an Ordering on Primitives
5.1.4 Higher-Order Constructs.
5.1.5 Nested Equation Groups
5.1.6 Symbolic Analysis

5.2 Implementing Update Analysis
5.2.1 Higher-Order Construets.
522 Index Analysis

5.3 Implementing Thunk Analysis

6 Benchmarks

6.1 Update Analysis .

6.1.1

Conclusions

vii

54

o4

55

56

58

60

61

63

63

63

64

65

70

72

75

75

76

76

7

79

viil

A

CONTENTS

6.2 Thunk Analysis 83
6.2.1 Conclusions e 86

6.3 AnalysisTime. i e 86
Other Models of Order of Evaluation 91
7.1 Order of Evaluation in a Parallel System 91
7.1.1 The Sequential Nature of Path Analysis 91
7.1.2 Parallel Path Analysis 94

7.2 An Alternative Sequential Model 95
7.2.1 Intuitive Description 96
7.2.2 Non-Standard Semantics. 100
723 Discussion i it e 109
Related Work, Conclusions, and Future Work 111
81 Related Work 111
8.1.1 Denotational Semantics and Abstract Interpretation 111
8.1.2 Destructive Aggregate Updating 112
8.1.3 Thunk Analysis 113
8.1.4 Strictness Analysis 114

82 Conclusions e 114
83 Future Work 116
Proof of Theorem 5 119
Text of Benchmarks 125

B

Chapter 1

Introduction

1.1 Overview

Functional programming languages are becoming increasingly popular in the re-
search community because they offer clean semantics, lazy evaluation, and no side
effects. However, their acceptance into the “real world” has been hindered by their
typically slow execution relative to that of imperative languages. This slower execu-
tion stems largely from the power and flexibility of functional languages; since fewer
restrictions are placed on the programmer, fewer assumptions can be made by the
compiler and it is more difficult for it to generate good code. It is therefore natural
to optimize functional languages by using compile-time inferencing techniques to

gather as much specific information as possible about each program.

This thesis explores the optimization of sequential lazy functional languages
through the compile-time inference of the order of evaluation of expressions. We
focus on an abstract non-standard semantics called path analysis to compute the
order of evaluation information, and show how path analysis can be applied to
strictness analysis, destructive aggregate update analysis, and thunk analysis. Al-
though each of these problems has been studied to some extent in the past, we
extend previous work for aggregate updating [34,32,18,15,6] and thunk analysis [24]

and present a new approach to strictness analysis [27,10,8,21,22]. Furthermore, we

2 CHAPTER 1. INTRODUCTION

know of no other work that recognizes the importance of a general model of order
of evaluation, and that uses such a model as a basis for a variety of optimizations.
We also present an alternative model of order of evaluation for a sequential system,

and discuss the implications of extending path analysis to a parallel system.

This introduction gives a brief overview of the features of functional languages;
presents some of the issues involved in optimizing lazy functional languages; gives
an overview of denotational semantics and abstract interpretation, the theoretical
foundations on which path analysis is based; and presents the syntax and semantics
for the generic functional language on which our analyses are based. An outline of

the body of the thesis is also presented.

1.2 Functional Languages

Functional languages have been emerging and changing for nearly 30 years, and
have many different forms. However, most modern functional languages share the

following characteristics:

e Mathematical notation. Functional programs are typically written in a con-

cise mathematical notation which can be viewed as a syntactic sugaring of

Church’s A-calculus.[9].

o Lezical scoping. Although one of the early functional languages (Lisp) had

dynamic scoping, virtually all other functional languages are lexically scoped.

e No side effects. Functional languages have no concept of a modifiable state.
They are made up entirely of ezpressions, where the meaning of an expres-
sion is the value to which that expression evaluates. The evaluation of an
expression is guaranteed to have no other effect on the program, that is, no

side-effect. In imperative languages side-effects are most commonly achieved

1.2, FUNCTIONAL LANGUAGES 3

through the assignment statement, but other forms include functions that con-
tain concealed assignment (such as Lisp’s RPLACA) and I/O.!. The absence of
side-effects guarantees the mathematical property of referential transparency,
by which identical expressions within the same lexical scope have identical

values.

o Non-strict semantics. In sirict semantics, typical of imperative languages,
when a function f is applied all of its arguments are evaluated at the time
of the function call, before entering the body of f. In non-strict semantics,
an argument is not evaluated unless and until its value is demanded inside
the body of f. A non-strict semantics has the advantage of terminating more
often than a strict semantics, since the evaluation of a non-terminating ex-
pression may be avoided, but if both semantics terminate they are guaranteed
to produce the same answer. Thus the non-strict semantics is more expressive

than the strict semantics.

Although there are several ways of implementing non-strict semantics, the
method used by most functional languages is referred to as lazy evaluation
because it guarantees that the arguments to a function will be evaluated the
minimum possible number of times. The term lazy is often used ambiguously
to mean non-strict with or without the connotation of actual lazy evaluation.
It is sometimes used as such in this document, but disambiguation should be

possible from context.

LOf course, functional languages do permit input and output; an excellent discussion of functional
models of I/O may be found in [19]

4 CHAPTER 1. INTRODUCTION

1.3 The Role of Order of Evaluation in Optimiz-
ing Lazy Functional Languages

The inefficiencies that arise in implementing functional languages are usually from

one of the following sources:

1. Storage management. Since functional languages have no notion of explicit
storage management, the programmer is relieved of the burden (and robbed of
the power) of managing memory efficiently. Since additional runtime overhead
is usually undesirable, it is up to the compiler and runtime system to provide

effective memory management.

2. Lazy evaluation. Lazy evaluation can provide efficiency benefits, since no ar-
gument is evaluated unnecessarily, but there is substantial overhead in main-
taining an expression and its environment until they are demanded (or it can
be shown that they never will be). Hence lazy evaluation often results in a

net loss in efficiency.

The problem of storage management has received some attention, but most of
the previous work has addressed only languages with strict semantics [32,18,16].
This is because effective memory management requires knowledge of future mem-
ory requirements, which in turn requires information about when expressions will
be evaluated. Languages with strict semantics offer a substantial amount of infor-
mation at compile-time about the order in which expressions will be evaluated, but

lazy evaluation vastly reduces the availability of such information.

Most of the work in optimizing lazy evaluation has been through strictness
analysis [27,7,21], in which a function’s arguments are evaluated at the time of
the function call if it can be shown that doing so will not change the termination

properties of the program. Of course this “early evaluation” is not always safe, and

1.4. ABSTRACT INTERPRETATION 5

when evaluation must be delayed some of the associated costs are unavoidable. In
true lazy evaluation, however, the cost of determining whether or not an expression
has already been evaluated (so that re-evaluation can be avoided) can be eliminated
if the evaluation status of the expression can be determined at compile-time, but

this requires compile-time information about when expressions are evaluated.

In both of these examples, the missing piece is compile-time information about
the order of evaluation of expressions. This thesis presents an interpretation for
lazy functional programs called path semantics that extracts order of evaluation
information, and a computable approximation to path semantics called path analysis

that supports optimizations such as those suggested above.

The next section provides an introduction to abstract interpretation, the tech-

nique used to derive path analysis from path semantics.

1.4 Abstract Interpretation

As new optimizations arise for functional languages, so do new semantic analyses. In
particular, denotational semantics and abstract interpretation have been recognized
as powerful tools with a wide range of applications. Denotational semantics is
a formal way of describing the meaning of a program in terms of mathematical
domains that properly capture our intuition about program behaviors. In functional
languages the “standard” meaning, or standard interpretation of an expression is
what we intuitively think of as its value, whether that be a number, list, function, or
whatever. However, in some applications a less precise meaning may be sufficient.
For example, suppose we wish to know the sign of the product of two integers;
we could perform the multiplication and then extract the sign of the result, or we
could deduce its sign directly from the signs of the operands. The latter approach
is arguably the easiest path to finding the desired result, in that manipulating

the signs directly requires only part of the information required to do the actual

6 CHAPTER 1. INTRODUCTION

multiplication. For example, extracting (—) from the result of (+7) * (—5) takes
more work than having a simple rule that says “(4+)*(—) = (=).” Loosely speaking,
an approximation to a value, such as the sign of an integer, is called an abstraction,

and a computation over such abstract values is called an abstract interpretation.

Abstract interpretation has recently become popular as a general and effective
semantic analysis technique, primarily in functional language circles, but also in
other areas. The reasons for its popularity include the fact that it is a formal
methodolgy that can be related directly back to the denotational semantics of the
source language. This allows one to prove the correctness of an optimization at an

abstract level, independently of operational concerns.

The formal theory of abstract interpretation has itself witnessed remarkable
growth. It began with the Cousots’ seminal work [11,12]), but Mycroft’s reformu-
lation in an applicative (i.e. functional) idiom [28,27] and more recently Nielsons’
[31,30] work have laid down a useful framework in which rather general theorems
can be re-cast in particular application domains. The formal framework is itself
outside the scope of this thesis, but the reader may find an excellent description
of state-of-the-art developments in this area in the the recent textbook edited by

Abramsky and Hankin [1].

1.5 A Generic Functional Language

The work in this thesis is implemented for a compiler for ALFL, a lazy functional
language developed at Yale. However, the theoretical work is based on a “generic”
functional language whose syntax and semantics are presented in this section. The
first-order and higher-order languages are presented separately, as are the first-order

and higher-order analyses.

1.5, A GENERIC FUNCTIONAL LANGUAGE 7
1.5.1 A First-Order Lazy Functional Language
Notation and Abstract Syntax

The abstract syntax for the first-order language is given below:

¢ € Con constants

r € Bv bound variables

p € Pf primitive functions

f € Fv function variables

e € FEazp expressions, wheree=c|z|p(ey,...,e,)| f(e1,...,en)
pr € Prog programs, where pr = {fi(z1,...,z,) = €;}

Note that we assume that all nested lambda abstractions have been lifted to the

top level [23], and we find paths through these top-level functions.

In the semantic equations that follow, double brackets surround syntactic ob-
jects, as in E[[z;]], and single brackets indicate environment update, as in env[y/z];
[yi/®;] is shorthand for L[y;/z1,...,yn/2,], where the subscript bounds are inferred
from context. For any domain D, D™ refers to the domain of n-tuples with each

element drawn from D.

Standard First-Order Semantics

Semantic Domains

Int the standard flat domain of integers.

Bool the standard flat domain of boolean values.
Bas = Int 4+ Bool the domain of basic values

Fun = U;2,(Bas™ — Bas) the domain of first-order functions.

D = Bas + Fun + {error} the domain of denoteable values.

Bve=Bv— D the domain of bound variable environments

8 CHAPTER 1. INTRODUCTION

Env=Fv—>D the domain of function environments

Semantic Functions

K :Con — Bas
P:Pf— Fun
£ : Ezp — Bve —» Env — D

&y, : Prog — Env

K[r] = mn,integer n
Kltrue] = true
Klfalse] = false

Pl+] = XMez,y). (Int?(z) and Int?(y)) — z + y, error
PIIF] = Maz,y,z2). (Bool?(z)) = (z — y, 2), error
Elc]bve env = K[]
ElzJbve env = bve[z;]

Elp(er, - .. en)]bve env = P[p](E[es]bve env, ..., E[eq]bve env)
Elf(er, ... en)]bve env env[f(Eer]bve env,. .., E]e,]bve env)

El{fi(z1,...,2,) = e;}] = env whererec

env = [(A(y1, - - -, yn)-Eleillyr/ k] env)/fi]

1.5.2 A Higher-Order Lazy Functional Language
Higher-Order Syntax

First, we define the syntax of our lazy, higher-order functional language.

¢ € Con constants

z € Bv bound variables

f € Fv function variables

e € FEzp expressions, wheree=c|z|f|e; es| Az.e
pr € Prog programs, where pr = {f; z1...z, = ¢;}

1.5, A GENERIC FUNCTIONAL LANGUAGE 9

Again, we assume that all nested lambda abstractions have been lifted to the top

level [23], and we find paths through these top-level functions.

Higher-Order Semantics

Semantic Domains

Bas = Int+ Bool, domain of basis values
D = Bas+ (D — D), domain of denotable values
Env = (Bv+ Fv) — D, the function environment

Semantic Functions

H: Ezp— Env— D

H, : Prog — Env

Hy: Pf—D"— D

Hi[IF] env = Xei.dez.Aes. (Bool? e1) — (e1 — e3,€3),error
Hil[+]lenv = MXeiAes. (Int? e1) and (Int? ez) — ey + eq, error

Hlz:] env = env]z;]
Hlc] env = Hilc]

H[Az.e] = Ay.H[e] env[y/z]
Hles es] env = (H[er]env)(H[eo]env)
Hy[{fi=e}] = henv whererec

henv = [(H[e;] henv)/fi]

10

CHAPTER 1. INTRODUCTION

1.6 Outline

This

dissertation is organized as follows:

Chapter 2: The Path Model of Order of Evaluation. This chapter describes
path semantics, an exact but incomputable model of order of evaluation, and
path analysis, an inexact but computable model. The relationships among
these two semantics and the standard semantics are shown, and theoretical

issues such as domain construction are discussed.

Chapter 3: Aggregate Updating. This chapter discusses the efficiency problems
associated with aggregate updating in functional languages and presents a
solution called update analysis that is based on path analysis. Theoretical
issues concerning update analysis are discussed here; implementation issues

appear in Chapter 6.

Chapter 4: Other Applications. This chapter shows how path analysis can be

used for strictness analysis and optimizing lazy evaluation.

Chapter 5: Implementation Issues. This chapter discusses the issues that
arise in implementing path analysis and update analysis, and suggests where

a practical system might deviate from the models.

Chapter 6: Benchmarks. This chapter benchmarks the analyses that are
described in Chapters 3 and 4, both in time required for the analyses and in

the speedup they produce.

Chapter 7: Other Models of Order of Evaluation. This chapter discusses issues
in modeling order of evaluation in a parallel system and presents an alternative

model of order of evaluation for a sequential system.

Chapter 8: Related Work, Conclusions, and Future Work.

Chapter 2

The Path Model of Order of
Evaluation

As discussed in Chapter 1, compilers for functional languages lack information about
the order in which expressions are evaluated, thus restricting the potential for op-
timization. In this chapter the path model for representing order of evaluation of
expressions in a lazy sequential functional language is presented, first intuitively
and then formally via path semantics and path analysis. Finally, the order in which
expressions are used is shown to be as interesting as the order in which they are
evaluated, and it is shown that order of use can also be described with the path

model.

2.1 The Basic Model

Define a path through a function f(zy,...,2,) to be an ordering on the evaluation
of the arguments to f. In a sequential system, at runtime there is exactly one path

through each invocation of f. For example, consider the following simple function:

flz,y)=2+y

Assuming left-to-right evaluation of the arguments to strict primitive operators such

as + (this assumption is discussed further below and in Section 5.1.3), and using

11

12 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

angle brackets () to enclose paths, the path through f is (z,y). Of course, the
path taken through one function may depend on the path taken through another

function, as illustrated by g, where f is defined as above:

g(a,b,c) =b+ f(c,a)

The path through g is (b, ¢, a), but determining this relies on knowing that the path
through f(c,a) is {c,a).

Now consider the following function:
h(z,y,z) =if (z = 0) then y else =z

Here the predicate (z = 0) must be evaluated before we can tell whether y or z will
be evaluated next. Thus some invocations of h might take the path (z,y), while
others take (z,z). Without knowing the value of z, h could be said to have two
possible paths, (z,y) and (z, 2).

Consider the following points about paths:

o A path through f need not contain every ome of f’s bound variables. This
follows directly from lazy evaluation. A bound variable z is evaluated if and
when its value is demanded, and if f can compute a value without evaluating

z, the paths that reflect such sequences of evaluations will not contain .

o A bound variable may appear at most once in any given path. Again, this
follows from lazy evaluation; since no recomputation is performed, a bound
variable whose value is demanded more than once is still only evaluated once
(at the first demand), and it is this point of evaluation that determines where

the bound variable appears in the path.

o There are a finite number of possible paths through a function. Since no bound

variable can appear more than once in a path, the number of possible paths

2.1. THE BASIC MODEL 13

through a function of n arguments is bounded by n! + (n — 1)! + (n — 2)! +
... + (n — n)! 4+ 1, where the extra path represents the non-terminating path,

which is discussed below.

If a function does not evaluate any of its arguments but does return a value (e.g.,
f(z,y) = §), it is said to take the empty path, denoted (). If a function does not
return any value, that is, it fails to terminate, it is said to take the bottom path,
denoted L,. Note that a path may fail to terminate in many different ways, since it
may evaluate any number of its arguments in any order during its non-terminating
computation. These different non-terminating paths could be distinguished just
as distinct terminating paths are distinguished, by recording which arguments are
evaluated during the computation. For now we will equate all non-terminating paths

with Lp; the issues that arise in distinguishing among these paths are discussed in

Section 2.3.5.

The path model just described assumes a sequential model of evaluation in that
it imposes left-to-right evaluation of arguments to strict primitive operators. While
this could easily be modified to right-to-left, or even a runtime choice between the
two, neither of these alternatives fits a model of parallel computation in which the
arguments could be interleaved. For now, the reader should keep in mind that the
path model assumes a sequential model of evaluation; order of evaluation in the

context of a parallel system is discussed in Section 7.1.

We have presented an informal model for describing order of evaluation in a
lazy sequential functional language, but have not discussed issues of precision, com-
putability or correctness. These issues can be addressed by formalizing the model

through denotational semantics, which we do in the following sections.

14 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

2.2 First-Order Path Semantics

As discussed in Chapter 1, denotational semantics is an exact and concise method
of attaching meaning to syntax. In the context of paths, it is the “order of eval-
uation meaning” that should be attached to the syntax, where order of evaluation
information is represented by the path model described above. Examination of the
standard semantics presented in Section 1.5 reveals that it contains no order of
evaluation information: under the standard semantics the meaning of a program
is the answer that it returns, without regard to the order in which expressions are
evaluated to obtain that answer. In this section we introduce path semantics, an
exact but non-standard semantics that describes the operational notion of order of
evaluation in a program. Since the order of evaluation at runtime depends on the
values themselves (e.g., at the conditional the value of the predicate determines
which arm will be evaluated), path semantics contains the information of the stan-
dard semantics as well as path information. Indeed, the standard interpretation

can be shown to be an abstraction of path semantics.

Let Path be the flat domain of paths, with bottom element L, representing
non-termination. Thus any two terminating paths are considered incomparable,

and non-termination is considered weaker than any form of termination. Path is

defined by:
Path = {1,} U {(dy,...,dn) |n > 0,Vi,1 <i < n,d; € Bv}

Note that the elements of a path are bound variables. We are assuming that each
function has a unique set of bound variables, i.e., that the program has been alpha-
converted to ensure that no bound variable name is shared by more than one func-

tion.

The only operator required on paths is the path-append operator “:”, defined

below:

2.2. FIRST-ORDER PATH SEMANTICS 15

Vp € Path, z; € D, 1<i<n,n>0

p:l, = 1,
lp:p = L,
p:{) = p
(y:p = p
(T1y ey Tm) + (Timg1y ooy Tp) = if Tt € {21,000y T}

then (Z1,...;%m) : (Tmt2y .-y Tn)
else (T1, .y @iy Tm41) : (Tmg2y ooy Tn)

Note that L, is strict in both arguments, since non-termination in any portion
of a path will cause the entire path to be non-terminating. Also, when two paths
are appended, the elements of the second path that already appear in the first path

do not appear a second time in the resulting path.

The semantics presented below returns the path value of an expression in a given
environment, but computing this path value requires references to the standard
semantics. We assume that env, the standard meaning of the program, has already

been computed as its computation is independent of that of path semantics.

Semantic Domains

D, the flat domain of denotable values
(from the standard semantics)

Path, the flat domain of paths

Pfun = U2,(D™ — Path™ — Path)

Penv = Fv— Pfun,
the function envronment
Pbve = Bv — Path,

the bound variable environment

Semantic Functions

P : Ezp— Bve — Pbve — Penv — Path
P, : Pf— Pfun
P, : Prog — Penv

16 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

Pllezp] bve pbve penv = case [ezp] of

Plc] bve pbve penv = ()
Plz] bve pbve penv = pbve[z]
Plo(er,...,en)] bve pbve penv = let d; = E[e;] bve

p; = P[e;] bve pbve penv
in Prlpl(diy .., dnyp1y s Pr)
Plf(e1, ..., en)] bve pbve penv = let d; = E[le;] bve
p; = Ple;] bve pbve penv
in penvﬂf]](dl) tery dm P, '-'7pn)
Pl{fi(z1,...,2,) = €;}] = penv whererec

penv = [(AY1, .oy Yny 21, oy Zn). Ples]l [yr/zi] [26/2k] pEnv)/ fi]
env = gp[[{fi($1>---,wn) =6i}]]

Pkl[‘l‘]] = /\(-Te, yeammyp)- Tp:Yp
PklIIF]] =)‘(pe, Ce; Qe Pp, cp,ap)- DPe = Dp i CpyPp & Oy

Note that all references to £ in the above semantics could be removed by having path
semantics compute the standard semantics directly. In this case, P would operate
on elements in the domain D x Path, and it could be shown that the standard

semantics was an abstraction of path semantics.

2.3 First-Order Path Analysis
2.3.1 Domain Issues
The Powerdomain of Paths

The semantics presented in the last section provides path information, but since it
relies on the standard semantics it is not computable at compile-time. We must
now abstract away from path semantics only the path information, leaving behind
the information contained in the standard semantics. Ideally, we would like to
simply omit the standard semantics, but continue to compute the path information
as before. Unfortunately, this is not possible since in the conditional the path result
consults the standard result for the value of the predicate before returning the path

through the alternate or the consequent. Without the standard information from

2.3. FIRST-ORDER PATH ANALYSIS 17

the predicate, the path must be approximated with the assumption that either arm
could be taken. This initially leads to two possible paths through each conditional,

and ultimately to a set of possible paths through any expression.

