Yale University
Department of Computer Science

Adaptive Load Sharing in Heterogeneous Systems

Ravi Mirchandaney, Don Towsley and John Stankovic

YALEU/DCS/TR-586
November 1987

This work has been supported in part by the National Science Foundation under
grant ECS-8406402 and by RADC under contract RI-44896X.

Adaptive Load Sharing in Heterogeneous Systems*

Ravi Mirchandaney!
Dept. of Computer Science
Yale University
New Haven, CT 06520-2158

Don Towsley
Dept. of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

John A. Stankovic
Dept. of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

November 1987

Abstract

In this paper, we study the performance characteristics of simple load sharing
algorithms for heterogeneous distributed systems. We assume that non-negligible
delays are encountered in transferring jobs from one node to another and in gath-
ering remote state information. We analyze the effects of these delays on the per-
formance of two algorithms called Forward and Reverse. We formulate queueing
theoretic models for each of the algorithms operating in heterogeneous systems un-
der the assumption that the job arrival process at each node is Poisson and the
service times and job transfer times are exponentially distributed. The models
are solved using the Matrix-Geometric solution technique. Many interesting tests
are conducted on the models: e.g., the effects of varying thresholds, the impact of
changing the probe limit, the impact of biased probing, and determining the opti-
mal response times over a large range of loads and delays. Wherever relevant, the

*This work was supported, in part, by the National Science Foundation under grant ECS-8406402 and
by RADC under contract RI-44896X.
tThis work was performed while the author was at the University of Massachusetts.

results of the models are compared with the M /M /1, Random Assignment, and the
M/M /K models. '

1 Introduction

Load sharing (balancing) for distributed systems has been an active research area for
several years. Many of these efforts have demonstrated that simple load sharing algo-
rithms produce considerable performance improvement [4], [9], [3], [1], [12], [11], [2],
[10]. The reader is referred to [5] for a comprehensive survey of load sharing research.

While the previous research provides considerable insight into various aspects of load
sharing, the problem of communication delays and its effects on load sharing had not
been investigated in great detail until [6]. In that paper, we examined the problem
of communication delays in load sharing for homogeneous systems. In this paper, we
extend our analysis to include heterogeneous distributed systems. Heterogeneity in
distributed systems can arise primarily in the following two ways: In the first instance,
the nodes in the system may be identical with regard to their processing capabilities
and speeds, but, the rate at which external jobs arrive at nodes may be different. In
the second instance, nodes although functionally identical, may process jobs at different
rates (in such systems, the arrival rates of jobs at various nodes may also differ). We refer
to these kinds of heterogeneous systems as type-1 and type-2 systems, respectively.
Some of the observations we have made during the course of this study are as follows: In
type-1 systems, Forward probing becomes more sensitive to probe limit as the system
becomes more heterogeneous while the opposite effect is seen for Reverse probing. For
type-1 systems, it was seen that Reverse probing could perform much worse than
the Random scheduling algorithm under several conditions but Forward probing was
always better. In the case of type-2 systems, it was seen that selecting the appropriate
operating threshold was very critical for the slow nodes but relatively less important
for the fast nodes. Details of these and other results are presented in Section 4 of this

paper.

The remainder of this paper is organized as follows: In Section 2, we provide a
description of the system architecture and two simple load sharing algorithms, called
Forward and Reverse. Section 3 contains the formulation of the Markov process cor-
responding to the Forward algorithm and its Matrix Geometric solution. The details
of the analysis corresponding to the Reverse probing algorithm are not presented be-
cause of space limitations and the fact that the general solution technique is similar to
the Forward case. In Section 4, we describe the important results of this research and
summarize our work in Section 5.

2 System Architecture and Load Sharing Algorithms

We assume that the system under consideration is comprised of C distinct classes of
nodes, based upon the external arrival rates of jobs and/or the processing speeds of
nodes. All the nodes in a particular class are assumed to be identical. In addition, we
assume that each node possesses a network controller which is responsible for most of
the overhead associated with load sharing activities. Thus, although the CPU overhead
due to load sharing is assumed to be negligible, job transfers and state update messages
are delayed because of the network controller. It is the effects of these delays that we
study in this paper.

2.1 Load Sharing Algorithms

The two algorithms that we have analyzed are called Forward and Reverse. They
are described in the following paragraphs. Each algorithm is provided with thresholds
T, c=1,...,C, one for each class of nodes.

e Forward: The algorithm executes at every node and is activated each time a
local job arrives at a node. If the number of jobs at this node (including the job
currently being executed) is greater than T, + 1 (the node in question belongs to
class-c), an attempt is made to transfer the newly arrived job to another node.
A finite number, L,, of nodes is probed at random and in parallel to determine
a placement for the job. A probed node responds positively if the number of
jobs it possesses is less than Ty + 1 (the probed node belongs to class-d) and it is
not already waiting for some other remote job. If more than one node responds
positively, the sender node transfers the job to one of these respondents, chosen
at random. If none of the probed nodes responds positively, i.e., this probe was
unsuccessful, the node waits for another local arrival before it can probe again.

¢ Reverse: This algorithm also executes at every node. It is activated every time
a job completes at a node, and the total number of jobs at the node is less than
T. + 1, and the node is not already waiting for a remote job to arrive. If so, the
node probes a subset of size L, remote nodes at random to try and acquire a
remote job. Only nodes that possess more than Ty + 1 jobs, (the probed node
belongs to class-d) are allowed to respond positively. If more than one node can
transfer a job, the probing node chooses one of these nodes at random from which
it requests a job.