The domain Path must now be abstracted to the powerdomain of Path to reflect
that the information from the standard semantics is no longer available, and the
order of evaluation information is contained in a set of possible paths. We use the

discrete Egli-Milner powerdomain construction, defined as follows [33]:

For a flat pointed cpo D, the discrete Egli-Milner powerdomain of
D, written Pgm(D), consists of the nonempty subsets of D which are
either finite or contain bottom, partially ordered as follows: VA, B €
Pgm(D), A Cgym B if and only if:

1. For every a € A, there exists some b € B such that a Cp b.

2. For every b € B, there exists some a € A such that a Cp b.

The bottom element of Pgn(Path) is the set containing only L, indicating that
non-termination is the only possibility, and for two sets A and B, A Cgy B <=
(L, e B=> L, € A)A((A—{L,}) C B). We chose the Egli-Milner ordering because
it can model non-termination, which is an interesting feature of the path model.
We could have chosen the Hoare (or “relational”) powerdomain construction which
orders by set inclusion; on the appropriate domains this would have given equivalent

information for terminating paths, but it would not give termination information.

Tuples of Paths

We also need a powerdomain construction for tuples of paths, where a set of path
tuples of form (py,...,p,) is formed by taking the cross-product of n elements of

Pem(Path). We assume the usual ordering on tuples:

VYa;, b; € Path,1 <i < n,(al,...,an) C (bl,...,bn) < Via;C b

18 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION
We define a similar ordering on the powerdomain of path tuples as follows:
VS;, S € Pem(Path),1 <i<n,

(S1X .. xS)C(S]X...xS)) < ViS;CS!

We will use the symbol P for this construction of the powerdomain of tuples.

2.3.2 Semantic Description

Semantic Domains

Path, the domain of paths
Pem(Path), the powerdomain of Path
Pfun = UZ,(Pr(Path™) — Pgm(Path)),
the function space mapping paths to paths
Aenv = Fv — Pfun,
the function environment
Bve = Bwv — Path,

the bound variable environment

Semantic Functions

A : Ezp — Bve — Aenv — Prm(Path)
Ar : Pf — Pfun
A, : Prog — Aenv

Al+] = As{z:y|(z,y) € s}
AIF] = As{p:c,p:al(p,c,a)€ s}
Alc] bve aenv {()}
Alz]bve aenv {bve[z]}
Allp(es, ..., e,)]bve aenv Ailpl(Ale1]bve aenv x ... x Afe,]bve aenv)
Alf(e1,...,en)]ve aenv = aenv[f](A[ei]bve aenv x ... x Ale,]bve aenv)
A [{fi(z1,...,2) = €;}] = aenv whererec

aenv = [(As. U{A[[e,-]] [yi/z;] aenv | (y1, ., yn) € s})/fi]

Note that the ordering on the arguments to + is still fixed from left-to-right. At
this point we could allow both left-to-right and right-to-left orderings, that is,

Al+] = As{z 1 y,y: 2| (,y) € s}.

2.3. FIRST-ORDER PATH ANALYSIS 19

We discuss issues in choosing (or not choosing) an ordering on strict operators in
Section 5.1.3, but for now our discussion is simplified by the assumption of a fixed

ordering.

Theorem 1 (Effectiveness) A,[[pr] is computable for any finite program pr.

Proof: Using the standard iterative method for computing Kleene’s ascending
chain, our first approximation is aenv® = Ad[pr] = [(As.{1,})/fi]. For each subse-
quent approximation aenv®, aenv™ = Ax[pr] = (As. U{Ale;] [y;/z;] aenv|(y1, ..., ys) €
s})/ fi]. Since all of our domains are finite, we need only show that all operators
are monotonic to be guaranteed to arrive at a least upper bound in a finite number

of steps. We show this below for the primitive operators x and |J:

1. U: Suppose z,y,z € Pem(Path),z C y,s1 = zUz, s, = yUz. According to the
ordering on Pgnp(Path), y must contribute every non-_L, element to s, that
z contributes to s, and if y contributes L, to s,, then must also contribute
bot, to s1. This implies that (L, € s = 1, € 51) AVp # L,,p € 83 = p € ss.

This is precisely the requirement for s; C s,.

2. x: Monotonicity of x follows directly from the domain definition of P, in
which one element of Pt is defined to be weaker than another element pre-

cisely when one of the sets from which the cross-product is formed is weaker.O

Theorem 2 (Safety:) Let pr, env, penv, and aenv be defined as follows:

pre PTOg = {fi(xla ,mn) = ei}
env € Env = &E[pr]

penv € Penv = P,[pr]

aenv € Aenv = A,[pr]

Then Vp.,...,pn € Path,d,,...,d, € D,

(P15 --,Pn) € 8 = (penv[fil(dy, ..., dn, P1, .., Pr) € aenv[fi]s)

20 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

Proof: This is easily shown by structural and fixpoint induction. First, penv and

aenv can be shown to be the limits of the chains of penv’ and aenv’ defined below:

penv’ [(A(@1, s @ny b1y ooy B2). Plles] [an/xi] env [br/zi] penvi=1)/fi]
aenv’ [(As. U{Ale]llye/zi] aenv'™" | (y1, ..., yn) € s})/fi]

perv’ = [L,/fl]

aenv® = [{L1,}/f]

Second, consider that aenv[f;]s = U{Ale:] [yx/zx] aenv | (y1,...,¥:) € s}, and

that by assumption, (p1,...,p,) € s. Since this clearly implies that Vp € Path, (p €
Ales] [pr/zi] aenv) = (p € U{Alei] y;/z;] aenv|(y1, ..., yn) € 3}), and by definition
penv[[fil(dy,y ..., dn, P1y -y Pn) = Plles] [dr/zk] env [pr/zk] penv, we will show the

following;:

(Ple;] [dr/xk) env [pr/zk) penv) € (Ales] [pr/zk] aenv)

To proceed by structural induction, we enumerate the cases of e;:

L. e () € {(}}, trivially true.
2. z;: pi € {pr}, again trivially true.

3. 4(e1,ez): Substituting the semantic definitions, we get

Prl+]1(a1, az, b1,b2) € Ax[+](c1 X c2)

where a; = E[e;] [di/zk] env
b; = Ples] [de/zk] env [pr/zk] penv
¢c; = .A[[e,-]] [pk/:l:k] aenv

By structural induction, V%,b; € ¢;, so again we will consider only the tuple
(b1,...bn) € (c1 X ... X ¢,). Applying the definitions of P;, and A, we must

now show that

b1 H b2 S {bl H b2, b2 . bl})

which is trivially true.

2.3. FIRST-ORDER PATH ANALYSIS 21

4. IF(eq,ez,e3): We follow the method above of extracting the relevant tuple
from the cross-product and applying P, and A; to the primitive IF. Here we

must show the condition holds for all possible values of d;, that is,
(bl : b2 e {bl . bZ,bl . b3}) A (bl . ba € {bl . bg, bl . bg}),
which again is trivially true.

5. f(e1,...,e,): We must now appeal to fixpoint induction. The base case is

simple:
(penv®[f1(@1y s Gny b1y o.vy b)) € @env®[f](c1 X ... X ¢,)) = (L, € {L,})

Using the definitions already established for a;, b;, and c;, but assuming they

-1

are evaluated in environments penv*~! and aenv*~!, we must now show the

following;:
penv [f1(a1y ey @ny b1y vy b) € aenv U [f](cs X ... X ¢,)

= penv'[f](a1, ..., @n, b1, vy by) € aenv’[fI(ey X ... X ¢,)
Applying the techniques used before to extract the appropriate tuple from
€1 X ... X Cp, we must show that

(Plbody;] [a:/z;] env [bi/a;] penvi™) € (A[body,] [b;i/z;] aenv’~)

= (Plbodys] [ai/z:] env [b;/z;] penv') € (A[body;] [bi/xi] aenv®)

But in applying the definitions of P and A the fixpoint induction hypothesis

immediately applies, and the implication holds. O

At this point it should be clear that path semantics contains all the information
of the standard semantics plus all the information of path analysis. That is, an
“abstraction hierarchy” of the three semantics is as shown in Figure 2.1. Keep this

diagram in mind; it will be updated in Chapter 4.

22 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

path
semantics

path standard
analysis semantics

Figure 2.1: Ordering by information content of path semantics, path analysis, and
standard semantics

2.3.3 Complexity of Path Analysis

In [21] it was shown that the lower-bound complexity of any method of computing
strictness must be exponential in the number of arguments to a function for the
general case. In Section 4.2 we show that path analysis subsumes strictness analysts,
so the complexity of path analysis must be at least exponential in the number of
arguments to a function. However, while in the set-theoretic approach to strictness
analysis there are at most 2™ possible strictness sets through an n-ary function, in
path analysis there are at most 2° such sets, where s = n!4+(n—1)4...4+(n—n)!+1.1
Although the computation of a tight lower bound on the complexity of path analysis
is beyond the scope of this thesis, we conjecture that it is considerably higher than

that of strictness analysts.

ITo see this, recall that in Section 2.1 we saw that there were at most 2!+ (n—1)!+...4+(n—n)!+1
paths through an n-ary function. The number of elements in the powerdomain of paths is 2 raised
to this power.

2.3. FIRST-ORDER PATH ANALYSIS 23

2.3.4 Relational vs. Independent Attribute Methods

The function space Pfun maps sets of tuples of paths to an element in Pgy(Path),
while the reader may have expected it to map tuples of sets of paths to an element in
PgM(Path). Using terminology developed in [29], this is a result of our choosing a,
relational attribute method instead of an independent attribute method for associat-
ing bound variables with values. In the relational attribute method, the relationship
between a binding and its environment is maintained so that two pieces of infor-
mation from different environments cannot coexist. In the independent attribute
method no such provision is made, and bindings from different environments may
appear together. This leads to a less precise (although still safe) approximation. A

first-order semantics for the independent attribute method appears below.

Semantic Domains

Path, the domain of paths
Pgm(Path), the powerdomain of Path
Pfun = U;?:l(PEM(Path)" — PEM(Path)),
the function space mapping paths to paths
Aenv = Fv — Pfun,
the function environment
Bue = Bv — Pem(Path),

the bound variable environment
Semantic Functions

A : Ezp — Bve — Aenv — Pgyp(Path)
A : Pf — Pfun
A, : Prog — Aenv

Ae[+] = A=,y). zny
A[IF] = A(p,c,a). (p:c)U(p:: a)

24 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

Alc] bve aenv = {()}

Alz]bve aenv = bve[z]
Alp(er, ..., en)]ve aenv = Ai[p](Alei]bve aenv, ..., Afe,]bve aenv)
Al f(e1s ..., en)]ve aenv = aenv[f](A[ei]bve aenv, ..., Ale,]bve aenv)

A [{fi(z1,....,zn) = €;}] = aenv whererec
aenv = [(A(y1, ..., Yn)-Ales] [y;/z;] aenv)/ fi]
The new “set” path-append operator :: may be defined in terms of the original

path-append operator : as follows:

{ph --')p‘m} b {pm+1a ---,pn} =

{(p1t Pmt1),(P1 : Pmt2)s oy (P12 D), oy (Pm t Pmt1)s ooy (P :Pn)}

That the relational attribute method may give more precise information can be seen

in this example:
f(z,y,2) = g(if = then y else 2);
g(a@) = ata
Using the relational attribute method, ¢ is called with a set of path tuples (each tuple

of length one, since g takes only one argument), {({z,y)),({z,2))}. The expression
a+ a is computed in each environment, with a bound to (z,y) and with a bound
to (z,z), and the results are unioned, giving the set {(z,y),(z,2)}. However, in
the independent attribute method, g is called with a tuple of sets of paths (again
the tuple is of length one), ({(z,y),(z,2)}). Now @ can be bound to any member
of the set, and we take all possible resulting paths, including the one in which the
first occurrence of a is bound to (x,y) and the second occurrence is bound to (z, z).
This results in the set {(z,v), (=, 2), (z,y, 2)}, which is safe in that it contains all
possible paths, but weak in that it contains (z,y, z), which clearly can never occur.

A comparison of the computation costs of the two methods may be found in [29].

2.3.5 Using a Non-Flat Path Domain

In Section 2.1 it was pointed out that a (non-flat) path domain that distinguishes

among non-terminating paths gives more information than a (flat) domain in which

2.3. FIRST-ORDER PATH ANALYSIS 25

L, represents any non-terminating path. This section explores some of the practical

and theoretical implications of basing path analysis on such a non-flat domain.

Define a new domain Path’ in which distinct non-terminating paths are distin-
guished just as terminating paths are in Path. Non-terminating paths are delimited
by square brackets [|; as before, terminating paths are delimited by angle brackets

(). The elements of Path’ are defined as follows:

Path' = {[dy, ..., dn]} U {{dy, .. dn) |2 > 0,Vi,1 <4 < n,d; € D}

The flat domain construction was appropriate for Path because a terminating
path represented a complete computation and thus could not be “improved,” while
all non-terminating paths, which could be improved, were identified with 1,. The
first condition still holds, but in Path’ non-terminating paths are not identified.
Instead, they are considered distinct paths with varying degrees of “completeness”
(and thus varying places in the domain ordering), and are constructed and manip-
ulated much as complete paths are in Path. First, the ordering on Path’ must be
redefined:

Vp € Path,z;,y; € D,

p Ep
Il Ep
[Z1, s8] T (Y1) e, Ym) iff
1 =Y and [:172,...,:6”] C <y2,"'aym>
(@1, @a] T [Y1, ey Y] I

[:121, ey (Cn] E (yl’ "')ym>

The path append operator must be redefined as well:

26 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

(ip = p
p:{) = p
J:p = |
(mla ,$n) : [] = [$1,...,:En]
[Z1, s Zn] i = [T1yeee, Ty)
(15 ey Tm) ¢ [Tong1y ooy Tn) = {1y ooy Ton) 2 (Tonddy ooy To) 2]
(1) ooy Tm) t {(Tmg1y ey Tn) = i Tm41 € {T1, 00y T}
then (@15 ey Tm) 2 (Tmg2s eer Tn)
else (T1y oy Ty Trn1) & Tty ooes T

Theorem 3 Path' contains strictly more information than Path.

Proof: Let Path” be the domain formed by identifying all incomplete paths in
Path' with []. The elements and ordering of Path” are as follows:

Path" = {[J} U {{dy,,ds) | n > 0,¥i,1 < i < n,d; € D}

p Ep
l C p
[] E (yl)"')ym) iff
1 =Y1 and [] E <y2,'-')ym)
[] E [y17"'>yn] it
[E (y1, s Ym)

It is clear that the third and fourth ordering rules collapse into the second rule,
and that by substituting L, for [], the elements and ordering for Path are obtained;
Path can therefore be derived directly from Path’, and so contains strictly less

information.O

The next step is to construct a powerdomain for Path’; again, the operational
nature of the Egli-Milner powerdomain makes it a prime candidate. However, the
Egli-Milner construction as described before is defined only for flat domains; at-
tempts to apply it directly to non-flat domains lead to problems in ordering and
continuity. The Plotkin powerdomain is a generalized Egli-Milner powerdomain that
can be applied to non-flat domains. The changes to the Egli-Milner construction

are as follows:

2.3. FIRST-ORDER PATH ANALYSIS 27

1. To become Cp, the ordering relation Cgps is redefined in terms of open sets
in the Scott-topology. While this is necessary to ensure proper behavior at
limit points, Cp is equivalent to Cgps everywhere else; since our discussion
does not rely directly on the domain’s behavior at limit points, the reader can

think of Cp as behaving like Czpr.

2. The elements of Pp(Path’) are quotiented by the relation ~p, where VA, B €
Pp(Path’),A~p B <= (ACp B)A(BLCp A). Without this restriction on

the domain elements, Cp is not a partial order.

Consider the following elements of Pp(Path’):
§1= {[z1], (z1, z2) }

Sy = {[xl]a [3:1) 372]7 (5171,:122)}

These sets represent different possible computation paths for a function; the first
contains only one possible means of not terminating, while the second describes two.
Yet these sets are equivalent under & p since they have the same total information
content. That is, since both stronger and weaker elements than [zy, z,] exist in
S1, the addition of [zy,zs] neither increases nor decreases its total information
content. Yet in the non-flat model we would like to distinguish between these sets;
for example, if these sets represents possible computation paths through a function
f, the question, “Can f evaluate 2, without terminating?” is answered differently
by the two sets. Thus in some sense the Plotkin powerdomain construction does
not satisfy our intuitive sense of desirable information. Partly for this reason, and
partly because of the additional complexity of the powerdomain construction on

Path'!, we chose to work with the flat domain of paths described in Section 2.2.

28 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

2.4 Paths of Occurrences

If f’s bound variable & appears lexically n times in the definition of f, we say that
« has n occurrences in f. In the framework of lazy evaluation, the demand for at
most one occurrence of z will cause the corresponding expression to be evaluated;
subsequent demands to other occurrences of z will return the previously computed
value. As described above, path analysis yields information about the order in
which the bound variables to a function are evaluated. However, it does not tell
the order in which the occurrences of a particular bound variable are used. Yet as
we will see in later chapters, this is valuable information. Consider the factorial

function:
fac(n,acc) =if (n = 0) then acc else fac(n — 1,n * acc)

Path analysis will find the possible paths through fac to be {(n,acc), L,}. But this
tells nothing about the relative orders in which the three occurrences of n, or the
two occurrences of acc, are demanded. Fortunately, once we have the information
from path analysis, this “ordering on occurrences” information is easy to compute.
For each function f;, define a new function f/ that is identical to f; except that each
occurrence of a bound variable in f; becomes a unique bound variable in f/. Thus
if f; has j bound variables, each of which has k occurrences, then f! will have j * k
bound variables, each of which occurs once. The body of f! is otherwise identical
to the body of f; — for example, if f; is recursive, then f! will call f; internally, not
fi. (In fact, f! is never called from anywhere; it cannot be substituted for f; in a
call since it has the wrong number of arguments.) The paths through f!’s bound

variables are effectively paths through the occurrences of f;’s bound variables.

As an example, consider the “primed” version of the factorial function defined

above:

fac(ny,n9,n3,accy, accy) = if (ny = 0) then ace; else fac(ng — 1, ng * accs)

2.5. PATHS FOR A HIGHER-ORDER LANGUAGE 29
Note that fac’ calls fac, not fac'. The paths through fac’ are as follows:

{{n1, ace1), (n1,n2, n3, acea), Ly}

Note that removing all but the first occurrence of each bound variable yields the
original paths through f. Intuitively, we can say that the paths through f; char-
acterize f;’s ezternal behavior, while the paths through f/ characterize f;’s internal
behavior. The semantics for occurrence paths is straightforward as no fixpoint is
required; once aenv has been computed, giving the basic paths through every funec-
tion, occurrence paths may be computed in one pass. If we let OPath be the domain
of occurrence paths, where occurrence paths are defined just like regular paths ex-
cept that their elements are drawn from the domain of bound variable occurrences,

the semantic functions for occurrence paths are defined as follows:

O : exp — Pem(OPath)

Old = {(}
Ozl = {{zi)}
Olp(er, .., en)] = Ar[P](Ofle1] X ... x Ollen])
Olf(er,men)l = aenv[f](Ofe] X ... x Ofe,])
Ol{f(z1,.szn) =i}l = [Oled/fi)

For the remainder of this document we will assume that when computing paths
for a program we compute paths through all f; and f/; the reader should understand
that when we discuss a path through f; we are referring to order of evaluation, while

a path through f! refers to order of use.

2.5 Paths for a Higher-Order Language

Extending path semantics to the higher-order case is straightforward. We extend
the domain to contain path pairs in the style of strictness pairs developed by Hudak
and Young [21]. For each expression e we are interested not only in the path through

the bound variables in e, but also in the path that will be taken when e is applied to

30 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION

another expression. This information is represented in a path pair (p,,ps), where
pp represents the path and ps represents the higher-order behavior. Of course, some
expressions have no higher-order behavior; for these the higher-order portion of the
pair is perr = Ad.Az.(L,,perr). The domain of path pairs PPair has perr as its

bottom element and is ordered as follows:

Ve,y € PPair,(2,,25) Cppair (Yp, Ys)

—

(:Ep Cem yp) A ((:l:f (I) C pPair (yf a)Va € PP(LZ"I‘)

As for first-order path semantics, we need an exact higher-order semantics that

contains both path and standard information. This semantics is presented below.

2.5.1 Higher-Order Path Semantics

Semantic Domains

Path, domain of paths
PPair = Path x (D — PPair — PPair), “path pairs”
Henv = (Bv+ Fn)— Ans, the function environment

Semantic Functions

‘H? : Exp — Env — Henv — Ans

2.5. PATHS FOR A HIGHER-ORDER LANGUAGE 31

H?[c] env henv
HP[z] env henv
HP[Az.€] env henv

HP[ey eg] env henv

HP[IF(p,c,a)] env henv

HP[z + y]] env henv

(0, Hilel)
henv[z]

((), Ad.Ap. H?[e] env[d/z] henvp/z])
let (p1, f1) = HP[le1] env henv
(p2, f2) = fr(HP[ez] env henv)
in (Pl :p27f2)
let d = H[p] env
(p1, f1) = H?[[p] env henv
(p2, f2) = HP[c] env henv
(ps, f3) = HP[a] env henv
in d— (p1:p2, f2),(p1: ps, f3)
let (p1, f1) = H?[z] env henv
(p2, f2) = HP[y] env henv
in (py : ps,perr)

HE[{fi = ei}] = henv whererec

[(H?[e:] env henv)/fi]
Hp[[{f i = ei}]

henv =
env =

2.5.2 Higher-Order Path Analysis

The abstract higher-order semantics bears the same relationship to the exact higher-

order semantics that the abstract first-order semantics bears to the exact first-order

semantics. (Note that again we are using the relational attribute method.) The

path pair domain changes only because its functional component no longer requires

an argument in D; the ordering on this new domain of path pairs PP is analogous

to the ordering on PPair and the powerdomain of PP is constructed using the

Plotkin powerdomain.