Implicit in the above algorithm descriptions is the assumption that a node randomly
probes other nodes, i.e., a class-c node is as likely to be probed as a class-d node.
In general, this assumption may be relaxed for potential performance benefits. For

instance, if a node possessed information about the membership and load of each class,
it can bias probing towards one or more classes. Thus, at each probe, class-c nodes may
be selected with probability f. (with nodes in a class being selected in an equiprobable
manner). In the general case, f.4 is the probability that a probing node of class ¢ will
probe class d nodes, 9_, f.q = 1, Ve.

In the algorithms described above, it is assumed that probing takes zero time. This is
based upon the assumption that probes are much smaller entities than are jobs. Thus,
the overhead for processing a probe is much smaller than for jobs. Further, probes
occupy much less of the communication bandwidth than jobs. Thus, the entire delay
is assumed to occur during actual job transfer. This is a reasonable assumption since
it has been demonstrated in [7] and [5], that as long as the ratio of job transfer times
to probe transfer times is sufficiently large (> 20), the system essentially behaves as if
probes take zero time.

3 Mathematical Analysis

It is assumed that the job arrival process at each class-c node is Poisson, with parameter
Ac- Also, the service times and job transfer times for class-¢ nodes are assumed to be
exponentially distributed, with means 1/4, and 1/4., respectively. In our study, we have
assumed that 4. is independent of the class of nodes under consideration. Thus, for the
remainder of this paper, 4. = <, Ve. The job transfer time includes the time between
the initiation of a transfer from a node and the successful reception of the job at the

destination node. Last, jobs are assumed to be executed on a First-Come-First-Served
(FCFS) basis at each node.

Let N{*" be the number of jobs at node i in class-c at time ¢t and J*) be the probe
state of the :th class-c node, at time ¢. The probe state indicates whether the node is
probing or being probed, etc. For example, in a system which has M, nodes in class-c,
the instantaneous state of class-c nodes can be represented by the 2M.-tuple

(N©, 70 & (VoD oD NeM); g(ed), 7(e) et

The instantaneous state of the entire network (over all the node classes) may be repre-
sented by the following;:

(N, 7) E (O, T0),(N®, 7®), . (N©), JO)).

The probe state J,f(c’i) can be defined in a way that the behavior of the system can be
described by a Markov chain. However, this Markov chain has a very large state space
and is extremely difficult to solve, even for moderately sized systems. Consequently,
we decompose the model in the following way: Each node is modeled independently of
the others. Because there are C different node classes, this results in C distinct single

4

node queueing models. Further, we assume that each node can be modeled as a Markov
chain. The interactions between the nodes which result in job transfers for the purpose
of load sharing in the distributed system, are modeled by means of modifications to the
arrival and/or departure process at each node. These interactions will be described in
detail later in this section.

We conjecture that the method of decomposition is asymptotically exact as the
number of nodes in each class tends to infinity. Actual simulation results indicate
that there exists very good agreement between the model and simulations even when
the systems are of relatively small size (10-15 nodes in each class). We expect the
approximation to be even better for larger systems.

The analysis is performed using the Matrix-Geometric solution technique [8], which
yields an exact solution of the model for each node. Due to space limitations, we will
only briefly describe the analysis pertaining to the Forward algorithm. For complete
details on the analysis, the reader is referred to [5].

Figure 1 represents the state diagram for the Forward probing algorithm operating
at a single node of class-c usin% an arbitrary threshold T,. The state of the node is
)

represented by a tuple (Nt(c), J{?), where N{¥ is the number of jobs at a node and J*

indicates if the node is being probed or not. Specifically, t(c) = 0 if the node is not

being forward probed and Jt(c) = 1 if it is being forward probed.
We define

y(n,3) = lim PN =n, 7 = j),0<n,0<5 < 1,

pslc) = (y(n’ 0)) y(na 1))7 0<n,

ﬁ(c) = (pg)‘:)7pg‘:)’pg0)a ----- pz(‘C),)

If the Markov process (N9, J(9) is ergodic then p(©) is its steady state probability
vector satisfying f)'Qs,f) = 0, where Qg,f) is the infinitesimal generator of this Markov
process. Here Qg,f) has the following structure

B BY o .- 0 0 0 0 T
AP BO BO ... 0o 0o 0 o0
o AP B® ... 0o 0o o0 o0

Bj} By 0 0
AP AP 4P o
0 AP 4P 4p
0 o0 AP 4P

() —
¥ =

O OO O e
o O O O
o O O O

with exactly T, — 1 columns of (Bg/,) ﬁ), Agc)). There is a unique generator associated
with each class of nodes in the system

In the subsequent discussion, k. is the probability that a class-c node is unsuccessful
in finding an assignment for a spare job in response to a set of forward probes. Thus,
h. = 1— h, is the probability that at least one of the probed nodes will accept a remote
job. The effect of a node sending a set of unsuccessful forward probes when it surpasses
T. 4+ 1 is represented by the transition A h.. When the node receives a forward probe
and 0 < n < T, it makes a transition from (n,0) to (n,1), i.e., it awaits the transfer of
a job from another node. The rate at which a class-c node receives forward probes is
denoted by «..

The behavior of a node under Reverse is described by a similar Markov chain. The
details of this chain and its analysis can be found in [5].

3.1 Matrix-Geometric Solution

Neuts [8] examined Markov processes with such generators and determined the condi-
tions for positive recurrence when the infinitesimal generator A(®) = A§,°) + A§°) + A§°),
corresponding to the geometric part of the Markov Process, is irreducible. However, for
our problem, A is lower triangular and reducible. In such cases, the stability criterion
has to be determined explicitly.

Consider the non-linear matrix equation
AP + ROAP + [ROPAP =0

such that R() is its minimal non-neg)atlve solut1on It can be shown that R() is lower
triangular, given the structure of AP, A® and 4Y [8]. Also, R = [r)] for Forward
probing can be written as follows:

Tgc% = Achc/”c

() - 6. + v — ((6: + 7)2 - 4#cf\ch¢:)1/2
T2 = 2t

r&c% =0

KO- g
21 ERCICI

where 0, = Ah. + pe. It can be shown that the stability criterion for the Forward
probing algorithm is

Ache < pe.

Intuitively, the stability criterion implies that the rate of processing jobs (including
the ones that are sent out of this node) be greater than the total arrival rate of jobs

6

into this node. Thus, on the average, whenever there are more than T, + 1 jobs at a
node, the process drifts towards the boundary specified by the threshold T.

We know from Neuts [8] that
PEC) = Pgs-)HRgrcc)-H—i, Vi>T.+1

Thus,

3 (c)_pT) (I- ROy
iZTc+1

Also,
Tc
[Z pz('c) + P(I?+1(I - R(c))_l]e =1

=0

where I is the identity matrix, e is a column vector of all 1’s, and R(®) is the minimal
solution of

AP + ROAL 4+ (ROY2AP =0
with R > 0, and the spectral radius of R(is less than one.

The expected number of jobs at a node of class-¢, E[N,], and the expected response
time of a job of the same class, E[D.], are given by the following expressions:

EIN] = Y iple

21

= pP(I—RO)2e 4+ T, + [pf),(I — RO)e] + z ip?
(E[Nc] "l“ !Flow;In!c!!)
o

where ¢. is the throughput of class-c nodes and Flow — In(c) is the flow into a node
of remote jobs due to forward or reverse probes, depending upon the algorithm being
used.

E[D,]

Further, the average response time of jobs over all classes in the system is given by:

= _E¢0E[D

c—l

where o
®=> ¢
c=1

is the throughput of the system over all classes.

3.2 Computational Procedure

We have parameterized the node models for each class in terms of two unknown param-
eters, h. and o, ¢ = 1,--+,C. In this section we derive a set of nonlinear equations that
these parameters must satisfy. We then briefly describe the computational procedure
used to determine these unknowns. A similar procedure is used for Reverse probing.

We define

¢ FFRO, : Flow rate out of jobs from a class-c node, as a result of forward probes
made by it.

e FFRI. : Flow rate of jobs into a class-c node, as a result of forward probes made
to it by other nodes in the network.

e Probe — Out, : The rate of successful forward probes made by a class-c node.

These variables have the following expressions,

C
FFRI. = z.5 FFRO, fi., Ve,

d=1

FFRO4 = Probe— Outy/hy,

Probe — Outy = Mghy E pgd) e.
1>Tg+1

Here z. is the probability that a class-c node is unable to accept a remote job and is

given by
ze= Y p? 01" + 3 pe.
i<T. ' i>Te

Also, T, =1 — z..

ke = (rq4)L? is the probability that L, forward probes made by a class-d node are
unsuccessful and hqy = 1 — hy is the probability that at least one of the probes is
successful, where ry = Y%, f; .z, is the probability that a forward probe made by a
- class-d node is unsuccessful and 73 = 1 — ry is the probability of a successful probe.

FFRI, can also be expressed as follows:
FFRI, = a,T,

In order to determine a,, the the rate at which a class-c node receives forward probes,
we can rewrite the above equation as:

a. = FFRI/%..

We present a brief description of the solution algorithm. Details can be found in [6]
Initially, it is assumed that the values for h. and a. are known for all classes and the

8

model is solved using these values. In a typical step, a model solution is used to derive
new values for h. and a., for all classes, and a new solution is computed. This procedure
is continued until the iterative procedure is determined to have converged. We have
observed from experiments that the solution was insensitive to the initial values chosen
for the unknown quantities. Consequently, we conjecture that there exists a unique
solution to the models. Further, the number of iterations required for convergence was
usually small, ranging between 20 and 40.

4 Performance Comparisons

In this section, we study the performance characteristics of the algorithms in the two
main types of heterogeneous systems, i.e., type-1 systems where the external job arrival
rates at nodes may differ, and type-2 systems, where the nodes themselves may have
different processing rates. Even though the analysis presented in the previous section is
valid for an arbitrary number of node classes, we restrict our study to systems with two
distinct classes. The reason for this restriction is the fact that the computational effort
required to study heterogeneous systems grows at an exponential rate. For example,
a brute force search of the optimal thresholds for a set of parameters is easily seen to
grow asymptotically as O(T°), where 0...T is the range of thresholds and C is the
number of classes under consideration. For the subsequent discussion, when we refer
to the quantities in both classes, we use the following system: For example, (11, T5)
refer to the operating thresholds at nodes of the two classes. All other parameters are
represented in a similar fashion.