Semantic Domains

Path, domain of paths
PP = Path x (PP — PP), “path pairs”
Pp(PP), the powerdomain of PP

Henv = (Bv+ Fn) — Pp(PP), the function environment

32 CHAPTER 2. THE PATH MODEL OF ORDER OF EVALUATION
Semantic Functions
H*: Exp — Henv — Pp(PP)

He[z;] henv = {henv[z;]}
He[c] henv = {({), herr)}

He[Az.€] env henv {(Q), Ap. H[e] henv[p/z]}
Ho[e1 e2] henv = let {x1,...,2m} = H*[ei] henv
{1, yn} = H?[es] henv
{zij1, -, zin} = (2])(y5)

v

n g¥ 2%zl)i = 1.m,5 =1.n,k=1.1
1 5k “i5k

H[IF(p,c,a)] henv = let {p1,...,Ppm} = H[p] henv
{e1y.eyen} = H*[c] henv
{a1,...,ar} = H*[a] henv

n {(p? : c}f,cf), (p?:al,al)i=1.m,j = 1.n, k= 1.1}

He[a+ b] henv = let {ai,...,am} = H°[a] henv
{b1,.., b} = H°[b] henv
in {{a? : b4, herr)|i = 1.m,j = 1..n}
Hol{fi z1...tn = €;}] = henv whererec

henv = [(Ay1..yn H[e;] henvly;/z;])/ fi]

Like higher-order strictness analysis, higher-order path analysis is not guaran-
teed to terminate on every expression in the untyped lambda-calculus. For example,
H[(Az. z z)(Az. =)] generates path pair of infinite depth. However, this sort of
expression is generally considered anomolous and is disallowed under type schemes

such as that presented in [13].

Chapter 3

Aggregate Updating

3.1 Overview

The inefliciency stemming from the lack of side-effects in functional languages is
perhaps most apparent in aggregate data structures.! In particular, errays are ag-
gregate data structures that are typically contiguously allocated in memory and in
imperative languages they support constant-time access and update. The update

is usually performed destructively with an assignment statement, e.g.,
ali] := .
Note that the previous value of a[¢] is overwritten by z.

In a functional language, the assignment statement above cannot exist; instead,
an ezpression must return the updated array. Furthermore, ¢ cannot be modified,
so we cannot write a function to set a[t] to z and return a as its value. Thus
functional languages typically provide an update function which takes an array a,
an index ¢, and a value z, and returns a new array a’ such that a'[i] = z, but a is
(at least conceptually) unchanged. Since a[z] no longer refers to a memory location

but simply to a value, we will use the notation sel(a,) to mean the i** element of

1We will use arrays in examples throughout this section, but the work extends to other aggregate
structures.

33

34 CHAPTER 3. AGGREGATE UPDATING

a. Now suppose sel(a,?) initially has the value v. Then o' = upd(a,i,z) implies
that

sel(a'yt) =

sel(a,i) = v

sel(a’,j) = sel(a,j) Vi #1.
Conceptually, a is copied into a’ except in the i element, where a’ has the value z.
Thus the functional semantics is preserved, but the efficiency of the update suffers:
we have gone from a single destructive assignment (no new space, constant time), to
copying an entire n-element array (space and time proportional to n). To see how

quickly this inefficiency can propagate in a program, consider the simple function

to initialize an array:
init(a,t,x) = if (¢ = 0) then a else init(upd(a,i,z),i — 1,z)

In an imperative language, the call init(a,n,z) would take time O(n) and constant
space. But in a functional language using a copying update, it would take time and
space O(n?). Clearly, this is unacceptable, yet semantically it is essential that the
old version of a remain available. How can we get this functionality but improve the
efficiency? In the next two sections we discuss two approaches, trailer updating and
destructive updating. Both approaches initially assume that upd is strict in all of its

arguments; we discuss individually the consequences of relaxing this assumption.

3.2 'Trailers

Instead of copying the entire array, we could shadow only the cell being updated.
Using this method, an array a is represented as before but is preceded by a list of
trailers, where a trailer is an (index, value) pair that indicates where an element of
a is being shadowed. If no element is shadowed, a is preceded by the empty trailer.
To access the value of a’s i** element, first the trailer list must be searched to see
if that element is shadowed; if so, the value in the trailer is returned, otherwise the

it element of the array is returned. Updating the i** element is more complicated.

3.2. TRAILERS 35

Suppose a is a new array of length n with values vy, ..., v,, and let b be the result
of updating a’s i** value to be z. The array portion of a’s representation will be
destructively modified so that its i** element is z, and b will point to this structure
with an empty trailer list. Meanwhile, a’s trailer list gets the pair (¢, v;), so that
accesses to a will see that its i** element is actually v;. Note that we could have
left a alone and constructed b to point to a’s array representation with a trailer list
containing (¢, z); however, it has been observed that the most recent version of an
array is the most commonly accessed, and we are optimizing for this case by putting
the trailer in a’s list. The property of referring only to the most recent version is

sometimes called single-threadedness.[32]

The diagram below shows how the representation changes after the update:

a=[vl,..,vn] a: ()—=|v|...|va
b=upd(a,i,z) a: (1,v;) = () —=|ve|...|]z]|.c| V0
b:

Note that no array ever points directly to the array representation; there is
always a trailer list preceeding it, although it may contain only the empty trailer.
. It is this empty trailer that provides a handle on the references to the array and
ensures that these references will see all modifications to the array and the trailer

list.

In the example above, if b is subsequently updated, say by ¢ = upd(b, 5,y), a
similar process takes place: b’s empty trailer becomes (j,y), the array is modified
destructively, a new empty trailer is inserted in front of the array, and ¢ points to
it. Although the array is modified, both a and b see the trailer that retains the old

value for a[j]. The new representation is as follows:

c= u’pd(b)j) y) a: (Z7 vi)
b: d(',vj)—)()—» v | fz ||yl | vn

[

36 CHAPTER 3. AGGREGATE UPDATING

But suppose a is updated instead of b, in ¢ = upd(a, j,y). There is no way to modify
the array destructively and then add a trailer to everyone’s list except c’s, because
¢ must see all of a’s trailer list. So the trailer must appear on ¢’s list, which then

points to a’s list. This is illustrated below:

c= upd(a,j,y) c: (]’y)a
a: (3,v5) = () —

b:

vi|...|z|...| Vg

In general, when the same logical array (e.g.,) is updated more than once, all but
the first update must be done by putting a (index,newval) trailer on the trailer
list for the new logical array and leaving the array portion of the representation
unchanged. Although this increases access time for the new array, and we have
speculated that the new array is the most likely to be referenced in the future, this
situation occurs only when that assumption has already failed, i.e., in the presence
of non-single-threaded updates. Just as trailer placement was optimized for single-

threaded accesses, the update procedure is optimized for single-threaded updates.

We have assumed that upd is strict in all of its arguments; to what extent can
that assumption be relaxed? If upd is lazy in its first argument, the trailer structures
will not be built until the updated array is accessed. While this is possible, the
runtime expense could be substantial. Similarly, if upd is lazy in its second argument
the destructive array update would not take place until forced by an access, again
contributing runtime expense without clear advantage. If upd is lazy in its third
argument, a thunk will be stored in the array or trailer, as appropriate, and forced

when retrieved. This is a reasonable and not unlikely option.

Using trailers is clearly much more efficient than copying an entire array at each
update, but it still introduces substantial time and space overhead. Each update
requires two new cells, one to hold the pointer for the new array and one to hold
the trailer for the old array. Furthermore, array accesses are slowed by a constant

factor, since even for single-threaded accesses the trailer list must be checked first.

3.3. DESTRUCTIVE UPDATING 37

It may not be obvious to the reader how much overhead this adds to a program,
but as the benchmarks in Chapter 6 show, the effect can be substantial. Although
a major improvement, trailers do not offer imperative-style efficiency. The next
section explores a way to get this efficiency through “behind-the-scenes” destructive

updating,.

3.3 Destructive Updating
3.3.1 Overview

In the last section we optimized trailers for the single-threaded case, that is, we
guessed that the new version of the array would be the most commonly used. But
if it could be proven that the old array would never be used again, there would be
no need to create the trailer to save the old element; the array could be updated
destructively, with the modified array returned as the value of the update. This
would clearly be an enormous gain in efficiency over copying and even over trail-
ers, but there are two important questions: How often is it safe to do an update

destructively, and how can these cases be detected?

The first question clearly depends on programming style, but empirical evidence
indicates that it is overwhelmingly the case that the new version of the array is used
in future computation and the old version is discarded. In imperative programming
this is the only possibility, since the old version is no longer available once it has been
updated. But even in functional programming, where the old version is available,

it is rarely used. Consider again the init function:
init(a,1, z) = if (¢ = 0) then a else init(upd(a,,z),i — 1,)

In a copying implementation, executing the call init(A,n,z) will produce n copies
of partially-initialized versions of A, n — 1 of which will be discarded. (Note that

when upd(a,t,x) is passed to init, the value of a is implicitly discarded since it is

38 CHAPTER 3. AGGREGATE UPDATING

not used anywhere else in the function.) The n** copy contains a fully initialized
array, which is returned as the value of the function call. It is likely that the initial
value of a, that is, A, will never be used again either, having been empty or having
contained information that was no longer needed.? Therefore even the initial copy

was probably unnecessary, and so the entire initialization could be done in place.

The next question is more difficult: how can we detect when it is safe to up-
date an aggregate a destructively? This requires knowing when a is used, or more
specifically, whether or not it will be used again after it is updated.® One possibility
is to add temporal language constructs that allow the user to provide information
about the lifetimes of aggregates.? While this may be a practical approach for some
applications, we would like to do as much optimization as possible in the absence
of such user hints by inferring such temporal information. This sounds suspiciously
like the order of evaluation information computed by path analysis in Chapter 2,
and indeed it is. However, a restriction and two additional pieces of information
are required for update analysis. The restriction is that upd must be strict in it
arguments. This allows us to treat aggregates as flat structures, that is, structures
whose elements are fully defined. The information required starts with information
about the update itself: which aggregate is being updated, what lexical occurrence
of update is called (since our goal is to convert as many occurrences as possible of
upd to destructive upd), and where the update occurs relative to other elements in
its path. Second, we need to know if aliasing will interfere with destructive updat-
ing, that is, if two variables that appear to refer to different aggregates could in fact
be aliases for the same one. The next two sections describe update semantics and

update analysis, which provide the basic information about what is updated and

ZNote that if the intent is not to throw away A the intent must be to copy it, since every one of
its elements is updated. In this case a copy must be made, but it would also have to be made in
an imperative language.

3In the terminology typical for imperative langauges, we must determine whether a is live when it
is updated.

4Thanks to Alan Perlis for this suggestion.

3.3. DESTRUCTIVE UPDATING 39

where. Section 3.3.4 gives examples of applications of update analysis, and shows

how we deal with aliasing.

3.3.2 Update Semantics

To derive the update information, paths are extended to update paths, where an
update path may contain update elements in addition to bound variables. An update
element is a pair (u, a), where u is the index of the lexical occurrence of upd being
applied, and a is the aggregate being updated. An update element appears in a
path wherever an update occurs in that path. Formally, update paths are defined
as follows:
Updpath = {L 4} U {(z1,...,2.)|z; € Bv+ Ue}

where

Ue = {(updindez,bv)|lupdindex € Nat,bv € Bv}
Bv = the set of bound variables

Besides update elements, we also need information about how aggregates are
propagated so that we can tell what aggregates could be affected by a call to upd.
We introduce Agg, the flat domain of aggregates that could be returned by a path,

with bottom element 1 ,:

Agg = {L.} + {none} + By

The non-terminating path L, is said to return the aggregate 1 ,; a terminating path
that cannot return a named aggregate because of type restrictions or anonymity is
said to return the aggregate none. All other paths return a bound variable that
might be an aggregate, and the aggregate associated with one of these paths is that

bound variable.

Now we can define update paths that also carry the aggregate information; we

call these update pairs:
Upair = AggxUpdpath

40 CHAPTER 3. AGGREGATE UPDATING

The constructor X represents the smash product, essentially a strict cross product.

In this case, this implies the following:
Y(a,p) € Upair,(a = 1,) & (p=1,)

Thus Upair is a flat domain with bottom element (L,,L,).

We say that an update pair v = (a,p) has two components, an aggregate com-
ponent a and a path component p. We will sometimes write u® for the aggregate
component and u? for the path component. The semantics for update pairs for the

first-order case is given below.

Semantic Domains

Upair, the flat domain of update pairs
Ufun = Upz((D™ — Upair™ — Upair)
Uenv = Fv—Ufun,

the function envronment
Ubve = Bv — Upair,

the bound variable environment
Semantic Functions

U : Ezp— Bve — Ubve —» Uenv — Upair
U, : Pf —-Ufun
U, : Prog — Uenv

U[c] bve ubve uenv (none, ())
U[z] bve ubve uenv ubve[z]]
Ulp(er,...,en)] bve ubve uenv = let d; = E[e;] bve
p; = U[e;] bve ubve uenv

in ukﬂp:"(dl7"',dn)p1)---apn)
Ul f(e1,...,en)] bve ubve uenv = let d; = E[e;] bve

pi = U[le;] bve ubve uenv
in uenv[f](di,...,dn,P1y-ees Pn)

Upl{fi(z1, ..., Ts) = €;}] = uenv whererec

3.3. DESTRUCTIVE UPDATING 41

uenv = [(AMY1, .oy Yny 21y ey 20). Ules] [ys/ @] [2:] 2] uenv)/ fi]
env = El{fi(z1,...,z0) = €&}]

U[+] = M=esYes Tu, Yu)- (none, z? : yP)
Ul IF] A(Pes Cer ey Pus Cus @)- Pe = (c3, P 2 &B), (ag, P« af)
U[UPD;] = A(aeyte,TeyQuyly,&y). (none,z? : 32 : al : (7, a2)))
U[SEL] = A aeyte,@u,ty). (none,i? : af)

The body of this semantics has the same form as that of path semantics, but
the primitives show the additional information being provided. + cannot return an
aggregate for type reasons, and so the first member of an aggregate pair returned
from 4+ is always none. IF can propagate the value returned by either of its arms,
and so the appropriate aggregate is that associated with the arm taken. SEL is
assumed not to return an aggregate, which means that aggregates cannot be stored
inside other aggregates. And although UPD returns an aggregate, it is anonymous
and so cannot be shared until it becomes named, e.g., by being passed as a parameter
to a function. At that point sharing will be detected inside the function to which
it is passed; there is no possibility of its being shared by the function in which it is

produced.

Note that the semantics for UPD indicates that its arguments are evaluated
from right to left, not left to right as the reader may have expected. Like +, UPD
could take its arguments in any order, but there is often an advantage to the right-
to-left ordering. Similarly, it is often advantageous to evaluate SEL from right to

left. This and other issues in choosing an ordering for primitives are discussed in

Section 5.1.3.

As for path semantics, all references to £ could be eliminated by incorporat-
ing the standard semantics directly into update semantics. Furthermore, it should
be clear that update semantics computes strictly more information than path se-
mantics, since the path portion of update semantics is precisely equivalent to path

semantics.

42 CHAPTER 3. AGGREGATE UPDATING

3.3.3 Update Analysis

Like path semantics, update semantics is not useful for static program optimiza-
tion since it relies on the standard semantics. However, update semantics can be
abstracted to update analysis in a manner similar to that in which path semantics
was abstracted to path analysis. Again, the conditional holds the key, since this
is where update semantics relies on the standard semantics. Following the form
of path analysis, we see that if we return a set of update pairs instead of a single
update pair, we can perform the abstraction. The form of each update pair does not
change, but we now operate on the powerdomain of update pairs, again choosing

the Egli-Milner powerdomain construction.

Semantic Domains

Upair, the flat domain of update pairs
Pem(Upair), the powerdomain of Upair

U fun = U, (Pp(Upair®) — Pgm(Upair))

Uenv = Fv—-U fun, the function envronment

Ubve = Bwv — Upair, the bound variable environment

Semantic Functions

U : Exzp— Ubve — Uenv — Pem(Upair)
Ay Pf —Ufun
U, : Prog — Uenv

Lzl[c]] bve aenv = {()}

U[z]bve aenv {bve[z]}
Ulp(ey, ..., ex)]bve aenv Uy [p] (U[er]bve aenv x ... x Ule,]bve aenv)
Ul f(es, ..., en)]bve aenv aenv][f](U[er]bve aenv X ... x Ulen]bve aenv)

WU [{fi(z1, .., 2n) = €:}] aenv whererec

aerw = [(As. | {Uled] lyi/=;] aenv | (91, ., yn) € 1)/ f]

3.3. DESTRUCTIVE UPDATING 43

U] = As.{(none,a: 47) | (2,1) € 5}
R UJIF] = Xs.{(c* p?:cP),(a%,p?: a®) | (p,c,a) € s}
U[UPD|] As.{(none,z? : 1* : a? : ((4,a%))) | (a,,2) € s}
UL[SEL] As.{(none,y? : %) | (z,y) € s}

Theorem 4 I:{pﬂpr]] 18 computable for any finite program pr.

Proof: The proof follows the same form as that for path analysis, and depends on
showing that the domains are finite and the operations are monotonic. We have
already shown the domain of paths to be finite, and clearly Agg is finite, so Upair
must be finite also. We must still shown monotonicity of x and |J on domain
Pem(Upair), but this follows directly from the construction in Section 2.3.2 for

PgM(Path), and the existence of a least fixpoint is guaranteed. O

3.3.4 Applying Update Analysis

Update analysis now seems to contain the information required to detect when
destructive aggregate updating is safe. The method is simple: Compute the set
of update pairs for each function in a program, and for the occurrence version of
each function. Then look at the update paths through the occurrence functions:
if in any path in which an update element (upd;,a) occurs there is later another
occurrence of a, then upd; cannot be done destructively. (In this discussion we
will use the notation (upd;,a) instead of (i,a) as it is easier to read. Also, often
integer or unspecified values (e.g., indices or values to be stored in an array) are
represented by a single argument, usually either ¢ or j. Although this makes some
of the functions rather trivial, it simplifies the presentation and has no effect on the

update analysis.) Consider once again the init example:

intt(a,t,z) = if ¢ = 0 then a else init(upd(a,i,z),i — 1,z)

44 CHAPTER 3. AGGREGATE UPDATING

Recalling that upd evaluates its arguments from right-to-left, and discarding the

aggregate portion of the final update pair, the update paths through in:t are:

{Lp, (3, a), (i, 2,0, (upd a))}

But it is the occurrence paths, or paths through init/, that indicate whether or not
an update can be done destructively. Numbering the occurrences of each bound

variable lexically from left to right, we get init’ and its paths:
init'(a1, ag, 1, 49,13, 1, T2) = if 23 = 0 then ay else init(updi(ag, iz, 1),13 — 1, 3)

{J—m <7:17 al), (il, 13, L1, %2, G2, (Updh az)), (il, ia, Tg, T1,1g,dg, (Updl, az))}

In both of the paths that contain update elements, the aggregate being updated is

not used again after the update, so upd; can be done destructively.

Another example shows how the effect of updating in one function can be ac-
counted for in another function:
g(a,b,2) = if ¢ =0 then b else upd(a,i,?) (1)
f(wa Y,J) = sel(g(w,y,j),j) + sel(y,j)

The paths and occurrence paths are shown below:

g-paths : {(Z, b)) (ia a, (’U.pdl, a))}
f—paths { j>y)>(j,w,(upd1’$))y)}

2 {{
g'-paths : {(i1,b), (i1, 13, %2, a, (upds, a))}
f,—paths : {(j2aj17 ylajBayZ), (jZ)jla T, (updh w))jS,y2)}

Note that upd; appears not only in the paths through g, but also in the paths
through f, as the update information in ¢ is “exported” into every function that
uses it. Again, the occurrence paths through f’ and g’ show that upd; can be done

destructively.

While it is instructive to consider examples in which destructive updating is
possible, it is even more instructive to consider examples in which it is not possible.

Failure to catch a potential optimization is disappointing, but performing an unsafe

3.3. DESTRUCTIVE UPDATING 45

optimization renders the entire analysis useless. The next few examples examine
ways in which it can be unsafe to update destructively, and show how update

analysis catches these cases. First, take the simplest case:
f(a,?) = sel(updy(a,i,1),2) + sel(a,1)

The regular paths and occurrence paths for f appear below:

f-paths : {<i)a) (updl,a))}
f’—PathS : {(i3) 7:27 2'1, a, (updl) a'l)a i4, a2)}

Since an occurrence of a (a;) is used after another occurrence of a (a;) is updated,

the path through f’ indicates that upd; cannot be done destructively.

Next, consider a slight modification of the functions (1) above:

g(a,b,7) = if i =0 then a else upd(b,1,1) (2)
f(2,y,5) = sel(g(z,y,5),3) + sel(y, J)

g-paths : {(i,a), (3, b, (updy, b))}
f—paths : {(], m,y>) (.7) Y, (updl,y»}

g’_paths : {(il, (1), (’&.1, ?:2, i3, b, (updl, b))}
fpaths i {{ja2, 71, %, 73, y2), {J2, 1, Y1, (updy, Y1), Ja, Y2)
Now the paths through f’ indicate that upd, cannot be done destructively, although

it should be noted that the paths through ¢’ do not show this. This emphasizes

that a system of functions must be analyzed as a whole.

Now consider a third example:
f(a,b) = sel(updy(a,is,z),12) + sel(b,i3)

g9(c) = f(e,¢)

The appropriate paths are as follows:

f-paths : {(aa (upds,a),b)}
f’_paths : {<a17 (updla a1)> b1>}
g-paths: {{c,(updy,c))}
g_paths : {<cla (updh 62))}

46 CHAPTER 3. AGGREGATE UPDATING

None of these paths indicates that upd; cannot be done destructively, yet this is
clearly the case. The problem is that a and b are aliases for ¢, and although the
conflict really occurs inside of f, it can’t be detected by examining only f and the
functions it relies on; instead, information is required about the functions that use
f. Note that this is different from the situation that arose in functions (2) above,
where f could detect its conflict because g exported its update information to f.
In that case, the information flow from callee to caller was sufficient; in this case,

we need information flow from caller to callee as well.

We accomplish this by doing a simple transitive closure of the bound variables
that are passed as arguments, thus statically detecting all possible cases of aliasing.
This is admittedly a very operational appraoch, and it is safe only for the first-
order case; a full higher-order analysis would require a collecting interpretation|20],
a formal denotational description of how the meaning of an expression can depend
on its context. However, our limited treatment of higher-order constructs, described

in Section 5.1.4, permits us to use the simpler transitive closure.

Using this technique, each function is associated with a set of aggregate tuples
with which that function might be called. If we substitute those tuples in for the
appropriate bound variables in the occurrence paths through the function, we can
see the effect of aliasing. Going back to the last example, we find that f is called
with the argument tuple (¢, c), and so we substitute ¢ for each occurrence of a in

f's occurrence paths, and also for each occurrence of b. The resulting path looks

like this:
new_f'_paths : {{c1, (updy,c1),c1)}

The effect of the aliasing is now clear, and the path shows that upd; cannot be done

destructively because of a conflict in f.

3.3. DESTRUCTIVE UPDATING 47

3.3.5 Cleaning Up With Trailers

No matter how good our update analysis is, there will be times when it cannot detect
that an update can be done destructively. This might be caused by information lost
in our abstraction, or a copy might truly be the programmer’s intent. In either case,
we would like to use trailers whenever possible instead of copying the entire array.
Combining the two approaches involves some subtleties, and in this section we

discuss some of the issues that arise.

The central issue is that we assume that a call to upd returns an array with no
other references to it. This is manifested in the definition of update pairs, where
the aggregate element of the pair for a call to upd is none. In an all-copying or all-
destructive implementation this assumption is valid, but trailers introduce sharing
that must be taken into account. When an array is updated with a trailer, there
are two references to that array, both of which are preceded by trailer lists. If the
array is updated destructively through either reference and no modification is made
to the trailer lists, both references will see the effect of that update. Since the trailer
was used in the first place because our analysis indicated that either reference could
be used again, this is unacceptable. Thus once an array is updated with trailers, all
subsequent updates to that array must be done with trailers also. This implies that we
must be able to tell whether an array has been updated with a trailer. This is easy,
since destructive updating and trailer updating suggest different representations
— a plain array and an array preceded by a trailer list, respectively. However,
there is some overhead in checking to see what representation is being used at each

update and select. To avoid penalizing performance in programs where destructive

48 CHAPTER 3. AGGREGATE UPDATING

updating is universally possible, we propose the following constructs:

dupd : destructive update

tupd: update with trailer, changing representation if necessary

cupd : udpate carefully: if array has trailer representation use trailer,
otherwise update destructively

dsel: select straight from array, no trailers
csel : check for trailer representation, do appropriate select

In a program in which all updates are found to be destructive, dupd is used for every
update and dsel for every select. However, when some updates are destructive and
others are not, dupd is no longer safe; cupd must be used to ensure that a trailer-
update is not followed by a destructive update. Furthermore, csel must be used to

ensure that selection is done for the appropriate representation.

An alternative to thisis to do a reaching analysis to determine which updates and
selects can be reached by a non-destructive update. This analysis can be arbitrarily
complex, but even in its most basic form it must include a collecting interpretation.
We conjecture that the occurrence of non-destructive updates is sufficiently rare
that they can be dealt with effectively either through the method described above

or by copying at the necessary points.

Chapter 4

Other Applications of Path
Analysis

4.1 Overview

Although the development of path analysis was motivated by the aggregate update
problem, the information obtained by path analysis may be applied to other opti-
mizations as well. These optimizations will be discussed in detail in this chapter,
but in order to understand (and even anticipate) them it is important to keep in

mind some characteristics of path analysis. In particular:

1. Path analysis reveals the possible orders in which the bound variables to
a function might be evaluated; that is, it describes the order of evaluation

behavior of each function.

2. Path analysis can be extended to reveal the possible orders in which distinct
occurrences of a particular bound variable are used. (Recall that in lazy

evaluation an expression is evaluated at most once.)

3. For both of the above analyses, every possible path will be found; however,
since compile-time information is inexact, some paths that will not be taken,

and perhaps even some that could never be taken, will be found as well.

49

50 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

4. Path analysis models a sequential system; this is discussed further in Chapter
7, but for the purpose of this chapter we will discuss only applications for

sequential systems.

The third item listed above has a particularly strong impact on the types of opti-
mizations for which path analysis is suitable. Since a superset of the possible paths
is computed, “for all” questions are easily answered; any condition that holds for
all of the paths found by path analysis will also hold for all of the actual paths.
However, “there exists” questions cannot be answered, as the path that satisfies

that existence criterion might be an extraneous path, one that could never occur.

In this chapter two additional applications of path analysis are presented.

4.2 Strictness Analysis

4.2.1 Definition

In lazy evaluation, the arguments to a function are evaluated if and when their values
are demanded. However, it is often the case that it can be determined statically
that a given function will always evaluate one or more of its arguments, in which
case that function is said to be strictin those arguments. A function f is strict in its

ith argument z if f is always non-terminating when z is non-terminating; formally,

fler, oy €ict, Ly €ig1,nen) = L Vej5 #14

The value of strictness analysis lies in the fact that call-by-value is typically
more efficient than lazy evaluation, and that call-by-value and lazy evaluation are
guaranteed to give the same result if they both give a result. That is, semantically
the only difference between them is that call-by-value may fail to terminate in cases
where lazy evaluation will terminate, and so lazy evaluation is more expressive in

that it produces results for a larger set of inputs. However, if we can determine

4.2. STRICTNESS ANALYSIS 51

that a function is strict in its argument, then it is safe to evaluate that argument
at the time of the function call, that is, to pass it in by value, since its failure to
terminate will cause the function to not terminate in any case. Strictness has been
widely studied [27,7,21], but the approach taken in this chapter is quite different

from any we have seen.

4.2.2 Applying Path Analysis

Once we have computed the set of all possible paths through a function f, computing
the strictness properties of f is straightforward. A function f is strict in its s**

argument z; if and only if x; appears in every terminating path through f. That is,

Vp € aenv[f]{({z1}, ..., (zx))},(z: €P) V (p = 1p)
For example, consider the following “wrapped-up conditional” function:
f(z,y,2) = if © then y else z

The paths through f are {{z,y), (=, 2), L,}. f is strict in z, as it appears in both

terminating paths, but not in y (since it is not in (z,2)) or z (not in (z,y)).

It is clear that we can do some strictness analysis with paths, but we would
like to show that we can do a good analysis. Specifically, we show here that we do
precisely the same analysis that Hudak and Young do in their first-order work [21].

More formally:

Let senv be the strictness environment found by Hudak and Young’s first-order
strictness analysis; senv takes a function variable f; and a list of sets (sy,...,8,),
where s; represents the set of variables in which f;’s j** argument is strict, and
returns the strictness properties of f; (that is, those variables in which f; is strict)

in terms of (sy,...,$,). Then

z € senv[[fi](s1,..y8n) = @ € F(aenv[fil{({y1)s s (Yn)) W1y s Yn) (815 vy 8n)

52 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

where F' is defined as follows:
F{pb ~-'1pm}(y1) Ty yn)(sl,) sn) = pll np’z n.. r-]p'lm,

where p} = U{Sj | y; € pi}

Thus F' takes a set of paths, a list of the elements from which those paths are com-
posed, and a list of the sets passed to the strictness environment and “translates”

from the path model to the strictness model.

As an example, again let f(z,y,2) = if z then y else z . Then using Hudak and

Young strictness, we get:

SCTL’UIIf]](Sl, S2, 33) = 8 U (82 N 33)

Using paths, we get:

let
P = aenvl[f]]{(<y1), (y2), (y3>)} = {(yla y2)> <y17 y3)}
then
F(P)(y1y -y Yn)(S15 0y 8n) = (81U 82) N (81 U 83)

= 81 U (82 083)

In fact, this equality holds in general.

Theorem 5 Let “senv” be the first-order striciness environment found by Hudak

and Young’s analysis of [21], “aenv” the path environment defined in our Section

2.3, and the function “F” defined as above. Then
z € senv[[fill(s1,-,82) = 2 € Faenv[fil{((¥1) -+, (Un)) D1y o0y Yn) (81, e+vy S2)

Proof: Appendix A.

4.2, STRICTNESS ANALYSIS 53

path
semantics
path standard
analysis semantics
strictness
analysis

Figure 4.1: Information ordering on four semantics

At this point we would like té update (as promised) the diagram in Figure 2.1
that shows the relative information content of path semantics, path analysis, and the
standard semantics. As shown in Figure 4.1, we can now add strictness analysis to
the diagram; we have just shown that the information obtained in strictness analysis
is also contained in path analysis, and it has been shown elsewhere [21,27] that
strictness analysis is also an abstraction of the standard semantics. It is interesting
that although path analysis was obtained by “removing” the standard semantics
from path semantics, both the standard semantics and path analysis retain the

information contained in strictness analysis.

54 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

4.3 Optimizing Thunks
4.3.1 Overview

As discussed in the last section, strictness analysis is an important optimization for
lazy evaluation. However, not all functions will be found to be strict in all of their
arguments; certainly some functions do not always require all of their arguments,
and even when they do, it will sometimes be the case that a compile-time analysis,
operating with imperfect information, will not detect it. Thus in spite of strictness
analysis, the overhead of lazy evalation remains in some circumstances. This over-
head comes both with creating the thunk and with accessing it; although creating

it 1s unavoidable, accessing it may be optimized, as discussed below.

The basic access mechanism in lazy evaluation involves checking to see whether
or not the expression has been evaluated, then evaluating it if necessary, or return-
ing the previously stored result otherwise. Making this check at each access can be
expensive, for although the check is simple, variable access occurs often. But if we
could determine at compile-time which occurrence of a bound variable would force
evaluation and which occurrences would return a stored value, the check could be
eliminated. Note that this is fundamentally different from strictness analysis; find-
ing that f is strict in 2; means that some occurrence of z; will always be demanded,
while finding that the j;; occurrence of z; always forces evaluation means that if
z;; is demanded, no other occurrence of z; will have been demanded before it. The
fundamental issue is order of use which, as discussed in Chapter 3, is easily derived

from the order of evaluation information obtained using path analysis.

4.3.2 The Costs of Using Thunks

The costs associated with creating and maintaining thunks are as follows:

1. Space complexity:

4.3. OPTIMIZING THUNKS 55

(a) Space for the environment (i.e., bindings for free variables).
(b) A cell to hold the computed value for later use.

(c) Tag bits to indicate the status of the evaluation
2. Time complexity:

(a) The time required to create the thunk.
(b) The time required to invoke (“force”) the thunk.
(c) The time required to update the thunk with the computed value.

(d) The time required to test the status of a thunk.

Potential for optimization is clear here. For example, if we can determine at
compile-time that an occurrence of a bound variable will always (or never) force
evaluation, the status test (item 2d) can be eliminated. If we can determine that =z
will never be used again after it is evaluated, there is no need to store its value. It
turns out that there are a wide range of such optimizations, but their availability
depends on the way in which thunks are modeled. In the next section we discuss

different ways of implementing thunks and the optimizations that are available for

them.

4.3.3 Representing Thunks

Two basic constructs are required to implement lazy evaluation: DELAY, which takes
an expression and “wraps it up” into a thunk for later evaluation, and FORCE, which
determines the value of a thunk. However, the way in which DELAY and FORCE are
implemented can greatly affect their potential for optimization. We now present
four different methods, or modes, for delaying and accessing values — closure mode

(CL), cell mode (C), optimized cell mode (C0), and value mode (V) — and discuss

56 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

various optimizations for each. We distinguish between different implementations

of DELAY and FORCE by subscripting by the mode, e.g. DELAY¢, or FORCEgo.

In the following sections, examples of target code are written in Scheme, and
appear in typewriter font, e.g. (car x), while examples of source code appear as

usual in our generic functional language in italics.

4.3.4 The Closure Mode (CL)

The most obvious way to delay the evaluation of an expression is to enclose it within

a parameterless procedure:

(DELAY exp) = (lambda () exp)

In this case forcing a thunk is simply a function call:

(FORCE exp) = (exp)

Of course, this doesn’t “cache” the computed value, as required by lazy evalua-
tion. To store the value, and return it upon subsequent demands, we simply do the

appropriate check and storage operations within the procedure:

(DELAY¢r, exp) = (let ((done ’#F)
(val nil))
(lambda ()
(cond (done val)
(else (set! val exp)
(set! done ’#T)
val))))

The FORCE operation is unchanged:

(FORCEcyr, exp) = (exp)

4.3. OPTIMIZING THUNKS 57

The subscript “CL” emphasizes that this is a closure. (This representation of a

thunk might aptly be called a “self-modifying thunk.”)

This mode may be optimized in special cases. Suppose that exp is either a
constant or an expression that we know will be evaluated at most once; then caching
the value is superfluous, since in the former case there is no evaluation to be done,
and in the latter case there is no need to retain the computed value. Thus in both

cases we can simplify the implementation to:

(TRIVIAL-DELAY;y, exp) = (lambda () exp)

A less obvious optimization involves the “passing along” of bound variables.

Consider the following function:
f(z,y) = if y then 0 else = + g(z)

In general f will create a thunk for the argument it passes to g. But that argument
is just z, which was passed delayed to f, and so must be forced to get its value. So

the call to ¢g is implemented as:

((FORCE¢y, g) (DELAYcr, (FORCEgr x)))

However, it seems redundant to delay the force of an already delayed object, so we

perform the following optimization:

(DELAY¢r (FORCEgr x)) = x

Thus we have ((FORCEgr g) x) for the call to g.

Despite these optimizations, closure mode has two significant disadvantages.
First, every strict reference to a bound variable = requires an unknown procedure
call, that is, a call to the parameterless procedure representing the thunk bound

to z. This is true even if & has already been evaluated and we are just returning

58 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

a stored value. This call becomes expensive when variables are referenced often,
as even very eflicient procedure call mechanisms do not reduce the cost of context

switching,.

The second disadvantage is that most of the order of evaluation optimizations
cannot be used. The reason is that the mechanism that decides whether to evaluate
the expression or return the stored value is in DELAY, but the information used for
the optimizations is available only when the expression is forced. Although occa-
sionally we may be able to perform optimizations when we create the thunk (e.g.,
the TRIVIAL-DELAY optimization), a thunk is typically forced in several different
places, and we would like to optimize each place separately. The next mode allows

such optimizations.

4.3.5 The Cell Mode (C)

In this mode a thunk is not represented as a function but as a pair, whose first
element is a boolean flag indicating the status of the second element: if true, the
second element contains a value; if false, it contains a parameterless procedure which

will return the value when called;

(DELAYy exp) => (cons ’#F (lambda () exp))
(FORCE¢ exp) = (if (car exp)
(cdr exp)
(let ((v ((cdr exp))))
(set! (cdr exp) v)
(set! (car exp) ’#T)
v))

Using this mode we can perform optimizations analogous to those for the closure

mode:

4.3. OPTIMIZING THUNKS 59

(TRIVIAL-DELAY; exp) = (CONS ’#T exp) (1)
(DELAY; (FORCEg exp)) = exp

Note, however, that (TRIVIAL-DELAYy exp) does not delay evaluation of exp (as
opposed to (TRIVIAL-DELAY¢y exp), which delayed exp but did not cache its
value once evaluated), and so may be used with constant expressions but not with

expressions that are evaluated at most once.

Now the disadvantages of the closure mode have gone away: accessing a variable
no longer requires an unknown function call (IF, CAR, and CDR are known functions)
if the variable has already been evaluated, and the work of status-checking and

caching the computed value is now done in FORCE.

To see how we can take advantage of order of evaluation information, suppose
an occurrence of a bound variable x is never the first to be demanded, that is, we
know that 2 has been evaluated before this demand. Then when we force it we no
longer need to check whether it has been evaluated, and can simply return its value

directly:?
(FORCEg exp) = (cdr exp)

What if we know that a given occurrence of z is always the first to be demanded;
that is, it will always force evaluation of the delayed expression? It seems that the

following optimization is possible:

(FORCE¢ exp) = (let ((v ((cdr exp)))) (2)

(set! (cdr exp) v)
(set! (car exp) ’'#T)
v))

1Simple (local) versions of this optimization have been used in other compilers, for example the
Lazy ML compiler [24].

60 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

Unfortunately, this optimization is not always safe when combined with the other
optimizations discussed above (1). To see why, consider the function f defined
earlier:

f(z,y) = if y then 0 else z + g(z)

Suppose that + evaluates its arguments left-to-right — first z is evaluated, then
(because we optimize (DELAY (FORCE x)) = x) ¢ is called with a thunk which has
already been evaluated, that is, whose car is *#T. But if ¢ uses the new optimization
(2) for the first access of its argument, then it will try to “call” the cdr of the thunk,
which is a value! The interaction arises because g assumes that its arguments are
unevaluated, but because of the optimizations at (1) this may not be the case.
Of course, we could do a global analysis to determine which functions always get
their arguments unevaluated, and use this optimization in those functions only; this

possibility should be weighed against (or possibly combined with) the next mode.

4.3.6 The Optimized Cell Mode (CO)

This mode is just like cell mode except that a function’s arguments are guaranteed

to be unevaluated on entry to that function. That is,

DELAYco = DELAYq
FORCEgp = FORCEg

The difference is that both of the optimizations described for the first two modes

are disallowed:
(DELAYco (FORCEgo exp)) # exp
(TRIVIAL-DELAY¢co exp) # (DELAYgo exp)
However, the opportunities for using path information increase greatly, and may

outweigh the loss of these two optimizations.

There are three basic pieces of information that are useful in optimizing FORCE

4.3. OPTIMIZING THUNKS

61

for a particular occurrence of a variable . This information, which is provided by

path analysis, can be described as determining for certain that z:

e Has previously been evaluated (i.e., is this never the first occurrence of z?).

e Has never been evaluated (i.e., is this always the first occurrence of z7).

e Will never be used again (i.e., is this always the last occurrence of z?).

If one of the first two conditions holds the status check may be eliminated, and if

the third condition holds the computed value need not be cached. The following

table shows how FORCE¢o may be optimized under the resulting six combinations

of compile-time data:

Evaluated?

Unevaluated?

Unknown

z has already been

This is the only de-

z will never be de-

evaluated:

(cdr x)

evaluated:

(let ((v ((ecdr x))))

(set! (cdr x) v)
(set! (car x) ’#T)
v)

2
Last! evaluated: mand for z: manded again:
(cdr x) ((cdr x)) (if (car x)
(cdr x)
((cdr x)))
Unknown | £ has already been | z has not yet been

No information, no
optimization possible.

4.3.7 Applying Path Analysis at Code Generation

Given the models above, path analysis is easily applied to thunk optimization.

After occurrence paths are computed for each function, the conditions evaluated?,

62 CHAPTER 4. OTHER APPLICATIONS OF PATH ANALYSIS

unevaluated?, and last? are determined for each variable occurrence by examining
every path that contains that occurrence. The compiler then applies as much of
this information as is appropriate for the mode it has chosen.? Qur compiler uses
cell mode, and the thunk benchmarks in Chapter 6 are all done using this mode. A
comprehensive study of the relative practical advantages of cell mode and optimized
cell mode could prove interesting, but would require an in-depth study of how
arguments are typically used in functional programs and is beyond the scope of this

thesis.

We have not discussed the details of code generation, but the compiler must take
great care to ensure that a function’s arguments are always passed in the mode and
state of evaluation in which they are expected. Additional issues arise when higher-
order constructs are considered. In this case simply matching the modes is not
enough; their higher-order behaviors must match as well. Details of these and other

issues in code generation may be found in [5].

20f course, path analysis could be notified of this mode a priori and compute only the appropriate
information.

Chapter 5

Implementation Issues

In the last three chapters we presented a theoretical model for path analysis and
showed how other analyses could be derived from it. In this chapter we discuss
some of the issues that arise in implementing path analysis, update analysis and

thunk analysis, and suggest ways in which our implementation could be improved.

5.1 Implementating Path Analysis
5.1.1 Representing and Manipulating Paths

The first issue in implementating path analysis is how to represent a path. We
represent every path p in two ways: as a vector v in which v[i] contains p’s it*
element, and as a table ¢ indexed by path elements such that #’s entry for the i**
path element is z. Although redundant, this dual representation makes it efficient
to check for an element’s membership and location in a path (via the table) while
maintaining easy access to the ordered path (via the vector). We found that we used
both representations often and that there was relatively little cost in maintaining

them, so we consider the space and time overhead worthwhile. Sets of paths are

represented as lists; this representation is discussed in more detail below.