Wherever relevant, we compare the algorithm’s performance to that of the Random
assignment, the no-load-balancing or M/M/1 results, and the M/M/K system or an
appropriate lower bound for heterogeneous systems of type-2 (called LB,, which is
described in [9]). In short, this algorithm ensures that the fast nodes in the system
are utilized before the slower ones and if jobs need to be transferred from a slow node
to a fast one, this transfer occurs with zero cost. The Random assignment algorithm
has been described elsewhere [6] but, briefly, a class-c node that has a local arrival and
its total queue length is > T, + 2 transfers the new arrival to another node chosen at
random. In this algorithm too, as in Forward and Reverse, it is possible to bias the
selection of classes, with nodes in a class being selected randomly. In all the subsequent
studies in this paper we use a probe limit, L, = 2 unless mentioned otherwise!. Further,
S. = 1/u. is the mean service time for jobs executing at class-c nodes. For type-1
systems, S; = S, = S = 1 unit. Also, p; and p, are the loads for nodes of class-1 and
class-2, respectively.

1The next section substantiates our assumption that a probe limit of 2 is adequate.

4.1 Type-1 Heterogeneous Systems o
In this study, p; = 0.9, is kept fixed for all the tests conducted. However, p, is varied
between 0.1 and 0.7, in steps of 0.2. Thus, we examine systems in which the degree
of heterogeneity (in this case the ratio of loads of the two classes) is varied over a
large range. Although we have conducted tests for all four values of p;, we will present
only those results which are most interesting. In general, we emphasize those results
with p; = 0.1 and 0.7, representing high and low degrees of heterogeneity, respectively.
Wherever relevant, we also comment on the results of the other two loads of 0.3 and
0.5.

As might be imagined, the number of parameters that it is possible to vary in the
study of these algorithms is very high. We will try to limit this study to what we believe
are its most interesting aspects. These items are presented in the following list and they
all consider varying the job transfer delay times.

Validation of analytical models with simulations

o Effects of varying the probe limit L,

Effects of varying (71, T2)
o Effects of biasing the probing probabilities, (f.4, 1 < ¢,d < 2)

o Performance of Biased Random

Optimal response times under a large range of job transfer delays

Validation of models with simulations

As mentioned in Section 3, the solution technique we have used is only an approxima-
tion for finite sized multiple class systems, which is conjectured to be exact for infinitely
large systems. Consequently, we have conducted simulation studies of systems execut-
ing the load sharing algorithms and compared these with the results of the analytical
models. These comparisons allow us to determine the range of parameters for which
our analysis is valid. It was seen that when the classes contained at least 15 nodes each,
the simulation results were very close to the analytical models, with errors of about
3%. Further, we also computed the 95% confidence intervals which were within 2% (for
futher details, please see [5]). We conjecture that the results become more accurate as
the system size increases.

Effect of varying L,, the probe limit

In this study, we consider the effect of varying the probe limit on the performance
of the two algorithms. In general, probes can generate processing overheads which may
degrade system performance and in real systems, this overhead would need to be traded

10

off against the response time improvements that increased probing may offer. Figures
3 and 4 depict the results of varying L, between 1 and 10 for two different sets of loads
for the Forward probing algorithm. In Figure 3, (p1,p2) =(0.9,0.1) and in Figure 4,
(0.9,0.7). The three curves in each graph correspond to different values of delays, i.e.,
0.15,S and 10S. From Figures 3 and 4 we can make the following observations.

Increasing the probe limit beyond 3 or 4 appears to provide little or no improvement
(3-4%) in response times. When the degree of heterogeneity is large, as in the case
of Figure 3 the system response time is less sensitive to L, than in a more balanced
system. From Figure 3, it is easily seen that going beyond L, = 2 does not provide
significant performance benefit (at most 3-5%). On the other hand, in Figure 4, where
at delays of 0.15 and perhaps even at S, L, = 3 seems the proper limit (with about
10% gain over L, = 2). The main reason for this behavior is the following: When
systems are very highly unbalanced, a forward probe made by a node is very likely to
find a recipient (even when the class selection is equiprobable). However, as the degree
of heterogeneity decreases, a probing node needs to work harder to find a placement for
a spare job. Further, at very high delays > 105, the performance is less sensitive to L,
than at lower delays. This is because of reduced load sharing at high delays, caused by
the high operating thresholds.

From our tests on systems with (p1, p2) = (0.9,0.3) and (0.9,0.5) in connection with
L,, (results not presented here), we have seen that a gradual change occurs in the
behavior. Thus, (0.9,0.3) behaves more like (0.9,0.1) than (0.9,0.7) while the behavior
of (0.9,0.5) approaches (0.9,0.7), as might be expected. Further, we have seen that
when p; is smaller, for example, 0.8 and less, there appears to be less sensitivity to
probe limit. Again, this is because a probing node is more likely to find a recipient for
a spare job, because the net load on the entire system is lower.

Figures 5 and 6 depict the results of identical tests performed on the Reverse probing
algorithm. The loads indicated in Figures 5 and 6 are (0.9,0.1) and (0.9,0.7), respec-
tively. From Figures 5 and 6, we can make the following observations:

Reverse probing appears more sensitive to probe limit, particularly when the degree
of heterogeneity is large, as in the tests corresponding to Figure 5. This is because a
probing node is less likely to find a spare job since class-2 nodes are very lightly loaded.
Thus, a probing node needs to work harder to find a spare job. In general, it would
appear that three or even four probes offer significant performance benefits. When
delays are larger, the effect of increased probe limit is not as pronounced, except when
p2=0.1. This effect is due to the high thresholds which reduce load sharing in the first
instance. Also, very few jobs execute at class-2 nodes. Thus, after an unsuccessful set
of reverse probes, the node waits for a long time before another probe can be made.

Effect of varying thresholds (T3, T3)

The motivation behind these tests is to determine the sensitivity of thresholds in
either class. This may provide some clues about how critical it is to choose the proper

11

thresholds. Initially, the optimal threshold pair, (T3, T;) is determined for the loads and
delays of interest. Then, while keeping T, fixed at its optimal value, we vary T over a
large range. Next, we keep T} fixed at its optimal value and vary T;. Figures 7 and 8
show the effects of varying Ty and T, respectively, for load (0.9,0.1), and delays 0.15, S,
and 10S. Also shown in the graphs are the results from the M /M/1 and the perfect
load balancing at zero cost M /M /20 systems.

From Figures 7 and 8, we can see that the performance of the algorithm is very
sensitive to T3, particularly when the delays are < S. In these cases, T} = 0, for optimal
performance. For a delay of 10S, the optimal value for T is 4. In comparison, the
performance is insensitive to changes in T, showing an almost flat behavior in Figure 8.
This is because the nodes of class-2 are so lightly loaded that increasing the threshold
does not substantially increase load sharing. Even when T; is low (=1), there is high
probability that a class-2 node is at or below its threshold (because p; = 0.1). Results
of tests conducted when p, = 0.3, 0.5 and 0.7 (figures not presented here), show that
the effects varying T, gradually approach that of varying T;.

We have conducted similar tests for the Reverse probing algorithm and the results
of these tests have shown us behavior similar to that of the Forward probing algorithm.
Consequently, we will not present the results of these tests.

Effect of biased probing

In all the studies conducted thus far in this research, a probing node was equally
likely to choose a class-1 or a class-2 node. Using our earlier notation, f.4 = 0.5, Vec,d
(this is asymptotically exact as the number of nodes in each class grows equally large).
When (p1, p2) = (0.9,0.1), a node trying to make a forward probe is more likely to find
a placement at a class-2 node, while a node making a reverse probe is more likely to
find a spare job with a class-1 node. The question then is to determine if and when
biased probing can make a substantial difference in performance and reduce the probe
limit in the process. To conduct this part of our study, we have adopted the following
procedure.

Initially, fi1 = fo1 = f1, and fi2 = fa2 = fo. Also, fi + fo =1, at all times. Recall
that f. is the probability that a class-c node will be selected by a probing node of any
class. Figures 9 and 10 depict the results of the experiments conducted on the effects of
biasing the probes in the study of Forward probing. From Figure 9 ((p1, p2) = (0.9,0.1)),
we see that the equiprobable selection of classes is only marginally worse (at most 5%)
than the optimal fractions. However, from Figure 10, it is clear that when the classes
are more or less balanced, (0.9,0.7), it is best to have unbiased (or close to it) selection
of classes for Forward probing in heterogeneous systems.

Finally, we study the effect of biased probing upon the Reverse probing algorithm.
Here, we will only depict one set of curves, for load (0.9,0.1), because this is quite
different from its Forward probing counterpart. Figure 11 shows the results from these
tests. From the curves shown in the figure, we can see that there is between 30-40%

12

improvement by correctly biasing the probabilities, when the delays are < S. The
effect is less pronounced for higher delays. This result is explained by the fact that
Reverse probing is much more sensitive to probe limit when the imbalance in systems is
large. Thus, each probe is very important and when L, = 2, biasing appears to provide
substantial benefits. In any event, as the degree of heterogeneity is decreased, the effect
of biased probing becomes less prominent, as was seen in the case of Forward probing.

Thus, from our studies concerning biased probing, we are able to reach the following
conclusions: Biasing appears to have a second or third order effect on response times,
except in the case of Reverse probing in highly heterogeneous systems. We have seen
from the graphs on biasing that choosing incorrectly biased probabilities has a much
more detrimental effect on performance than equiprobable selection.

Performance of Biased Random

In the description provided for the Random assignment algorithm, it was stated that
any node in the system was equally likely to be a recipient for a transferred job (Unbiased
Random). Thus, in a system with two classes, a node executing the ” Unbiased” Random
algorithm will transfer approximately half its spare jobs to either class of nodes (in the
limiting case as the number of nodes in each class become equally large). When the
degree of heterogeneity is high, there is an impact of biasing the probabilities when the
job transfer delays are high (10S). The improvement in that case over the unbiased
Random is about 20%. However, for moderate delays, the difference is almost nil
(delay=S) and the unbiased version actually performs better by about 7% at delay =
0.1S. When the systems become more balanced, unbiased Random is clearly superior to
any biased Random (except at delay = 10S, where it is worse by about 4%). Because the
gain due to biasing does not appear very significant, all further references to Random
will imply an ”Unbiased” version of that algorithm.

Optimal Normalized Response Times

In this study, we vary the job transfer delay from 0.01S to 100S and determine the
optimal performance achieved by the two probing algorithms as well as the Random
assignment algorithm. The results of these experiments are shown in Figures 12 and 13.
The Y-coordinate depicts the optimal response time normalized by the corresponding
M/M/1 response time. Thus, the smaller the value on a curve, the greater is the gain
over the corresponding M /M /1 value. We only depict two of the four pairs of curves
because of size limitations of the graphs. For more detailed figures, the reader is referred
to [5]. The reason we are interested in comparing the probing algorithms against the
Random algorithm is because it provides information on the range of parameters over
which probing is useful.