The next issue is how to compare paths. Path elements are represented by

63

64 CHAPTER 5. IMPLEMENTATION ISSUES

symbols, so two path elements can be compared efficiently via pointer compari-
son. Two paths can be compared fairly efficiently (time linear in the number of
path elements) by walking down the vector representation and comparing elements.
However, comparing sets of paths is expensive, and set manipulations such as union
must be performed often. Unioning two unordered sets of size n can take time O(n?),
and with each comparison taking time linear in the number of path elements, we

found that path unions accounted for much of the runtime of path analysis.

The expense of set manipulation prompted our decision to make all alike paths
tdentical, that is, to represent them by the same object. When a new path is created,
it is entered into a hash table containing all existing paths; if the same path already
exists the new path is identified with it, otherwise it is given a unique identifier
and stored in the table. Using this technique, paths can be compared in constant
time by their identifiers, and sets of paths can be represented by ordered lists or
bit-vectors and compared in linear time. (Although the bit-vector representation
may be slightly more efficient, factors such as widely varying set size led us to use
ordered lists.) The expense is thus shifted from path-manipulation time to path-
creation time; although comparing paths and sets of paths is now efficient, creating
a new path requires that it be hashed, compared with other paths it collides with in
the hash table, and finally assigned a unique identifier. Still, this method produced

a notable speedup in the runtime required by path analysis.

5.1.2 Interactions with Other Analyses

It is important that we not lose sight of the fact that path analysis is an opera-
tional interpretation of a program. In an optimizing compiler in which many such
operational interpretations are going on, care must be taken that they do not trip
over one another. For example, although strictness analysis is subsumed by path

analysis, the use of strictness information can also affect path analysis! Path analy-

5.1. IMPLEMENTATING PATH ANALYSIS 65

sis assumes that data dependencies (and possibly orderings on primitive operators)
supply the only ordering information, but if strictness analysis determines that a
function f is strict in k of its n arguments, the compiler may choose to evaluate those
k arguments before the function call, completely reshaping the order of evaluation

information being inferred by path analysis. Consider the following function:
f(z,y,2) =if = then y else if z then y + 1 else y + 2

In the absence of strictness analysis, the paths through f are {(z,y),(z,z,v)}.
However, if after determining that f is strict in z and y (but not z) we decide to

evaluate both = and y before the call, these paths become {(z,y), (z,y,2)}.

Fortunately, the results of path analysis cannot affect strictness analysis, so
strictness analysis can be performed first, and its information used by path anal-
ysis. This is a straightforward modification that we have incorporated into our
implementation, but it should be noted that in doing so it is desirable to enforce an
ordering on the evaluation of a function’s strict arguments, just as we enforce an
ordering on the evaluation of the arguments to a strict primitive function. Many
compilers leave such an ordering to be decided by issues such as register allocation,

but to do so in this case would vastly increase the complexity of path analysis.

5.1.3 Choosing an Ordering on Primitives

When path analysis was introduced in Chapter 2, we assumed that arguments to
strict binary operators such as 4+ were evaluated from left to right. This assumption
was made to simplify the presentation of path analysis, but in fact there are several
issues involved in choosing an ordering on strict functions. These issues are discussed

in this section.

66 CHAPTER 5. IMPLEMENTATION ISSUES
Strict Binary Functions

First, it should be clear that right-to-left could trivially replace left-to-right as the
standard ordering, as left-to-right was an arbitrary choice to begin with.! Both
choices have the advantage of fixing the ordering at compile-time, so that no ad-
ditional analysis or decision-making is required at runtime. Furthermore, choosing
a single ordering early eliminates the need to maintain the information associated
with other possible orderings, which can be expensive. The disadvantage of an ar-
bitrary fixed ordering is that it is not flexible. There are cases in which the ability
to manipulate order of evaluation either at compile-time or at runtime makes a
significant impact on a program’s efficiency, but with the arbitrary fixed ordering

this ability is lost.

One alternative is to do a compile-time analysis to determine an evaluation
order for each operator, or for each occurrence of an operator, that is optimized
with respect to some criteria. For example, if the goal is to do as much destructive
aggregate updating as possible, and we wish to optimize evaluation order for this, an
operator’s arguments can be examined to determine where aggregates are updated
and used, and to force the uses to occur before the updates. For example, consider

the following function:

f(a,i,j,2) = sel(upd(a, j, x), 1) + sel(a,)

Clearly, a right-to-left ordering on the + inside of f will permit a to be updated
destructively (assuming the global circumstances are favorable as well), while a left-
to-right ordering will not. Furthermore, this can be determined at compile-time.
Unfortunately, in the general case it is not possible to determine an optimal ordering

at compile-time for the following reasons:

1Since most strict mathematical operators are binary (or unary, which is uninteresting from an

ordering standpoint), this section discusses binary operators. However, it should be noted that
the arguments in this section generalize directly to strict n-ary functions, for which n! possible
fixed evaluation orderings exist.

5.1.

IMPLEMENTATING PATH ANALYSIS 67

e In order to optimize computation time, the critical issue is not the number of

lexical occurrences of upd but the number of calls to upd that can be done
destructively. Consider the following example:
f(a,b,%) = g(a,b,%) + h(a,b,1)

g(z,y,1) = if i =0 then z else g(updi(z,1,sel(y,)),y,2 — 1) ;
h(z,y,i) = if i =100 then z else h(updy(=,1,7), upds(y,i,i),i + 1) ;

A static analysis would at best determine the following:

— If the + in f evaluates its arguments from left to right, upd; cannot be

done destructively, but upd; and upds can.

— If the 4+ in f evaluates its arguments from right to left, upd; and upds

cannot be done destructively, but upd; can.

The probable conclusion would be to evaluate the + from left to right, thereby
maximizing the number of lexical occurrences of upd that can be converted to
destructive update. However, since updy, upd,, and upds all occur in recursive
functions, there is no way to tell how often each will actually be called. If f

is always called with 66 < ¢ < 100, the left-to-right decision is suboptimal.

While an optimal runtime ordering can rarely be determined at compile-time,
it is tempting to at least find an optimal static ordering, that is, one in which
the most occurrences of upd may be done destructively. Unfortunately, even
an optimal static ordering is intractable, because in general the ordering on
strict operators depends on the ordering on arguments to functions, which in
turn depends on the ordering on the strict operators! Thus the only possibility
is to consider all possible combinations of orderings on strict operators and
then determine which combinations provide the most static potential for de-
structive updating. While computable, this approach is impractical for most

systems.

68 CHAPTER 5. IMPLEMENTATION ISSUES

Although it may be impractical to compute a truly optimal ordering even in
the static sense, some straightforward heuristics may improve performance. The
simplest approach is a “0/1” analysis, in which for each expression e a boolean
value upds(e) is computed, where upds(e) is true if the computation of e might
require a call to upd, false otherwise. Then if the ¢** strict operator op; appears in
the expression ey op; eq, it will evaluate its arguments from left to right if upds(es)
is false, from right to left otherwise. A slightly more sophisticated analysis might
count the lexical occurrences of upd in e; and e; and evaluate first the expression
with the most occurrences of upd. An even more sophisticated analysis might
determine what aggregates might be arguments to each upd in each of e; and e,,
and which might be used in each expression, and consider only the occurrences of
upd that would be affected by the ordering on the op;. This still is not a complete
analysis because some of the upds that appears to be affected by the ordering of op;
might be unsafe anyway because of a computation that occurs after the call to op;.
It is this analysis, the determination of which occurrences of upd cannot be done
destructively regardless of the ordering on op;, that requires full order of evaluation

information, making a complete static analysis intractable.

Although we implemented the 0/1 analysis described above, we have found that
for our purposes a fixed ordering is sufficient. It would be instructive to study the
effect of the analyses described above on a variety of real programs, but such a

study is beyond the scope of this thesis.

Other Strict Functions

The ordering issue is also interesting for primitives besides strict binary operators.

Consider the swap function below:

swap(a,,3) = updy(upds(a,i, sel(a, 7)), 7, sel(a, 1))

5.1. IMPLEMENTATING PATH ANALYSIS 69

Swap takes an array a and two integers ¢ and j and returns a new array in which the
values of a[f] and a[j] have been interchanged. The interesting point about swap is
that upd, can be done destructively only if upd; evaluates its last two arguments
before its first argument. A little thought about upd suggests that this will often
be the case, since its first argument is an array, which could easily be produced by
a call to upd, and its other two arguments are an integer and an arbitrary value,
whose computations seem less likely to include an update. Thus it makes sense to
put the arguments most likely to perform updates last, which in this case means
upd’s second and third arguments should be evaluated before its first. Of course, a
counterexample in which the opposite ordering would do better is easily constructed,
but we speculate that such counterexamples occur infrequently in practice, and we
fix a right-to-left ordering on upd’s arguments in our analysis. A similar argument

applies to the arguments to sel, and we evaluate them from right to left as well.

It is interesting to note that swap requires a sort of “special treatment” in

imperative languages as well. The standard swap code in Pascal looks like this:

temp := aft;
ali] = a];
alj] = temp;

Element a[¢] is copied into temp so that afi] may be overwritten before its value
is requested. Thus in imperative languages the temporary storage must be used
explicitly, while in functional languages it is implicit, as an argument to the outer
call to upd. Furthermore, if the arguments to upd were evaluated in such an order
that the inner update could not be done destructively, a trailer would be required
to hold the shadowed value of a[¢]; this trailer represents exactly the storage that is

used by temp in the Pascal program.

70 CHAPTER 5. IMPLEMENTATION ISSUES

5.1.4 Higher-Order Constructs

Our implementation of path analysis does little inferencing on higher-order con-
structs. Any time a function becomes anonymous, by being passed into a function,
returned from a function, or stored inside a list or array, the path information
about that function is lost. Although theoretically path analysis extends nicely to
the higher-order case, the higher-order information is very expensive to compute.
Using the higher-order analysis described in Section 2.5, a path pair describing the
order of evaluation properties of an expression contains a path and a higher-order
behavior for that expression, where the higher-order behavior is a function of one
argument that describes how the expression behaves when applied. To compare
two paths, both parts of the path pairs must be compared, which means comparing
functions over the powerdomain of path pairs. Functions are notoriously difficult to
compare; a similar situation arises when strictness pairs are used for higher-order
strictness analysis, and in the worst case it is resolved by enumerating both functions
over their domains.[36] Since first-order strictness information is contained in a two-
element domain (where the elements represent termination and non-termination),
such an enumeration is feasible even if the higher-order behavior of the functions
is several levels deep. Unfortunately, the size and complexity of the Path domain
renders the enumeration trick impractical here, and in the absence of an efficient

mechanism for comparing functions a full higher-order analysis becomes intractable.

Although no real higher-order analysis is performed, our implementation of path
analysis does not abandon higher-order programs entirely. The goal is to analyze
the first-order portions of the program as usual, isolating the effect of the higher-
order constructs as much as possible. The simplest technique is to introduce into
the path domain a new element T, that is stronger than any other element of Path.

Intuitively, T, represents a path that contains no useful information but cannot be

5.1. IMPLEMENTATING PATH ANALYSIS 71

improved. In the path-append operator “:”, T, now dominates; that is,
Vp, Tpip = p:Tp,=T,
Vp#T, 1,:p = p:l,=1,.
The main advantage of this approach is efficiency; T, is a concise way to rep-
resent an unimprovable path. The disadvantage is information loss; in a sense, we
are giving up too much too early. Consider the following example, which uses the

curried notation of the higher-order syntax:
fgrzy=if gz ythen z+yelsex

In this example, the call to unknown function g returns {T,}, which dominates
both possible paths through the conditional, yielding T, as the only possible path
through g. This is unfortunate, as we would like to preserve the information we do
have about the paths through f — for example, that £ must be evaluated in either

path — while still accounting for the uncertainty introduced by the call to g.

The opposite extreme is to consider all possible paths through g, and incorporate
them into the paths through f. This is analogous to the approach taken in strict-
ness analysis when no information is available, where “no information” amounts to
assuming that the function is not strict in any argument. The equivalent for path
analysis, however, is to enumerate the set of all possible paths, which for an n-ary

function contains n! 4+ (n — 1)! 4+ ... + 1 elements, clearly an expensive alternative.

The cost of this approach can be greatly reduced if we are willing to modify
the path structure by letting a single path element point to a set of elements, any
number of which could be evaluated in any order at this point in the path. In the

above example, this approach would give the following paths for f:

{{z, 9}, 2,9), ({z,y},)}

(Note that appearing in a “set” path element does not prohibit an identifier from

appearing elsewhere in that same path.) Applications of path analysis must now

72 CHAPTER 5. IMPLEMENTATION ISSUES

interpret these “set elements” in the most conservative way: to strictness analysis,
the answer to z € {z,y} is false; to update analysis, the answer is true; and to

thunk analysis, it depends on which question is being asked.

v

We actually use a variation of the technique just described in which we enu-
merate a subset of the possible paths through an unknown function that is safe for
our applications, and incorporate this subset directly into the paths through f. For
an unknown n-ary function g, we create a set containing the empty path, the bot-
tom path, and n n-element paths, each of which starts with a different argument.
Then every argument appears before every other argument in some path, and the
possibilities of no arguments being evaluated and of non-termination are explicitly
included. This is a safe approximation for strictness analysis (because of the empty
path), path analysis (because every argument is seen to be evﬂuated before every
other argument), and thunk analysis (because every argument is seen to be evalu-
-ated before and after every other argument). It is clearly more expensive than the
“set” approach described above, but has the advantage of keeping the structure of

paths intact and simplifying their applications.

5.1.5 Nested Equation Groups

The syntax of the first-order language defined in Chapter 1 is flat, that is, it does not
permit equation groups to be nested and it assumes that all functions are named.
This is a fully general model, since any functional program can be lambda-lifted [23]
so that it contains only combinators, but we have found that in practice it is often
convenient to deal with nested programs directly.? This is not difficult, but several

new issues arise.

2This is particularly true since a nested ALFL program generates a nested T program, and T handles
nested environments efficiently.

5.1. IMPLEMENTATING PATH ANALYSIS 73

New Syntax and Semantics

Our syntax now includes equation groups as follows:

¢ € Con constants
x € Bv bound variables
p € Pf primitive functions
f € Fv function variables
eg € EqGp equation groups, where

€g = {fi(a:l) -'-)xn) = €
result e}
e € Ezp expressions, where e =c|z|p(e1,...,en) | fle1,....,en) | eg
pr € Prog programs, where pr = {fi(z1,...,20) = €;}

A program can now be seen as an equation group, but to preserve the meaning of

a program as an environment we have assumed that it contains no result clause.

While the details of the new semantics are not important, it should be noted
that the meaning of an equation group nested at level n is the meaning of its result
expression in an environment that attaches meaning to all functions defined at level
n or less, and that the meanings of the functions in an equation group are defined

in the same way as the meanings of the functions in a program.

Non-local variables

Non-local variables must be treated carefully. Consider the following example:

(glad)= { f@)=ateta
result f(b) + f(a)};
result g(1,2)}

The path through ¢ must reflect the use of a in f, since a is actually evaluated
before b. This implies that f must ezport its non-local variables along with its
path, so that they are included in the path of any expression that calls f. Thus the
paths for these functions are as follows (the occurrences of a have been numbered

left-to-right,top-to-bottom, so a; and a, appear in f and az appears in the result

74 CHAPTER 5. IMPLEMENTATION ISSUES

clause):
f+ {{ar,z,00)}
g9: {{a,0)}
f+ {{ar, 2, a)}

g {(ah b17 az, 1,03, (12)}

Even in basic paths, non-local variables are treated differently from local variables
in that more than one occurrence of each non-local variable may appear in a path.
This does not affect the local meaning of the path, which derives only from the
bound variables occurring in it, but is essential for the path to be able to export the
information about its free variables to functions that use it. In occurrence paths,
nothing changes except that a single occurrence of a variable may appear more than
once in a path. For example, a; and a, each appear twice in the path through ¢'.
This must be possible, since occurrences represent textual appearances and multiple
calls to a function that refers to a non-local variable may result in multiple demands
for the value of a single textual occurrence of a variable. Note that paths are still
guaranteed to be finite in length and number, since the number of appearances of a
given occurrence is bounded by the number of textual calls to the function in which

it appears.

From an efficiency standpoint, it appears that programs with nested equation
groups create longer paths, which are more expensive to maintain and manipulate,
than their lambda-lifted counterparts. While this is true, it must be balanced by
the advantage obtained by performing dependency analysis on the equation groups.
Using dependency analysis, non-mutually recursive equations are separated into
distinct equation groups, greatly facilitating the fixpoint computation. The ALFL
compiler performs dependency analysis, and in our experience its benefits outweigh

the additional path sizes.

5.2. IMPLEMENTING UPDATE ANALYSIS 75

Constants

A similar issue arises in the use of named constants. Consider the following example:

{f@)={ a = 2+
9(y) = a+y+a
result ¢(3)};

result f(2)}

When ¢ is called in f’s result clause, is 2’s value demanded once or twice? In other
words, is a shared, or is the expression & + 1 textually substituted for it everywhere?
This is an operational issue that has no effect on the result of the program, but may
affect the ways in which it can be optimized. We assume that a is shared, and in
fact transform the program so that all such sharing is moved to bound variables.

The transformed program becomes:

{fz)=(Ra{ g(y) = aty+aq
result ¢(3)})(z + 1);
result f(2)}

Although we have not discussed how we treat A-expressions, they pose no problems

since they are simply unnamed functions.

5.1.6 Symbolic Analysis

Like many static analyses, path analysis makes no attempt to do a “logical trace”
of conditionals. In the expression (p — ¢1,a1) + (p — ¢3,a2) the two conditionals
share a predicate, so the only possible paths are (p, ¢, ¢2) and (p, a;,a;). However,
path analysis will also find the “impossible” combinations (p, a1, c;) and (p, ¢, as),
as it will not notice that both conditionals must branch the same way. An analysis

to detect this situation could be layered on top of path analysis.

5.2 Implementing Update Analysis

Update analysis presents its own interesting issues because it is inherently a collect-

ing analysis. That is, we cannot even derive safe, much less accurate, information

76 CHAPTER 5. IMPLEMENTATION ISSUES

from a function f without knowing everywhere that f is applied. This leads to

several implementation issues that do not arise for path analysis.

5.2.1 Higher-Order Constructs

The discussion of higher-order constructs in the last section is insufficient for update

analysis. Consider the example again:
fgrzy=if gz ythen z 4+ y else =

Suppose a function h is passed in for g, and h updates one of its arguments. That
update cannot be done destructively, but we cannot know that without knowing
that h is applied inside of f. (If A were applied directly inside of f, its occurrence of
upd would be exported into f’s paths, where the update conflict would appear.) An
analysis could be done to determine a superset of the functions in which a function
that becomes anonymous could be used, but without a full higher-order treatment
such an analysis would be very weak. Our solution is to identify those functions
that might become anonymous, an easy static analysis, and disallow destructive

updating inside of them.

5.2.2 Index Analysis

We do no index analysis in conjunction with path analysis. That is, we make no
attempt to discover cases where a function updates an array’s i** location and later
accesses its j** element, and Vi, j,4 # j. Such an analysis could be layered on top
of path analysis, and could provide substantial benefit. Although there has been
some related work in optimizing functional programs[15], most work in this area

has been in the field of numerical analysis.

5.3. IMPLEMENTING THUNK ANALYSIS 7

5.3 Implementing Thunk Analysis

Once occurrence paths have been computed, thunk analysis is straightforward. For
every bound variable occurrence, the paths through the function in which that vari-
able is bound are examined. For each path the questions evaluated?, unevaluated?,
and last? are answered, corresponding to whether or not this is the first and/or
last occurrence of this bound variable in this path, and then an AND operation is
performed on the answers to each question across all paths. Thus only questions
that are answered true for all paths are answered true for the variable occurrence.

The bottom path answers true to all questions.

Using our treatment of higher-order constructs described in Section 5.1.4, thunk
analysis can operate directly on the resulting paths without modification. The other
models described in that section do require slight changes to thunk analysis. If T,
is used, it should answer false to evaluated?, unevaluated?, and last? for all paths.
If set notation is used to clump together variables about which we have no ordering
(or even evaluation) information, the set elements must be interpreted in the most
conservative way. That is, if x;; is contained in a set element appearing before z;;
in some path, then both evaluated? and unevaluated? are false for z;;. Similarly, if
z;; occurs in a set element appearing after z;; in some path, last? must be false for

Lij.

Nested equation groups also present no problems for thunk analysis, since all
information about a bound variable occurrence z;; is contained in the path through

the function f in which z; is bound.

78

CHAPTER 5. IMPLEMENTATION ISSUES

Chapter 6

Benchmarks

In this chapter we present and discuss benchmarks for programs that are optimized
using path analysis, and for path analysis itself. Our benchmarks are for programs in
ALFL [17], a functional language developed at Yale, and were run on a MacintoshII
with 13 megabytes RAM. The ALFL programs were translated into T [26] and
then submitted to Orbit, the T compiler. Times shown are for compiled T code,
using version 3.1 of T with 8 megabyte heaps. Since ALFL translates into T, the
ALFL compiler can at best generate optimal T code so that the compiled ALFL
program runs as fast as the hand-coded T program for the same problem. Note
that T uses applicative-order evaluation, and that arrays are non-functional and
are implemented efficiently through destructive udpating. Listings of the programs

we used for benchmarks are included in Appendix B.

6.1 Update Analysis

This section discusses the speedups gained through update analysis. Table 6.1

presents benchmarks for the following programs:

o quicksort: Hoare’s quicksort.
e bubsort: Bubblesort.

79

80 CHAPTER 6. BENCHMARKS

tridiag: Tridiagonal factorization.

init: Vector initialization.

e matinit: Matrix initialization.

matmult: Matrix multiplication.