Figure 12 depicts the results for the Forward probing and Random assignment algo-
rithms. From the figure, we are able to infer the following facts: There is performance
benefit from probing when delays are less than about two to three times the average
service time. For higher values of delays, the curves for the probing and random algo-

13

rithms become almost indistinguishable. This means that the delays are so large that
there is almost no correlation between the state of a remote node when a probe is made
and the state of that node after a job is transferred to it. While probing may cease to
be useful at high delays, load sharing provides considerable benefits over the M/M/1
performance. This is very easily seen from the curves, which show that even at delays up
to 100S, there is about 7-10% performance gain. When (p1, p2) = (0.9,0.1), the net load
over all the nodes in the system is 0.5. The greater the imbalance in the systems, the
larger is the gain over the corresponding M/M/1 value. The greater the imbalance in
the systems, the smaller is the difference between the random and probing algorithms.
This effect is more pronounced for lower delays as can be seen from Figure 12, where
the pairs of curves appear to be more separated at higher values of p,. This may be
explained as follows: When both classes of nodes are busy, there is a greater likelihood
that a random assignment will result in a transfer to an already busy node.

Figure 13 depicts the results of similar tests conducted on the Reverse probing
algorithm. From Figure 13, we are able to see that the behavior for Reverse probing
is quite different from that of Forward probing (Figure 12). The following points are
worth noting,.

When the imbalance between the classes is high, Random assignment is significantly
better than Reverse probing. For example, the curves corresponding to loads (0.9,0.1)
show that the Reverse curve approaches the Random curve only asymptotically. Recall
that Reverse probes are sent by a node only when it is below the threshold when a job
completes. Now, in very lightly loaded nodes, very few jobs actually execute. Thus,
there are few opportunities to balance the load. On the other hand, the Random assign-
ment strategy is quite effective in highly unbalanced systems, with a high probability
of transferring jobs to idle nodes in class-2. As the degree of heterogeneity decreases
(i-e., the systems become more alike), the gap between Reverse and Random decreases.
From the curves, it is seen that Reverse actually performs better than Random when the
loads are (0.9,0.7). At this point, class-2 nodes are able to perform reasonably effective
load balancing and the higher loads make the Random assignment less suitable.

In the previous two graphs, we have determined the optimal response times of the
algorithms under different values of total system load. In Figure 14, we depict results
of tests where the total system load is kept fixed at 0.5, while changing the distribu-
tion of the load between the classes. Thus, the three sets of curves depict results for
(p1,p2) = (0.5,0.5), (0.7,0.3) and (0.9,0.1), i.e., from a homogeneous system to a very
heterogeneous one.

From Figure 14, we are able to make the following observations: As might be ex-
pected, the benefits of load sharing over the M/M/1 response time is greater as the
degree of heterogeneity is increased. Thus, the curves for (0.5,0.5) lie at the top with
(0.7,0.3) next and the curves for (0.9,0.1) are the lowest in the graph. In systems
with greater heterogeneity, the performance of Random is less distant from the probing
curves. This is because when the classes are highly unbalanced, a Random job transfer

14

is likely to reach an idle node, particularly when the average system load is low. The
separation between the Random and probing curves is most pronounced when (p1, p3)
is (0.5,0.5). At delay = 100S, (0.9,0.1) generates about 10% improvement over the cor-
responding M /M /1 response time. However, for (0.5,0.5) and (0.7,0.3), delays of about
5S and 20S produce the M /M /1 response time, respectively.

4.2 Type-2 Heterogeneous Systems

In the set of experiments described in this section, we study systems in which the nodes
in the two classes process jobs at different rates. Thus, transferring a job from a longer
queue to one that is shorter may not necessarily result in lower response times (even
after accounting for delays). Nodes of class-1 have the same service rate as in type-1
systems, i.e., 43 = 1. The service rate for nodes of class-2, on the other hand, is varied
from 0.2 to 0.8. Thus, we study systems where the nodes possess different degrees of
heterogeneity. The load at nodes of both classes is kept fixed at 0.8. This is for ease of
comparison and we believe that this does not limit the validity of our experiments. It
is relatively easy to conjecture the behavior of systems in which the above restriction
may not apply.

Because of space considerations, many of the results will not be presented and others
will be briefly described. Before we conducted any substantial tests for type-2 systems,
we compared the results of the analytical models with simulations. Exactly the same
kind of tests were conducted as for type-1 systems and the results were very similar. It
was seen that between 10-15 nodes were needed in each class for the simulation results
to be very close (2 —5%) to the analytical models. The 95% confidence intervals for the
simulation results were computed using the Student-t tests and were seen to be within
+5% of the sample mean.

While we have conducted all the subsequent tests on all four values of uy, we only
present curves for g, = 0.2 and 0.8. The results corresponding to the other two values
of u, will only be described in brief unless they happen to be counter-intuitive. The
reasons for adopting this approach are identical to those given in the case of type-1
systems. Furthermore, we assume that S; = S. Further, we concluded that L, = 2 is
adequate for the subsequent tests.