The size of the structures manipulated by each of the programs is noted in the
table. Note that vector size does not affect update analysis; large vectors were
used for the smaller programs to bring run times out of the noise level. The 1000-
element vector was added for init because it allowed the copying strategy to be
benchmarked in a function where updating dominated the runtime. In addition
to update analysis, strictness analysis, termination analysis, and uncurrying were
performed on all programs. For each program, the table gives the cpu time used
by the hand-coded T program using iteration and destructive operations whenever
possible; for the ALFL program using update analysis; for the ALFL program using
the trailers implementation; and when possible, for the ALFL program using the
copying implementation. In each of these programs update analysis was able to

determine that all updates could be done destructively.

In quicksort update analysis resulted in optimal performance - the time for
the compiled ALFL code is the same as the time for the hand-coded T version.
Using trailers, however, produced a three-fold slowdown, which would be even worse
if adjusted to account for eventual garbage collection of the additional memory
required. Quicksort’s functions are all strict in their arguments and its computations
are vector-intensive, so the effects of more or less efficient vector operations are quite

pronounced.

Bubsort differs from quicksort in two ways: its functions are strict in fewer ar-
guments, and it does more selection relative to the amount of updating that it

does. The strictness issue is reflected in the difference between the time for the

6.1.

UPDATE ANALYSIS

BENCHMARK COPYING | TRAILERS | UPD ANALYSIS | T
QUICKSORT — 2.60 0.73 | 0.73
(10,000 elements)

BUBSORT 3.80 3.45 0.20 | 0.10
(100 elements)

BUBSORT — 12.10 0.56 | 0.43
(200 elements)

INIT 2.6 0.124 0.004 | 0.002
(1000 elements)

INIT — 1.35 0.04 | 0.02
(10,000 elements)

TRIDIAG — 1.88 0.88 | 0.88
(1000 elements)

MATMULT 3.4 4.15 1.15 —
((30x30)x(30x30))

MATINIT 2.48 0.18 0.06 | 0.02
(30x30)

Table 6.1: Benchmarks for update analysis on ALFL programs

81

82 CHAPTER 6. BENCHMARKS

ALFL program with destructive updates and the time for the T program. -The
more interesting point, however, is how close the trailer and copying times are. In
the trailer implementation, access and update both carry penalties, while in the
copying implementation only update is penalized. Thus the additional overhead
of copying is to some extent compensated for by faster access. Of course, part of
the picture is missing here; the copying implementation uses much more memory
than the trailer implementation, and for a 200-element array the time for the trailer
implementation increases in about the expected proportion, while the copying im-
plementation cannot complete execution without garbage collecting (twice!). The

destructive implementation, of course, is far superior to either.

Init is interesting because it is not strict in its last argument and it is extremely
update-intensive. The non-strict argument accounts entirely for the difference be-
tween the T runtime of .02 and the optimized ALFL runtime of .04 on the 10,000-
element array. However, this difference is swamped by the jump to 1.35 that occurs
when trailers are used. The slowdown is so great because init does almost noth-
ing except update arrays, so inefficiency in an array operation has a very strong
effect on the overall runtime. Running init on a 1000-element array produced times
uncomfortably close to the noise level (although the ratios remained very close to
those for the 10,000-element array), but this was the only update-intensive example

on which we were able to benchmark the copying implementation.

Tridiag can be fully strictified, but is interesting because it relies heavily on
floating-point operations. T uses a consing floating-point implementation, requiring
two longwords for each floating-point operation. The overhead thus introduced
is substantial, and the effect of an inefficient array implementation is muffled by
the floating-point inefficiencies. However, update analysis still produces optimal
performance, and using trailers results in a performance degradation of over a factor

of two, so the optimization is still significant.

6.2. THUNK ANALYSIS 83

Matmult shows significant speedup from update analysis. The interesting point
here is that because selections greatly outnumber updates, trailers are actually

slower than a copying implementation!

Matinit shows slightly better speedup than matmult largely because it performs
no other interesting runtime function besides matrix operations, so the effect of
improved performance on these operations is more pronounced. Nevertheless, its
speedup is less than that of ¢nit because of the greater cost of the matrix operations

and the overall greater complexity of the program.

6.1.1 Conclusions

In a function whose dominant costs stem from array manipulation, update analysis
can produce speedups of one to two orders of magnitude; in a function with high
overhead from sources such as non-strict functions or expensive runtime operations,
particularly if the number of array manipulations is relatively small, the effect may
be much smaller. The speedup is significant, however, for all of these array-based
functions. The speedup produced by trailers can also be significant, but is much
less than that of update analysis, and as the matmult benchmark demonstrates,
the trailer representation will actually lose to copying when array selections greatly

outnumber array updates.

6.2 Thunk Analysis

All of our thunk analysis was done using the cell mode described in Section 4.3.

Our examples include the following programs:

o thunks: A small recursive program that performs simple arithmetic function

computations.

o fac: Tail-recursive factorial with floating-point multiplication.

84 CHAPTER 6. BENCHMARKS

e sumn: Factorial using addition instead of multiplication.

o tally: A recursive function that treats array elements as positive or negative

and tries to make them sum to a given total.

o matmult: The matrix multiplication program introduced above.

These are small programs, but are designed to show where thunk analysis is and is
not effective. Recall that when combined with strictness analysis, thunk analysis
optimizes only non-strict arguments since strict arguments do not cause the creation
of thunks. Furthermore, the extent to which even non-strict arguments can be
optimized depends not only on the order of evaluation information that can be
inferred for them, but also on whether or not they are used in a strict context in

the program. For example, consider init once again:
init(a,s,x) = if ¢ = 0 then a else init(upd(a,i,z),7 — 1, 2)

Using paths based on the information that init is strict in @ and 4 but not in z,
thunk analysis can infer that the value of the second lexical occurrence of z (the
third argument in the call to init) will already be computed when it is demanded.
However, since init expects its third argument delayed, z is not forced at the function
call and the information on how to optimize that force is wasted. Often such an

optimization is possible, however, as shown by the programs below.

Table 6.2 shows the runtimes for several programs with and without thunk anal-
ysis and the associated optimizations. Again, except as noted, strictness analysis,

uncurrying, and termination analysis were also performed on all functions.

Thunks shows more than a factor of two speedup because it has very few costs
except those associated with the delay and force of its one lazy argument, and the

force can be optimized with information derived from thunk analysis. Thus this is

6.2. THUNK ANALYSIS 85

BENCHMARK | unoptimized | thunk opt
THUNKS 0.17 0.07
FAC 0.17 0.15
(n=50)

SUMN 0.33 0.25
(n=10000)

TALLY 0.29 0.25
(n=13)

MATMULT 1.19 1.19
(30 x 30)

Table 6.2: Benchmarks for thunk analysis on ALFL programs

in a sense a best case; in fact, the actual speedup from a general FORCE to FORCE-
EVALD, the optimized version for an already evaluated thunk, is a factor of three, so

the factor of two+ speedup exhibited by thunks is near optimal.

Facis a small program on which we did not perform strictness analysis to see how
the overhead of all-lazy arguments affects the speedup produced by thunk analysis.
Fac has one optimizable thunk and shows about 10% speedup; while the effect of
the thunk optimization is to some extent muffled by the totally lazy evaluation, it is
further affected by our use of floating-point multiplication.! This speedup should be

compared with that of sumn below, in which the floating-point expense is removed.

Sumn is simply fac (again without strictness analysis) with the floating-point
multiplication replaced by a fixed-point addition. As expected, the decreased over-

head improves the percentage speedup.

Tally is a doubly-recursive function that takes an array of integers, lower and

upper bounds for the array, and a total value, and tries to make the elements of

!Fixed-point multiplication was unable to produce a value large enough to generate interesting
runtimes.

86 CHAPTER 6. BENCHMARKS

the array sum to the total by allowing each element to be treated as positive or
negative. It contains one optimizable thunk, and our numbers are for inputs for
which the values in the array do not tally to the total, so all possible recursive calls

are taken. A 14% speedup is shown.

Matmult contains two optimizable thunks, but exhibits no speedup with the
thunk optimization. The effect of the optimizations is being swamped by the over-
head of many multiplications and matrix manipulations, and does not contribute

significantly to the total runtime.

6.2.1 Conclusions

While the effect of thunk analysis is less dramatic than that of update analysis,
it can have a definite impact on runtimes. It is difficult to assess how often the
situation in matmult will occur; clearly, it depends on the number of optimizable
thunks and on how often the values of these thunks are demanded, but because the
evaluation status of an argument must match the status expected by the function
that calls it, the interactions between strict and non-strict arguments are somewhat
non-intuitive. However, the numbers in the next section show that thunk analysis is
inexpensive once paths have been computed, so it is worthwhile even for programs

where the speedup it produces is small.

6.3 Analysis Time

The final point of interest is analysis time: How long does it take path analysis,
and then update analysis and thunk analysis, to infer the information required for
the optimizations discussed above? As discussed in Section 2.3.3, the worst-case
complexity of path analysis is at least exponential in the number of arguments to a

function. However, this gives little practical information about how long the analysis

6.3. ANALYSIS TIME 87

will take; some worst-case exponential algorithms are quite speedy in practice, while

some linear algorithms with large constants are very slow.

Table 6.3 gives cpu times in seconds for preparation, path analysis, update anal-
ysts and thunk analysus for six programs. Preparation includes parsing, dependency
analysis and some node initializations within the parse tree. Path analysis finds
all update paths, that is, its paths contain update elements, and it does aggregate
propagation at the same time. While the analysis could be modified to compute
only “ordinary” paths, the additional cost of the update information is small so we
compute it automatically. Both basic paths and occurrence paths are computed in
this stage, but this does not include the time required to get the strictness informa-
tion that can be incorporated into path analysis. Update analysis takes the paths
found by path analysis and the program tree and determines which updates may
not be done destructively. This includes finding the transitive closure discussed in
Chapter 3 and the additional paths it implies. Thunk analysis takes the paths found
by path a,nélysis and for each bound variable occurrence determines whether it is
guaranteed to be the first, not first, or last occurrence of that bound variable to be

demanded.

The programs are listed roughly in order of size, ranging from two lines for init
to about 15 lines for gsort. The first observation is that path analysis is far more
expensive than preparation, update analysis, or thunk analysis, so we will focus our
discussion on it. The next observation is that our times are all for small programs,
and there is a reason for this: as the size and complexity of a program’s functions
grow, path analysis becomes relatively much more expensive. This is demonstrated
to some extent by the times for matmult and gsort. Although they differ in length
by only a couple of lines, their analysis times differ by a factor of three; we speculate
that this is because the functions defined by gsort are more mutually recursive than
those in matmult and generate more paths. For larger programs this effect is much

more pronounced. For example, a program to perform lu-decomposition that was

88 CHAPTER 6. BENCHMARKS

only about 40 lines long ground path analysis to a near halt. Interestingly enough,
the ALFL compiler’s standard strictness analysis ran very slowly on precisely the
same program! For both analyses, it was not the size of the program that caused
problems but its structure of deeply nested function definitions and highly recursive
equation groups; a 40-line (or much larger) program with a simpler structure and
few recursive dependencies would yield to either analysis quite easily. Although the
complexity of both strictness analysis and path analysis grows not with program
size but with the number of arguments to a function, it seems that some programs
push that complexity closer to its theoretical worst-case than others; in particular,
we speculate that large programs do this much more often than small programs.
Thus we must conclude that like many interprocedural analyses, path analysis as

described and implemented in this thesis is not a practical tool for large programs.

6.3. ANALYSIS TIME

BENCHMARK | prep | path | upd | thunk
INIT 0.3 0.8 0.1 0.03
MATINIT 0.4 0.4 04| 0.03
TRIDIAG 1.2 3.8 1.1 0.13
MATMULT 1.3 5.0 1.1 0.32
BUBSORT 14 9.1 4.9 0.22
QSORT 1.3 13.9 0.9 1.1

89

Table 6.3: Runtimes of path, update, and thunk analysis on ALFL programs (sec)

90

CHAPTER 6. BENCHMARKS

Chapter 7

Other Models of Order of
Evaluation

7.1 Order of Evaluation in a Parallel System

7.1.1 The Sequential Nature of Path Analysis

Path semantics describes the order of evaluation properties of a lazy functional pro-
gram in a sequential system. As we discussed briefly in Chapter 2, the sequential
model is enforced by the assumption that the arguments to a strict binary operator,
for example 4, are evaluated from left to right. As we pointed out in that discus-
sion, the general model also considers an ordering from right to left, but under no
circumstances can the evaluations be interleaved, as would be possible (and quite

natural) in a parallel system.! Consider the following program:

f(a'> b,C) = g(aa b) + ¢
g(z,y) =if z thenyelse y + 1 ;

In a sequential system the two possible paths through f are (a,b,¢) and (c, a, b); in

a parallel system, however, there is an additional possibility: (a,c,b).

1Of course, such interleaving is possible in a sequential system as well, but since doing so offers no
advantage we have not considered this possibility.

91

92 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

To see the problems this can cause, consider a slightly modified example:
f(a', b) = g(a) b) + g(b, a);

g(z,y) = if h(upd(z,i,7)) then y else y +1 ;

Here h is some unspecified function that is strict in its argument, and 7 and j are
global variables that are not of interest. Assuming that the arguments to + could

be evaluated in either order, the possible paths for f and g are shown below:

g: {(ma(updlaw))y)}
f: {(a, (“pdl)a))b, (Updl, b))) (ba(updbb),a) (updlaa))}
I {(al, (updy, 01), b1, b, (Updl, bz), az), (bz, (updy, b2), az, a1, (updy, al), bl)}

The paths associated with f’ are the occurrence paths through f where distinct

occurrences of f’s variables are numbered statically from left to right.

It it clear from f’s occurrence paths that if the arguments to + are evaluated
from left to right, @ can be updated destructively but b cannot be, and if they are
evaluated right to left b can be updated destructively but a cannot be. Under no
circumstances can both updates be done destructively, but it is always the case that
one of the two can be. Of course, without knowing which ordering will be chosen
for 4, neither destructive update is safe, but typically an ordering would be fixed

in advance or chosen on the basis of a compile-time analysis.

Now consider the case where the arguments to +, and hence the two calls to ¢,
are evaluated in parallel. Let g' represent the call g(a,b), and g2 represent the call
g(b,a). Suppose g' updates a, then g% updates b, then ¢ uses b, then g2 uses a.
This produces the following path:

(al, (uPdl, ax), by, (updy, by), b1, az)

In this path, neither update can be done destructively, a possibility that did not
arise in the sequential case. Thus applying the sequential analysis to a parallel

system can give unsafe results, and thus is not acceptable.

7.1. ORDER OF EVALUATION IN A PARALLEL SYSTEM 93

The reader may notice that while the parallel scenario presented here is worse
than either of the choices in the sequential case, it is no worse than both of the
sequential choices. That is, if in the sequential model we were not to choose an
ordering but to assume that either ordering could occur, we would conclude that
neither update could be done destructively, just as we did in the parallel case.
In fact, this will hold in general. While assuming all possible orderings on strict
operators does not accurately model order of evaluation in a parallel system, it does
provide safe results when used as the basis for an aggregate update analysis. We call
this model eztended update analysis. The semantics for extended update analysis
differs from that of regular update analysis only in the strict primitive functions,

which change as follows:

UL+ = Ao.{ (nome, (a7 : y7)), (rone, (7 : 7)) | (2,7) €)
CGIIF] = s (<% (02), (a (571 @) | (,0r0) €)
UUPD;] = As{ (none,(z?::*:a”:{((j,a%)))

That this model guarantees safe results is stated in the theorem below:

Theorem 6 Let extended path analysis be a path analysis in which no assumption
s made about the order in which strict primitive operators evaluate their arguments.
Then if the it* lexical occurrence of upd (upd;) cannot be done destructively in a
parallel system, there exists at least one path in the set of paths found with extended

path analysis in which upd; cannot be done destructively.
Proof: For upd; to be unsafe as a destructive operator, two conditions must hold:

1. At some point in the computation, upd; must update some aggregate a, and

2. At some later point in the computation, a must be used again.

94 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

Suppose that these conditions are satisfied during the evaluation of op(ey,...,e,),
where op is a strict binary operator, and e;...e, are arbitrary expressions. One of

two sequences of events must occur:

1. Both the update of ¢ and the subsequent use of a occur during the evaluation

of e;.

2. a is updated during the evaluation of e; and used during the evaluation of

e J # 1.

Clearly, sequence (1) can occur in either a sequential or a parallel system, as it
does not involve op or e;. Sequence (2) can occur in a parallel system only if the
portion of e; containing the update of a occurs before the portion of e, containing
a’s use. This will occur in a sequential system if e, is evaluated before e,, which is

guaranteed to be included in the orderings considered by extended path analysis.O

7.1.2 Parallel Path Analysis

The easiest way to derive a parallel model from path analysis is to consider all
possible interleavings of evaluation orders at strict operators. For example, if +, is

the path interpretation of +, this means that

($1,€C2) +p (yl,yz) = { (»’01,372,?/1,3/2)
(.’121, y1>$2)y2>
(371, Y1, Y2, T 2)
(3/1,331,332,?/2)
(Y1, T1,Y2, T2)
<y1,y27 CL'1,(132)}

In general, the number of paths generated in this way is bounded from below by 2%
where k is the number of elements in the shorter of the two path arguments to +,

— a clear source of “path explosion.”

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 95

7.2 An Alternative Sequential Model

The path model described in Chapter 3 is very general in that it computes com-
plete order of evaluation information. However, for some applications less complete
information may be sufficient. Consider the thunk optimization in which the i**
occurrence of a bound variable £ may be accessed directly if we know that some
jt* occurrence of z will definitely have been evaluated first. This requires much less
information than is computed by path analysis, and if this were the only use for

path analysis in a given application, it could be computed more directly and less

expensively.

In this section we present four non-standard interpretations for a program pr,
B,, MB,, A,, and MA,, each of which returns an environment which, when applied
to an n-ary function f, an index 7, and a set of elements of V to be bound to each

- bound variable occurrence, describes the behavior of z; as follows:

L. (BplprDIf1(2, 51, .., 8n) (Before): Returns the elements of the s that must

be used before z; is evaluated.

2. (MB,IprDIfI(, s1, ..., 8n) (Maybe Before): Returns the elements of the s, that

might be used before z; is evaluated.

3. (AlprDIfIG, s1y ..., $n) (After): Returns the elements of the s;, that must be

used before z; is evaluated.

4. (MALprDISIG, s1, -, Sn) (Maybe After): Returns the elements of the s that
maght be used after z; is evaluated.

It is difficult to state a precise relationship between these analyses and path analysis.
Although it is clear from the description in the next section that the information

they contain could be derived from path analysis, it is not clear how much less

96 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

information they compute. It is also not clear how their complexities are related to
that of path analysis; although each of these analyses is exponential in the worst
case, the domains of bound variables on which they operate are so much simpler
than the domains of paths that in practice they are much easier to compute. In
short, what we are presenting here is simply a less general model that has an intuitive

relationship to path analysis, but not necessarily a formal relationship.

Although the analyses described below are quite different from path analysis, it
is helpful to introduce them by relating them to the intuitive notion of paths. In the
remainder of this section we will use the term path as it was introduced in Section
2.1, but without implying any particular relationship to path semantics and path

analysis.

7.2.1 Intuitive Description

Recall that a path through a function f(z,...,,) is an ordering on the evaluations
of the ;. A path can be represented as a sequence, for example (z;,...,z;, ..., Tk);
in this path, z; is evaluated before z;, and z; and z; are both evaluated before z.
A path is not required to contain all of the z;, since with lazy evaluation some of

f$ arguments might never be evaluated.

Now define the relations <, and >, and their negations as follows:

def .
z; <p,T; = &; appears before z; in path p
def .
z; Ap; = z; does not appear before z; in path p
def .
z; >, x; = x; appears after z; in path p
def .
z;¥,2; = ; does not appear after z; in path p

For now, assume that each bound variable in f is used at most once, that is, that
there is no sharing. Also assume that there is a single path p associated with f. We
can now define a function B,[x;] that defines the set of things that appear before
z; in p, and a function A,[z;] that defines the set of things that appear after z; in p:

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 97

z; € Bylzi] & z; <,
z; € APII:B,']] & Ty T

While this is useful if there is only one possible path through f, there are typi-
cally many possible paths, and at compile-time they all must be considered equally
likely. Let P be the set of these possible paths, and let P; be the largest subset of
P such that all p in P; contain z;. If we now wish to talk about things that will

definitely be evaluated before and after z;, we have to modify our definitions for B

and A:
z; € Blz;] & (Vpe P)z; <,
z; € Alz] & (VY€ P) x;>puw;
;€ NBlz;] & (Vp€ P) z; £,z
:l;jENAﬂ:Bi]] < (VPEP,‘) z; ?Lp T

By restricting our set of paths to P; we are assuming that z; will be evaluated.

This assumption holds throughout this section, but in the future we will abbreviate

Vp € P; and dp € P; by Vp and 3p.

Note that we have dropped the subscripts on B and A, since they are now defined
over all possible paths. We have also defined two other sets, NB (not before) and
NA (not after), which are not complements of B and A.

We can talk about things that happen in some paths but not in others as things
that might happen; M B(z;] defines the set of things that might be evaluated before
x;, and M Afz;]] defines the set of things that might be evaluated after z;:

T € MB[z;] & (Hp) Tj <p T;
z; € MAJz;] & (Hp) Tjrp T4

Note that M B[z;] and NB[z;] are complementary, as are M A[z;] and N Afz;].
This will be useful later, because it is often easier to directly compute the set of
all things that might occur than it is to compute the set of all things that cannot

occur.

We can now lift the restriction that no formal parameter can be shared. We will

termporarily retain the assumption that z; is not shared, but any other z; may have

98 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

k occurrences, denoted z;;...zjk, and a path is now a sequence of occurrences (we
will denote the single occurrence of z; by ;). This allows us to distinguish between
z; being used before (or after) z; is evaluated and x; being evaluated before (or after)
x; 18 evaluated. In terms of occurrences, the latter relationship amounts to knowing
if the occurrence of z; that is demanded first appears in the path before (or after)
the first (and under our current assumptions only) occurrence of z;. In the formulas
below, By, Ay, NB,andN A, make up the “use model”, while B,, A., NB.andN A,
make up the “evaluation model”.

Zj € Bu[[a:il]]
T; S Au[[‘”il]]
z; € NB,[zu]
Z; S NAu[[a:,l]]

(Vp)(Elk) Tk =<p Ti1

(Vp)(ak) Tk 7 p Ti1

(Vk,p) 2k Ap Tia

(Vk,p) zjk #p Tia

(Vp)(3k) zjk <p Tir

(Vm,p)(EIk) Tk mp Tia A Tim 7417 T3
z; € NB,[zi] (VE,p) Tk £p Tir

r; € NA[zu] (Vk,p) (Am)zj #p za V Tjm <p Tar

From these definitions we can see that:

z; € Be[ri]
z; € Afzi]

e ¢TTT

B[za] = Bulzal

Afza] = AJzal N NB,[za]
NB.[zu] = NB,[za]
NAJza] = NAuJza] U B.[za]

Thus the evaluation of x; can be described in terms of the uses of x;. This
is important because the computational models developed in Section 7.2.2 model
“use” much more naturally than “evaluation”. Furthermore, recall that in the
“uses” model we can substitute the complement of M B[z;] for NB(z;], further
facilitating the computation. Thus to effectively compute the set of z; that are [are
not] evaluated before [after] z; is evaluated, we need only to compute the set of «;
that are [might be] used before [after] z; is evaluated. From this point on we will

discuss only these four sets, since all others can be derived from them.

We still have one restriction, which is that x; occurs only once. To lift this

restriction, suppose that each argument z; to function f has an arbitrary number

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 99

of occurrences, and we want to know what will [might be] used before [after| z; is
evaluated. Since it is the evaluation of z; that we are interested in, for any given
path p we only care about the first occurrence of z; to appear in p. Of course, this
may vary from one path to another, so for path p we refer to the first occurrence of

; in that path as z%,.

Consider the case of Before. z; € B,[z;] means that (Vp)(Im)zjm <, 2%y, But

(Vk)a?, <, T, so we are really just stating that

z; € Byufzi] & (Vp,k)(Am)zjm <p zik

Similar reasoning yields the following equations for the other sets:

T; € MBuII:B,]] A4 (Eip, m)(Vk)me ~p Tik
z; € Ayfz] & (Vp)(3k,m)2jm >, ik
z; € MAJz] & (3p,k,m)zim >p Tik
It is clear from the above definitions that the behavior of z; depends on the
behavior of the ;. For example, B,[z;] may be computed by computing B,[z]
for each path p. If B, [z:] denotes By[z k] for a single path p, and similarly for the

other analyses, then

Bu |I€C¢]] = np»kBup [[mik]]
MB,[z;] = UpNg By [zu]

Au[[mi]] = np Us Aup ﬂw’k]]
MA[z;] = Uppdy,[za]

In Section 7.2.2 we compute precisely the sets described by these equations,
but our method is somewhat different from that implied in the above discussion.
Instead of computing all paths through a program and for each path computing the
properties of the z;; that occur on that path, we start with an z;; and compute a
single property that holds for it over all paths. We still need to combine our results

for occurrences to obtain a result for a bound variable, but it is done in a slightly

100 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

different way. The approach taken and its relationship to the problem description

appears after each set of semantic equations.

Notational Conventions

To facilitate our presentation in the next section we adopt the following notational

conventions.

First, we introduce labeling in order to handle backward flow properly. Every
expression has a unique label. Labelled expressions have the form [: e, and we
define expr and label by expr(l) = e, and label(e) = I. Thus an expression e
may be referred to with or without its label, or solely by its label, without loss of

information.

Second, we assume no sharing of expressions other than formal parameters; this
results in no loss of generality, since any subexpression can be parameterized. As
in the last section we must be able to distinguish between occurrences of bound
variables; we refer to the j occurrences of a bound variable z; as z;; ... z;;, where

each z;; is simply a labelled expression. Note that z; is not an expression.

Finally, we introduce the notion of a contezt, as intuitively described earlier. We
associate with every program P a function contextp that gives the context of every
subexpression in P. For example, consider the expression E = [f(e1,...,€i...,e,)]
in program P (from now on we shall enclose syntactic objects in double brackets).
Then contextp[e;] = E. Note that conteztp[z;;] is well-defined, but contextp[x;] is
not, since z; is not an expression. For simplicity we refrain from a formal definition

of context with respect to a given program, but its construction should be obvious.

7.2.2 Non-Standard Semantics

The non-standard semantics in this section are for programs in the “generic” first-

order lazy functional language whose syntax and semantics were given in Section

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 101

1.5.

Preliminaries

We define four non-standard interpretations for a program pr = [{fi(z1,...,%n) =
body;}1, B,lpr], MB,Ipr], A,lpr], and MA,[pr]. Each of these returns an environ-
ment which, when applied to a function f, an index j of an argument to f, and a
set of elements of V' to be bound to each bound variable occurrence, returns the set

of things in V that will [might] be evaluated before [after] z; is evaluated.

These semantic descriptions make use of the following auxiliary functions: Given

some expression e = f(eq,...,e,):

Ne]= those e; that will definitely be evaluated in evaluating e.
D[e] = those e; that might be evaluated in evaluating e.

N is simply first-order strictness analysis for expressions, and is adapted from the
development in [21]. Note that both A[e] and D[e] concern expressions that are (or
might be) evaluated during the evaluation of e, in contrast to the previous questions

of what is evaluated before and after e’s evaluation.

The following standard semantic domains are used throughout our analysis:

Vv, the set of variables of interest

Sv, the powerset of V

I, the set of indices of functional arguments

Sfun =Sv™ — Swv, the space of functions that map sets
of variables of interest to other sets

Env = Fv — S fun, the space of function environments

Bve = Bv — Sv, the space of bound variable environemnts

102 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

For each interpretation, the function environment is an element of Env, and the
bound variable environment is an element of Bve, thus:

bve € Buve
nenv, nenv’, benv,
mbenv, aenv, maenv € FEnv

For each interpretation we also define a set of semantic functions. They are listed
below with their types:

Ky Koy Kmpy Koy Kma ¢ Pf — I — (Sfun+ Sv)
N'. B, MB, A, MA : Ezp — Bve — Env — Sv
N, By, MB,, Ay MA, : Prog — Senv

First-Order Strictness (V)

Our treatment of strictness analysis is taken almost directly from [21]. We omit
the details, since our analysis differs only at the formal parameter, where we define
N to operate on occurrences of bound variables, instead on the bound variables
themselves. Thus N [z;;]bve nenv = bve[z;;], while Nz;]bve nenv is undefined.
The standard strictness analysis may be trivially obtained from our version simply

by requiring that all occurrences of a single bound variable behave identically.

As in [21], we also define N, [pr] = nenv, where the environment nenv is the
least fixed point of the set of “strictness equations” for the functions in program

pr. We use nenv freely in our analyses.

Possible Definitions (D)

Dle] is used instead of strictness when we want to know what expressions might be
evaluated in evaluating e, rather than the ones that are sure to be. D[[e] essentially
traverses the subtree rooted at e and returns the values in bve of the occurrences of

formal parameters found at the leaves.

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 103

D: Exzp — Bve — Sv

Dlc]bve = {}

Dlzi;]bve = bvefx;]

Dlp(ey, ..., en)]ove = Dles]ve U ... U Dle,]bve
Dlf(es,. .. en)]bve = Dles]bve U... U Dfe,]bve

Before (B)

Intuitively, B takes an expression e and environments bve and benv, and returns
a set of elements of V that must be used before e is evaluated. Note that K,
takes a primitive function p and returns a function whose first argument is an
indez indicating which of p’s arguments is being evaluated, where the arguments
are numbered from left to right starting with 1. For example, since we assume no
fixed ordering on the arguments to +, Ky[+] returns a function that always returns
{}. For the conditional, however, we know that the predicate is evaluated before

the arms, so ICy[IF](%,p, ¢, a) returns p when ¢ is 2 or 3, otherwise {}.

Ke |I+]] =)\(i,a:,y). {}
Ky [IF]) = M¢,2,y,2). if i = 1 then {}
else if (1=2)V (¢ =3)thenxz

else error

Blle;bve benv = case contezt[e;]

] it {} (top of function)

Liplery ... €iy.v.,€0) it Kol[pl(z, Ne1]bve nenv, ..., Ne,]bve nenv)
UB[ezpr(l)]bve benv

L flery o €iye e ren) it benv[[f](i, N ei]bve nenv, ..., Ne,]bve nenv)

UB[ezpr(l)]ove benv

104 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

Bol{fi(z1,...,2a) = body;}] = benv whererec
benv = [(A(J, Y15 s Yn)- Ne(Blejt] {}/@jur Ym/Tmas m # j] benw))/ fi] (1)

Context and nenv (the strictness environment) have been dropped as arguments
to B; they are independent of this analysis, and have presumably been defined in

some outer scope.

In our path description for Bfz;] in Section 7.2.1, we intersected over all bound
variable occurrences and over all paths. Here, our function B[z] returns the things
that must occur before z;, i.e., that occur before z; on all paths. (This is evident
in the definitions for constant functions and by the fact that the forward flow is
done with strictness, /). Thus we have effectively done the intersection over paths,

and it remains only to intersect over k; this is precisely the intersection that appears

in (1).

Maybe Before (MB)

Intuitively, MB takes an expression e and environments bve and mbenv, and returns

a set of elements of V' that might be used before e is evaluated in environment bve.

Kmp[+] = A(G, z,y). if i = 1 then y
else if2=2thenz
else error
Kmb[IF] = A3, 2,y,2). if ¢ = 1 then {}
else if (1=2)V(:=3)thensz

else error

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 105

MB[e;]bve mbenv = case contezt[e;]

Il i+ {}

U:(pley . seiyeieyen)) it Kma[P](2, Dles] bve, . . ., Dlen]bve)
UMB[expr(l)]bve mbenv

i (f(eryes€iyeenyen)) it mbenv[f](Z, Dle1]bve, . .., D[e,]bve)
UMB[ezpr(l)]bve mbenv

MB,[{fi(z1, ..., xn) = body;}]| = mbenv whererec
mbenv = [(A(J,y1..-Yn). let bver = [{}/ s, Ym/Tms, m F J]
bvey = [((MB[[z ;1] bves mbenv)/z ik, V/ T ms, m # 7]
in (N'[body;] bves nenv’) N (Ui(bves[z k] N Bz jx]bves benv)))/fi] (2)

where N'[[body;] returns the intersection of the bound variable occurrences in which

body; is strict, and is defined below:

KIIF] = Mz,y,2). e N(yUz)
KLl+] = Mz,y). a2 Ny
N[p(e1, ..., €2)] bve nenv’ = KL[p](N'[e1] bve nenv’, ..., N'[e,] bve nenv')
N'[f(e1, ..., €x)] bve nenv' = nenv'[f(N'[e1] bve nenv’, ..., N'[e,] bve nenv’)
N'[z;;] bve nenv’ = bve[zy;]
N[c] bve nenv' =V
N'T{fi(z1,...,2n) = body;}] = nenv' whererec
nenv’ = [(Ays...yn-(N'[bodyi] [y;/zjs] nenv'))/ fi]

In our path description for M B[z;], we intersected over all z; in a path and
then unioned over all paths. Here, MB[z;] finds the things that might occur before

z;;, on any path, so we have effectively done the union over all paths (again, this is

106 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

apparent in the definitions of K,;; and in the use of D for forward flow). However,
we still need to combine the values for MB[z;] to get a single value for z; (note
that simply intersecting MB[z] over k is not correct). If z; appears in every
path (i.e., if f is strict in z;;), then for z; to appear before all occurrences of z; in
some path it must appear before x;; in that path, and thus must be an element of
MB[z;]. Thus it is clear that we need to intersect MB[z ;] over all strict z;, and
this is precisely what A’ does in the first half of the intersection in (2).

But a function will be strict in an occurrence of z; only if it is strict in z;, which
we do not require, since we assume that z; will be evaluated. If the function is not
strict in ;, then the set of things that might occur before z; is simply the set of
things that occur before :cf-’# in any path p. We do not know which z;; serve as wf#
for some p, but we can determine this set by noting that if for some p, x4 = 2%,
then no other occurrence of x; definitely occurs before x;;, since x;;, occurs first in
some path. Notice that in the second half of the intersection in (2) we intersect
MB[z] with MB[z;,,] where z;, definitely occurs before z;. This is done in
an environment (bvey) in which if no such z;, is found, the set of all variables is
returned, so the intersection has no effect. Otherwise, MB[z;;] is reduced to those
things that might occur before occurrences of z; that definitely occur before z;(!).
Thus, the effect of the second half of the intersection in (2) is to union MB[z]

over all k for which, for some p, z; = z¥,.

In sum, we effectively intersect over those strict z;; and union over those non-
strict z;; that might occur first, and then intersect these sets. It is interesting to
note that if f is strict in z;, then (2) is entirely determined by the first half of the
intersection (since the second half will return a superset of the first half); similarly,
if f is not strict in z;, (2) is entirely determined by the second half of the intersection

(the first half will return a superset of the second half).

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 107
After (A)

Intuitively, A takes an expression e and environments bve and aenv, and returns a

set of elements of V that must be used after e is evaluated.?

Kal+] = A6, 2, y). {}
KJIF) = A%, 2,y,2).iff i =1thenyNz
else if (1 =2)V (i = 3) then {}

else error

Ale;]bve aenv = case contezt(e;]
I = {}
L:(plet,. .. s iy . sen)) i Kolpl (i, Mer]bve nenv, ..., Ne]bve nenv)
UA[ezpr(l)]bve aenv
L(fleneonsei e sen)) i+ aenv[[f](Z, Mei]bve nenv, ..., Nea]bve nenv)
UA[ezpr(])]bve aenv

A [{ fi(z1, ..., zn) = body;}] = aenv whererec
aenv = [(A(J,y1,.. ., ¥n). let bver = [{}/2ju, Ym/@mu, m # §]
bvey = [(Alz k] bver aenv)/z x, {3}/ mx, m 7 7]
in (M[body;] bve; nenv) U (Ni(bves[zjr] U Bz k] bves benv)))/ fi] (3)

In our path description for A[z;], we unioned over all z;; in a path and then

intersected over all paths. Here, A[z;] finds the things that will occur after z; on all

?In the following analysis, note that we disregard the things that are used during the evaluation
of z;. To include them is trivial, since strictness (A') computes the things that must be used
during the evaluation of z;, and defs (D) computes the things that might be used. We can
account for these sets in the translation from the “uses” model to the “evaluation” model, e.g.,
Acfzi] = Aulz:] N NBy[z;] N NDJ|x;], where ND is the complement of D.

108 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

paths, so we have effectively intersected over all paths (as for B, strictness is used
for the forward flow). But as for MB, we did this path intersection first, so what
remains to be done is not a simple union. However, reasoning analogous to that
used for MB applies here. If z;; appears in every path, then anything that appears
after it in all paths will definitely appear after z; so we want to union A[z;;] over
all strict z;. This is a simple application of strictness analysis, and accounts for

the first half of the union in (3).

Again, strictness is not enough. If a function is not strict in «;, then we can be
sure that z; appears after z; only if it appears after all 2, that might occur first.
We determine the set of x;; that might occur first in some path in the same way
as before, by noting that their “before” set is empty, and then we intersect A[z ;]

over that set. This makes up the second half of the union in (3).

In sum, we effectively union over the strict z;; and intersect over those non-
strict z;; that might occur first, and then union these sets. Again notice that if f is
strict in z;, then (3) is entirely determined by the first half of the union (since the
second half will return a subset of the first half), and if f is not strict in z; (3) is

determined by the second half of the union (since the first half will return a subset

of the second half).

Maybe After (MA)

Intuitively, MA takes an expression e and environments bve and maenv, and returns

a set of elements of V' that might be used after e is evaluated.

Kmal+] = A(E,z,y). if ¢t =1 theny
else if:=2thencz

else error

KnolIF] = A, 2,y,2).if i = 1 theny U 2

7.2. AN ALTERNATIVE SEQUENTIAL MODEL 109

else if (1 =2)V (¢ = 3) then {}

else error

MA[e;Jbve maenv = case contezt]e;]

I i+ {}

L:(plerye oy €iyennyen)) it Kma[P](Z, Dler]bve, . . ., Dle,]bve)
UMA[ezpr(l)]bve maenv

L:(f(ety. . r€ipennyen)) it maenv[[f](z, Dlei]bve, .. ., Dlen]bve)
UMA[expr(l)]bve maenv

MAH{ fi(zr,. .., 20) = body; }]| = maenv whererec
maenv = [()‘(.7, Y10)yn)' Uk(m[[wjk]] [{}/wj*, ym/xm*a m 7é j]maenv))/fi]

In our path description for M A, we unioned over all bound variable occurrences
and over all paths. Here, our function MA[z ;] returns the set of things that might
occur after z;, i.e., that occur after z; in some path. Thus we have effectively
unioned over all paths, and it remains only to union over k; this is precisely the

union that appears in (4).

7.2.3 Discussion

While the path model described in Section 7.2.1 differs substantially from the model
described in this section, it is interesting to note that they contain precisely the
same symmetries. In the path model, for B we intersect over both paths and
occurrences; for M B, we intersect over occurrences and union over paths; for 4, we
union over occurrences and intersect over paths; and for M A, we union over both
paths and occurrences. In this section, for B we intersect over all occurrences; for
MB, we intersect over strict occurrences and union over non-strict occurrences; for

A, we union over strict occurrences and intersect over non-strict occurrences; and

(4)

110 CHAPTER 7. OTHER MODELS OF ORDER OF EVALUATION

for MA, we union over all occurrences. While these dualities are not surprising in
either model, it is interesting that two quite different approaches yield results of

such similar form.

Note that since all of our domains are finite, and we use only monotonic oper-
ators, each of the analyses described in this section is guaranteed to have a least

fixpoint.

Chapter 8

Related Work, Conclusions, and
Future Work

8.1 Related Work

Although we know of no other work that focuses on a general model for order of
evaluation of expressions, the theoretical foundations on which our analyses are
based and the problems to which we apply our analyses have been studied in other

contexts.

8.1.1 Denotational Semantics and Abstract Interpretation

Denotational semantics has long been used as a means of attaching meaning to
syntax. A brief history of its developement may be found in [35]; references in-
clude [35,33,2]. Abstract interpretation was introduced by Cousot and Cousot in
[11], and was first applied to the problem of optimizing functional languages by
Myecroft in [27]. Since then a variety of work has explored its use in the optimiza-
tion of programming languages, including work on related issues such as collecting

interpretations[20].

111

112 CHAPTER 8. RELATED WORK, CONCLUSIONS, FUTURE WORK
8.1.2 Destructive Aggregate Updating

Schmidt [34,32] discusses destructive aggregate updating in the context of deno-
tational specifications. His work focuses on determining the serializability of the
semantic store argument of a denotational definition, a property he terms single-
threadedness, and implementing a single-threaded store argurnenf as a global vari-
able. However, the work in [34] relies on a call-by-value reduction scheme, and that

in (32 relies on an even more restrictive scheme called block call-by-value.

Hudak [18)] applies a static reference-counting model to destructive aggregate up-
dating. He describes a non-standard reference-counting semantics for a first-order
functional language with applicative-order evaluation, and gives a computable ab-
straction and a collecting interpretation of this abstraction through which compile-
time information about liveness can be inferred. The generality of this model is
unclear, as difficulties are encountered in attempts to extend it to handle lazy eval-

uation and higher-order constructs.

Gopinath [15] explores targeting, the reuse of storage space where copying would
otherwise be necessary, in applicative-order functional languages. Besides the as-
sumption of applicative-order evaluation, the emphasis of his work differs from ours
in that he makes use of the properties of specific operators, particularly array op-
erators, to do several forms of symbolic analysis, and concentrates on determining
when strategies such as divide-and-conquer are guaranteed to use disjoint portions
of an aggregate structure. He assumes that liveness properties have already been
computed, although in a later work [16] he gives a specification for computing these

properties.

Bruynooghe [6] discusses techniques for peforming a global analysis on logic pro-
grams through which inaccessible data structures are overwritten to gain efficiency.
Typing and mode restrictions supplied by the user are used by the static analysis

in attempting to determine when it is safe to overwrite a data structure. It is not

8.1. RELATED WORK 113

clear, however, exactly how the techniques described here would apply to functional
languages, and whether or not they could handle lazy evaluation and higher-order

functions.

Gopalakrishnan and Srivas [14] use a graph model to determine when destructive
updating of abstract data types is possible for a restricted group of functional
programs, and investigate the possibility of transforming an expression F that does
not permit destructive updating into an equivalent expression E’ that does. Their
work is restricted, however, to applicative-order languages with recursion limited to
iteration. No interprocedural analysis is performed, yielding a simple but ungeneral

" model.

Some languages dispose of incrementally updatable arrays entirely, instead offer-
ring monolithic structures that are initialized upon creation and cannot be updated
later [4,25]. Although easy to implement, these monolithic structures lack flexibility
and are unsuitable for many numerical algorithms. Arvind’s I-structures (3] are a
compromise, providing write-once incremental updating in which the array initial-
ization is essentially spread out over time. I-structures can also be implemented
efficiently without complex compile-time or run-time analysis and they do not re-
strict parallelism, but for a sequential system they lack the flexibility of general

incrementally updatable structures.