Effect of varying (T3,T3)

For the loads and delays tested, (T3, T2) corresponding to the optimal response time
is determined. Then, keeping T, fixed at its optimal value, we vary T over a large
range. Next, T; is varied, keeping T} fixed at its optimal value. In each of the figures,
we present the results of the M/M/1 and LB, response times corresponding to the
parameters in question. LB, is a lower bound for type-2 systems that was described
in [9].

15

The results of these tests for p; = 0.2 are depicted in Figures 15 and 16. From
Figure 15, the behavior of the system in response to varying 77 can be explained by
the following arguments: For the most part, the optimal value of T;, is 0. This implies
that very few jobs are transferred to class-2 nodes although they are more likely to
transfer jobs out. This is facilitated by the fact that the optimal value of T is 2 or
higher, depending upon the delay. If T; were lower, say 0 or 1, fewer jobs could be
transferred between class-1 nodes, resulting in poor performance, as may be seen from
the curves in Figure 15 (class-1 nodes are likely to be higher than T; for low values of
T1). However, if T} was set higher than a certain value (2 or 3 in the case of delays
< S), this would mean that virtually no jobs may be transferred out of class-1 nodes to
balance the instantaneous loads among class-1 nodes.

The results obtained by varying T;, are presented in Figure 16. From this figure, it
is observed that the performance is much more sensitive to changes in 7> and actually
gets much worse than the M/M/1 value for delays < S. The reasons for this behavior
are as follows: As mentioned earlier, the optimal value for T3 is 0 for delays < S and 1
for delay = 10S. If T is increased beyond the optimal value, there is greater likelihood
that jobs will be transferred to class-2 nodes. Because the service rate of class-2 nodes
is low, long queues build up and the response times get worse. In fact, there is the
possibility that the class-2 queues can approach saturation, particularly in the case of
delays = 0.15 and S. This behavior appears to occur when Tj is around 3 or 4 and the
rate of increase of response time appears to be very high.

Figures 17 and 18 depict similar tests conducted when u, was set to 0.8. Thus, jobs
execute 25% longer on class-2 nodes as compared to class-1 nodes and the degree of
heterogeneity between the classes is not very high. From these figures, we can see the
effect of varying the thresholds is very similar to the earlier set of tests when p, was
equal to 0.2. The only effect is that the curves are shifted along the X-axis. The optimal
value of T} is lower than in the previous case. For delay = 0.1S5, 71 = 1 is optimal, while
for delay = S, it is 2. This implies that class-1 nodes are likely to be more active in
load balancing. Because class-2 nodes are not much slower than class-1 nodes, they are
able to accept more jobs than in the case of the earlier set of tests. The phenomenon of
saturation in class-2 nodes is also observed in Figure 18. The explanation is the same
as given for p, = 0.2. High thresholds in class-2 nodes result in many job transfers to
these nodes from class-1 nodes. Because p is only 25% less than y;, many more jobs
need to be transferred to class-2 nodes before this unstable behavior occurs. Thus, the
thresholds are higher here than the case when p; was 0.2.

Similar tests concerning the effects of varying T} and T, were conducted for the
Reverse probing algorithm. It was seen that when T is increased (particularly when
the imbalance is high), the performance gets worse. This is because high values of T3
result in more jobs transferred to class-2 nodes as well as fewer jobs transferred out of
class-2 nodes to class-1 nodes (which should be the ideal strategy). Thus, class-2 nodes
have a tendency become saturated if T is higher than its optimal value. This effect,

16

although less dramatic, is also seen when p, is 0.8, i.e., the imbalance is not very high.

The effect of varying T is seen to be much less pronounced than T3, especially when
the degree of heterogeneity is high. For delays of < S, the optimal value of T} is 1.
Increasing 77 beyond that results in worse performance because higher thresholds result
in much less active balancing among class-1 nodes, even though they further restrict
jobs being transferred to class-2 nodes (particularly since the optimal value of T3 is 0
or 1, for the range of delays tested).

Optimal Normalized Response Times

Figure 19 depicts the results of subjecting the Forward probing algorithm to a large
range of delays. The optimal response times are plotted for each value of delay along
with the optimal response time generated by the Random assignment algorithm. The
tests are conducted for all four values of u,, as indicated earlier, but results only for
t2 = 0.2 and 0.8 are depicted in the figures. From Figure 19, we are able to infer the
following facts.

The benefits from load sharing are more pronounced for systems in which the degree
of heterogeneity is large. For example, the curve for u; = 0.2 is the lowest of all
curves, for most of the range of delays tested (except for very low delays around 0.05S5).
The fact that the curve is the lowest signifies that the response time improvement
over the corresponding M/M/1 value is the greatest. The curves for the Random
assignment algorithm are seen to be located much higher than their respective probing
curves. This means that Random performs much worse than Forward probing for certain
values of parameters (at delay = 0.15 and p, = 0.2, Random is about 55% worse).
Further, the greater the degree of heterogeneity, the more the displacement. This is
quite easily understood by the following argument: Because class-2 nodes are slow, the
job transfers that occur to these nodes by random assignment slow down the system by
a large amount. For large degrees of heterogeneity, the curves corresponding to Random
approach their respective probing curves after fairly high values for delays, as compared
with type-1 heterogeneous systems. For example, when p, = 0.2, there appears to
be about 5 — 6% benefit by probing, even with delays as high as 5S. Thus, the value
of remote state information is more pronounced and its effect is significant for higher
delays in highly unbalanced type-2 systems as compared with type-1 systems.