8.1.3 Thunk Analysis

Although we know of no other interprocedural analysis aimed at optimizing thunks,
similar local analyses are implemented in many compilers, including the Lazy ML

compiler [24].

114 CHAPTER 8. RELATED WORK, CONCLUSIONS, FUTURE WORK

8.1.4 Strictness Analysis

Strictness analysis has been widely studied. Mycroft [27] first studied the transfor-
mation of call-by-need into call-by-value, and showed that abstract interpretation
is a suitable framework for detecting when the transformation is safe. Clack and
Peyton-Jones [10] give a practical introduction to strictness analysis, showing its
costs and benefits in terras of speedup and analysis time. Burn, Hankin and Abram-
sky [8] and Hudak and Young [21] address higher-order strictness analysis for flat
domains. Hughes |22] addresses strictness analysis for non-flat domains, and Wadler
and Hughes approach strictness analysis using contezts, a technique very similar to
the backward flow we use in the alternative model of order of evaluation discussed

1n Section 7.2.

8.2 Conclusions

This thesis set out to study methods for statically inferring order of evaluation in-
formation for lazy functional programs, and to investigate optimizations to which
this information could be applied. We presented several models of order of evalu-
ation but focused on first-order path analysis, with which we attempted to answer

the following questions:

1. Can order of evaluation information be statically inferred for lazy functional

programs?

2. If obtainable, is order of evaluation information useful for optimizing lazy

functional programs?

The answer to the first question is “Yes, but it’s expensive.” In Chapter 4 we show
that path analysis subsumes strictness analysis and therefore has a lower-bound

complexity of 2", where n represents the number of arguments to a function. While

8.2. CONCLUSIONS 115

this is only a theoretical lower bound, the numbers in Section 6.3 demonstrate that
path information is indeed expensive to compute; in fact, for large programs path
analysis is not a practical tool. However, this result is less surprising in light of
another recent result in this area: a full interprocedural strictness analysis with a
limited higher-order analysis was recently determined to be impractical for large
programs as well.! While disappointing, our “negative” result does not by any
means discredit the path model of order of evaluation; it simply means that path
analysis must serve as a basis from which we can abstract to generate more tractable

analyses.

The answer to the second question is a definite “Yes”. In Chapter 3, path analy-
sis is formally extended to handle the aggregate update problem via update analysis.
Update analysis contains only slightly more information than path analysis, but as
the figures in Chapter 6 demonstrate, the conversions from trailer updating to de-
structive updating that it permits can result in runtime speedups of more than an
order of magnitude. Although the effect of thunk analysis is less dramatic than
that of update analysis, it is clear that for some programs it can produce significant

speedups.

This work has some important theoretical results as well. Non-standard seman-
tics are only beginning to be widely used as a basis for semantic analysis, and the
developments of path semantics and update semantics and their abstractions are
interesting in their own right. Update semantics is particularly intriguing because
analyzing a function f requires information about where f s called, sometimes
called a collecting analysis[20]. Update semantics incorporates a limited form of
collecting directly into the semantics by way of “exporting” update information
from a called function into the function that calls it. The fact that any form of

interprocedural update analysis must do some sort of collecting sets it apart from

1This conclusion was reached by the functional programming group at Yale, and was based on the
strictness analyzer described in [36].

116

CHAPTER 8. RELATED WORK, CONCLUSIONS, FUTURE WORK

other semantic analyses such as strictness analysis and path analysis, and invites

further investigation.

Overall, we conclude that order of evaluation information is an important compile-

time tool and that path semantics and path analysis are useful runtime and compile-

time models for order of evaluation. Further work is required, however, to develop a

practical tool for computing order of evaluation information. This and other areas

open to further investigation are discussed in the next section.

8.3 Future Work

This work suggests extensions in several directions, both practical and theoretical.

1. Improving the runtime performance of path analysis.

o Alternative representations for paths. Much of the runtime cost of path

analysis comes from maintaining and manipulating linear paths. We
chose such a linear representation because it is straightforward and closely
reflects our path model, but an alternative runtime representation of
paths may improve performance. In particular, a graphical representa-
tion similar to that discussed in [14] would be much more compact, but it
is not clear how such a graphical representation would be manipulated in
the context of an interprocedural analysis. This is a promising direction,

however, which we expect to pursue.

A more abstract path analysis. Considering the expense of path anal-
ysis and the importance of its applications, it may be useful to derive
a more abstract path analysis that trades precision for savings in com-
putation time. While the direction such an abstraction should take is
not clear, possibilities include limiting the interprocedural analysis and

maintaining only a subset of a function’s order of evaluation information.

8.3. FUTURE WORK 117

As discussed in our conclusions above, the necessity of this sort of ab-
straction is currently being recognized in the context of other expensive

compile-time analyses as well.

2. Models for lazy evaluation. Although path analysis provides information for
optimizing lazy evaluation, the extent to which this information can be used
depends on how lazy evaluation is implemented. This is a complex issue, as
many aspects of optimization and code generation are affected by the rep-
resentation of thunks and the interfaces used to manipulate expressions in
various stages of evaluation. While this problem extends beyond the issue of
order of evaluation, it is representative of the issues that arise when analyses

are combined in “real” compilers.

3. Theoretical models for semantic analysis. Path analysis and update analy-
sis raise several interesting theoretical issues. The powerdomain construction
used in path analysis is straightforward, but as discussed in Section 2.3.5 a
non-flat path domain would give rise to a general powerdomain construction
whose semantics in the context of the path model is not clear. Such power-
domain problems often arise in semantic descriptions, and an investigation of
the role of powerdomains in semantic analyses could be instructive. Update
analysis proposes another area for future study: how conteztual information
can be described using denotational semantics, and the relationship between

update analysis’s “export” semantics and a true collecting interpretation.

118 CHAPTER 8. RELATED WORK, CONCLUSIONS, FUTURE WORK

Appendix A

Proof of Theorem 5

This proof involves a small trick in that we show that the paths derived using
the independent attribute method yield the same analysis, instead of those derived
from the relational attribute method that was presented in Chapter 3. We do this
because the form of the independent attribute method more closely matches that
of Hudak and Young’s strictness analysis, making comparison of the two analyses
easier. While the relational attribute method yields a more precise (smaller) set of
paths (and thus might seem to give a better strictness analysis), it is easy to show
that the two methods behave identically when the strictness function F' (defined
below) is applied to the resulting sets. (To see why, consider the extra paths gener-
ated by the independent method. Every such path must contain a path generated
by the relational method, and thus performing the intersection in F' with the sets

derived from these extra paths can have no effect on the result.)

The independent method is very much like the relational method, except that
bound variables are bound to sets of paths, instead to a single paths as in the
relational method. The differences are apparent in the domains and equations shown

below (only those equations that differ from the relational method are shown):

119

120 APPENDIX A. PROOF OF THEOREM 5

Domains

D, the domain of path elements

Path, the domain of paths

P(Path), the powerdomain of Path

Pfun = UZ((P(Path))™ — P(Path)), the function space mapping paths to paths

Aenv = Fv — Pfun, the function environment

Bue = Bwv — P(Path), the bound variable environment
Functions

A : Ezp— Bve — Aenv — P(Path)
Ay : Pf — Pfun
A, : Prog — Penv

Allf(e1y...,en)] bve penv = penv[[f](Ale1] bve penv,...,.Afe,] bve aenv)
Allp(er, ...,)] bve aenv = A[f](Ales] bve aenv, ..., . Ale,] bve aenv)
Ax[IF] A(p,c,a).p*(cUa)
AL+ = Noy)axy
Aol{ fi(z1,...,zs) = body;}] = aenv whererec

aenv = [(A(y1, ..., Yn)- Albody;] [y;/z;] aenv)/fi]

The “cross-product” operator * is defined in terms of the path-append operator “::”

(defined in the relational semantics) as follows:

{pl,"'apm} * {Pm+17---apn} =

{P1 2 Pmt1,P1 2 Pty s P15 Dy ooy P 32 DLy ooy P 52 P}

We now proceed with our proof.

Let ls, be the bottom element in the strictness domain (following [21]), L,
the bottom element in the path domain, and {Ll,} the bottom element in the
powerdomain of paths (as in Section 3.2). Note that Lg, represents the set of all

variables V, and {1,} represents the set containing only the non-terminating path.

Define
senvy = [()\(21, ---,Zn)-—LSu)/fi]

121

aenvg = [(/\(21, very Zn)-{lp})/fi]
senvg = [(A(21, ..., z0).S[eil[2;/x;]senvi_1)/ fi]
aenvy = [(A(21, ..y 2n)- Al el [2;/ 2]aenvi_1)/ fi]

Let
pi € Path

yi € D (path elements)
s; € P(V) (strictness sets)

To “translate” from paths to strictness sets, we define the function F' as follows:
F{pla "'7pm}(y1a ceey yn)(‘Sl) ceey sn) = pll N p,2 n..n p;'n

where p; = | J{s;|y; € pi}
We assert that Vy; € D,y; € L,.

Let senv be the strictness environment as found by Hudak and Young, and S
be the strictness function; also let aenv be the path environment, and 4 be the
path function. Then we claim that if the u; are strictness expressions composed of

si, and the v; are sets of paths that are composed of y;,

z € senv[[fi](u1, ..., un) = = € Faenv[f](v1, .., V0)) ¥ty Yn)(51s vy Sn)

where u; = F v; (Y1, Yn)(81, e+, Sn)

Let U(senv,aenv) be the above predicate. (In using Psi we will often drop
the qualifications on u;, but it is still implied.) Since senv, and aenv, are con-
structed from finite domains and monotonic operators, every chain senvg, senvy, ...,
aenvo, aenvy, ... is guaranteed to be of finite height, and thus the predicate is admis-
sible. Now let senv, be the least fixed point of the strictness equations, and aenv,
the least fixed point of the path equations, then we will use structural and fixpoint

induction to show that ¥(senv.,aenv,) holds.

First, consider ¥(senvy, aenvy):

U(senvo,aenvp) = € Lgy <= z € F{L,}(y1,-,Yn)(S1, -, 5n)

122 APPENDIX A. PROOF OF THEOREM 5

L s, is defined to be V', the set of all strictness elements, and by definition Vi,y; € L,.
Thus we have .

\If(senvo,aenvo) =€V < z ¢ USi

1

which is true, since here V is defined to be precisely |J; s;.

Now consider the case of ¥(senvy, aenvy):

U(senvy, aenvy) =

z € Sles)senvi_i[u;/z;] <= = € F(A[e]aenvy_1[v;/z;])(y1, vy Yn) (815 oeey S

This requires structural induction on e;. Let a = senvi_i[u;/z;], b = aenvy_1[v;/z;],

€= (Y15 s Yn)(S1y vy S0)
1. e; is a constant. Then ¥(senvy, aenvi) becomes
ze{} & zeF{{)}c
which, applying F', becomes

ze{} &= ze{}

2. e; is a bound variable z;. Then U (senvg, aenvy) becomes
zTE€u; < z€Fy;c
By the structural induction hypothesis,
u; =Fojc
so trivially the implication holds.

3. e; = f(e1,..,en). Then ¥(senvy, aenv;) becomes

z € senvi_i[[f](S[edlq, ..., S[e]a)

123

<
z e F(qénvk_l[[fﬂ(Auelnb, oy Alea]b))e

By the structural induction hypothesis,
Sle;la = F(A[e;]b)c
but then the fixpoint induction hypothesis immediately applies.
. €; = IF(ey, es,e3). Then U(senvy, aenvy) becomes
z € S[IF(e1,e3,e3)la <> z € F(A[IF(ey1,e2,¢e3)]b)c
Applying the definitions for § and A, we get
z € (S[eaaU(S[es]anS[es]a)) <= = € (F(A[es]b U(Afes]b * Afes]b))c)

Let Q1 = S[eiJaU(S[ex]anS[es]la), Q2 = Ales]b U(A[ez]b * Ales]d). Thus

we are trying to show that
(€@ <= z€FQ;¢)

Note that by the definition of F,

z € (F paths ¢) <= (Vp € paths)(Jy; € p) « € s, (A.1)
Clearly,

T € Q1 < (z €S[ei]a) V (z € S[ezlla A z € S[es]a) (A.2)

By (A.1) and the definition of *, we can see that

T€F Qyc < ((Vpe Ales]b)(3y; €p) z €85) V

(((Vp € Ales]5)(Fy; € p) = € s;) A ((Vp € Ales]d)(Fy; € p) € s;))

124

APPENDIX A. PROOF OF THEOREM 5
which, by (A.1), implies that

T € Qy < (z € F(A[e1]b)e) v ((z € F(A[es]b)c) A (z € F(Ales]d)c))
' (A.3)
But by the structural induction hypothesis, we know that

Sleila = F(A[e]b)(y1, ey yn) (51, .., 8n)

and so (A.2) and (A.3) are precisely equivalent and the implication holds.

The proofs of the other primitive functions take the same form, and their

details are left to the reader.

Appendix B

Text of Benchmarks

QUICKSORT

quicksort vec n == gsort vec 1 n;
gsort vec left right ==
{ pivot == sel vec left;
result (left >= right) -> vec,
scanright vec left right;

scanright v 1 r

(1=r) -> (finish (upd v 1 pivet) 1),
(sel v r) >= pivot -> scanright v 1 (r-1),

scanleft (upd v 1 (sel v r)) (1+1) r;

scanleft v 1 r == (l=r) -> finish (upd v 1 pivot) 1,

((sel v 1) <= pivot) -> scanleft v (1+1) r,
scanright (upd v r (sel v 1)) 1 (z-1);

finish v mid == gsort (gqsort v left (mid-1)) (mid+1) right;

};

125

126 - APPENDIX B. TEXT OF BENCHMARKS

BUBSORT
bsort a n == {result bsort2 a true;
bsort2 a change == not(change) -> a,
sortall a 0 0;
sortall a i change ==
(i=(n-1)) -> bsort2 a change,
((sel a i) > (sel a (i+1))) ->
sortall (swap a i (i+1)) (i+1) true,
sortall a (i+1) change;
swap a 1 j == upd (upd a i (sel a j)) j (sel a i)};
INIT
init a i x == (i=0) -> a, init (upd a i x) (i-1) x;
TRIDIAG

tridiag c a b n

{trilt c ab i

(i>n) -> scons a (scons b (scons c [])),
tri2 (upd c (i-1) ((sel ¢ (i-1)) / (sel b (i-1))))
(upd a i ((sel a i) / (sel b (i-1))))
b
i;

tri2 c a b i ==

127

tril c

a

(upd b i ((sel b i)-((sel a i)*(sel b (i-1))*(sel c (i-1)))))
(i+1); .

result tril c a b 2};

MAT_MULT

matmult a arows acols b brows bcols ==

{result mult_matrices (mkm arows bcols zero_array) 0 0;

mult_matrices array i j ==
(i=arows) -> array,
(j=bcols) -> mult_matrices array (i+1) O,

mult_matrices (updm array i j (do_mult i j)) i (j+1);
do_mult row col == {result do_mult2 0 O;

do_mult2 acc i == (i=acols) -> acc,

do_mult2 (acc + (selm a row i)*(selm b i col)) (i+1)}};

MATINIT

initm a i j x == {result 1loopl a i x;
loopl a i x == (i<0) -> a, loop2 a i j x;
loop2 a i j x == (j<0) ->loopl a (i-1) x,

loop2 (updm a i j x) i (j-1) x};

e e ——— i — e St S - S G G A s G ————— e et v e e T T T - ————————————

128 APPENDIX B. TEXT OF BENCHMARKS

THUNKS

thunks a b ¢ == (a=0) -> b, (c=0) -> b, test2 (a-1) (b+c) c;

FAC

fac n acc == (n=0) -> acc, fac (n-1) (n*acc);
SUMN

sumn n acc == (n=0) -> acc, sumn (n-1) (n+acc);
TALLY

tally lo hi v total ==
{result tally_up lo total;
tally_up lo total == (lo=hi) -> (total=0),
(tally_up (lo + 1) (total - (sel v 1lo0))) -> true,
(tally_up (lo + 1) (total + (sel v 1lo)))};

Bibliography

[1] S. Abramsky and C. Hankin. Abstract Interpretation of Declarative Languages.
Ellis Horwood, 1987.

[2] L. Allison. A practical introduction to denotational semantics. Cambridge

University Press, Cambridge, 1986.

[3] Arvind, R.S. Nikhil, and K.P. Keshav. I-structures: data structures for parallel

computing. In Proceedings of the Workshop on Graph Reduction, Los Alamos,
New Mezico, February 1987.

[4] H. Barendregt and M. van Leeuwen. Punctional Programming and the Lan-

guage TALE. Technical Report, Mathematical Institute, Netherlands, 1985.

[5] A. Bloss, P. Hudak, and J. Young. Code optimizations for lazy evaluation.
Lisp and Symbolic Computation, 1:147-164, 1988.

6] M. Bruynooghe. Compile time garbage collection or how to transform pro-
g P g g

grams in an assignment-free .langua,ge into code with assignments. In Program

Specification and Transformation, pages 113-130, International Federation for

Information Processing, 1987.

[7] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory and practice of strict-
ness analysis for higher order functions. Technical Report DoC 85/6, Imperial
College of Science and Technology, Department of Computing, April 1985.

129

130

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analysis for
higher order functions. In LNCS 21 7;"Program3 as Data Objects, pages 42—62,
Springer-Verlag, 1985. '

A. Church. The Calculi of Lambda-Conversion. Volume 6 of Annals of Math-

ematical Studies, Princeton University Press, Princeton, New Jersey, 1951.

C. Clack and S.L. Peyton Jones. Strictness analysis — a practical approach. In
PFunctional Programming Languages and Computer Architecture, pages 35—49,

Springer-Verlag LNCS 201, September 1985.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th ACM Symposium on Principles of Programming Languages, pages 238-252,
ACM, 1977.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks.

In 6th ACM Sym. on Prin. of Prog. Lang., pages 269-282, ACM, 1979.

L. Damas and R. Milner. Principle type schemes for functional languages. In

9th ACM Sym. on Prin. of Prog. Lang., ACM, August 1982.

G. Gopalakrishnan and M. Srivas. Implementing functional programs using

mutable abstract data types.

K. Gopinath. Copy elimination in single assignment languages. PhD thesis,

Stanford University, 1988.

K. Gopinath and J. Hennessy. Copy elimination in functional languages. In
Proceedings of the 16th ACM Symposium on Principles of Programming Lan-
guages, January 1989.

P. Hudak. ALFL Reference Manual and Programmer’s Guide. Research Re-
port YALEU/DCS/RR-322, Second Edition, Yale University, October 1984.

BIBLIOGRAPHY 131

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

P. Hudak. A semantic model of reference counting and its abstraction (detailed
summary). In Symposium On Lisp and Functional Programming, pages 351—

363, ACM, August 1986.

P. Hudak and R. Sundaresh. On the Ezpressiveness of Purely Functional I/0
Systems. Technical Report YALEU/DCS/RR665, Yale University, Department

of Computer Science, December 1988.

P. Hudak and J. Young. Collecting interpretations of expressions (without
powerdomains). In Proceedings of the 15th ACM Symposium on Principles of
Programming Languages, pages 107-118, January 1988.

P. Hudak and J. Young. Higher-order strictness analysis for untyped lambda
calculus. In 12th ACM Symposium on Principles of Programming Languages,
pages 97-109, January 1986.

J. Hughes. Strictness detection in non-flat domains. In LNCS 217: Programs
as Data Objects, pages 42-62, Springer-Verlag, 1986.

T. Johnsson. Lambda lifting: transforming programs to recursive equations.

Thomas Johnsson. Efficient compilation of lazy evaluation. In Proceedings of
the SIGPLAN 86 Symposium on Compiler Construction, pages 58-69, ACM,
SIGPLAN Notices 19(6), June 1984.

R. Keller. FEL Programmer’s Guide. Technical Report, University of Utah,
April 1983.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. Orbit:
an optimizing compiler for Scheme. In SIGPLAN ’86 Symposium on Com-
piler Construction, pages 219-233, ACM, June 1986. Published as SIGPLAN
Notices Vol. 21, No. 7, July 1986.

132 | BIBLIOGRAPHY

[27] A. Mycroft. Abstract Interpretation and Optimizing Transformations for Ap-
plicative Programs. PLD thesis, Univ. ‘of Edinburgh, 1981.

[28] A. Mycroft. The theory and practice_of transforming call-by-need into call-
by-value. In Proceedings of the International Symposium On Programming,

pages 269281, Springer—Verlag LNCS Vol. 83, 1980.

[29] A Mycroft and N. Jones. 4 “Relational Framework for Abstract Interpretation,
pages 156-171. Springer—Verlag, 1985.

[30] F. Nielson. Abstract Interpretation Using Domain Theory. PhD thesis, Uni-
versity of Edinburgh, October 1984.

31 F. Nielson. A denotational framework for data fow analysis. Acte Informatica,

18:265-287, 1982.

(32} D. Schmidt. Detecting Stack-Based Environments in Denotational Definitions.
Research Report TR-CS-86-3, Kansas State University, October 1986.

[33] D.A. Schmidt. Denotational Semantics — A Methodology for Language Devel-
opment. Allyn and Bacon, Inc., Boston, Mass., 1986.

[34] D.A. Schmidt. Detecting global variables in denotational specifications. ACM

Transactions on Programming Languages and Systems, 7(2):299—310, 1985.

[35] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. The MIT Press, Cambridge, Mass., 1977.

[36] J. Young. Theory end Practice of Semantics-Directed Compiling for Func-
tional Programming Languages. PhD thesis, Yale University, Department of

Computer Science, expected 1988.