The results in the case of Reverse probing (Figure 20) are very similar to that of
the Forward probing example. In general, Random assignment performs quite poorly
in comparison to probing, be it forward or reverse. Also, the greater the degree of
heterogeneity, the more advantageous it is to probe. Here too, as in Forward probing,
there is a more significant effect of probing at higher delays than for type-1 systems.

17

5 Conclusions

In this paper, we have studied the problem of load sharing in the presence of delays
when the underlying system is heterogeneous. We have studied two main types of het-
erogeneous systems, i.e., type-1 systems where all the nodes have the same processing
rates and capabilities but the arrival rate of local jobs at nodes may not be the same,
and type-2 systems, where different nodes may process jobs at different rates (however,
the nodes are assumed to be functionally identical). The two algorithms which were
studied in this context were called Forward and Reverse. The resulting Markov pro-
cesses from these algorithms were solved using the Matrix Geometric solution technique.
The analytical models were subjected to many interesting tests and the results of these
tests and their implications were described in the previous section. We now summarize
the most interesting results obtained.

e The solution technique of studying the nodes independently is an approximation
of the Markov process for the system. We compared the analytical results with
simulations of finite sized systems and determined that the results were very accu-
rate, with the variation between the analytical and simulation results being about

2-4%.

e For type-1 systems, the sensitivity to probe limit was observed to depend upon the
degree of heterogeneity. In the case of Forward probing, the sensitivity was smaller
with greater imbalance and the opposite was observed to be true for Reverse
probing.

e In type-1 systems, the effect of varying (71,72) showed that when the imbalance
in systems was large, the performance was relatively insensitive to changes in T5.
However, choosing the appropriate value for 77 was quite critical. The above
observations were also hold for Forward as well as Reverse probing. Furthermore,
as the imbalance between the classes decreased, the effect of changes in 77 and T3
became more alike.

o We determined the optimal performance of the two algorithms operating in type-
1 systems and compared these results against the optimal performance of the
Random assignment, for a large range of delays. It was seen that when the sys-
tems were highly heterogenous, Random was much better than Reverse. However,
Forward always performed better than Random, although the advantage of prob-
ing was more pronounced when the systems were more balanced. Further, the
advantages of probing seemed to disappear when the delays were greater than
three times the processing times.

e In the case of type-2 systems it was seen that when T, is increased beyond a
certain small number and the nodes are executing Forward probing, there is the
potential for class-2 nodes to get saturated. The effect of varying T; is much less

18

dramatic, however. The above effects are much more pronounced when class-2
nodes are much slower than class-1 nodes. Thus, selection of appropriate thresh-
olds is much more critical for type-2 heterogeneous systems than it is for homo-
geneous as well as type-1 heterogeneous systems.

e In the case of type-2 systems, we determined the optimal performance for the
two algorithms over a large range of delays and compared these results against
the Random assignment algorithm. It was seen from these tests that probing does
significantly better than Random for type-2 systems where very few jobs should
be executed on class-2 nodes (depending upon how slow they are in comparison
to class-1 nodes and some other factors). In type-2 systems, the advantages of
probing are seen to exist for greater values of delays (< 4S5 — 5S) than in type-1
systems.

References

[1] R. Agrawal and A. Ezzat. Processor sharing in nest: a network of computer work-
stations. Proc. 1st Int’l Conf. on Computer Workstations, Nov. 1985.

[2] Y. C. Chow and W. H. Kohler. Models for dynamic load balancing in a hetero-
: geneous multiple processor system. IEEE Trans. Computers, C-28:354-361, May
1979.

[3] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load sharing in homo-
geneous distributed systems. IEEE Trans. Soft. Engg., SE-12(5):662-675, May
1986.

[4] M. Livny and M. Melman. Load balancing in homogeneous broadcast distributed
systems. Performance Evaluation Review, 11(1):47-55, 1982.

[5] R. Mirchandaney. Adaptive Load Sharing in the Presence of Delays. PhD thesis,
ECE Dept., University of Massachusetts, August 1987.

[6] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Analysis of the effects of delays
on load sharing. IEEE Trans. Computers, 1987. To Appear.

[7] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Effects of delays on receiver-
initiated load sharing policies. Journal of Parallel and Distributed Computing,
1987. submitted for review.

[8] M. F. Neuts. Matriz-Geometric solutions in Stochastic Models: An Algorithmic
Approach. Mathematical Sciences, Johns Hopkins University Press, 1981.

[9] J. A. Stankovic. Simulations of three adaptive decentralized controlled, job schedul-
ing algorithms. Computer Networks, 8(3):199-217, June 1984.

19

[10] H. Stone. Critical load factors in two processor distributed systems. IEEE Trans.
Soft. Engg., SE-4(3), May 1978.

[11] A. Tantawi and D. Towsley. Optimal static load balancing in distributed computer
systems. J. ACM, 32:445-465, Apr. 1985.

[12] M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution facilities for
the v-system. Proceedings of the 10th Symposzum on Operating System Principles,
December 1985.

20

Figure. .1: State Diagram of Forward Probing Algorithm :

ceve

T'l) L (T+l'l)i‘c+l‘::(r+z")ﬂe+ﬂ;
N N '

Figure 2: Stace Diagram of Reverse Probit{g Algorithm

'S
=

Response Time

[
Ot

-
Pl

Response Time

N

Fig. 3. Probe Limit (FP, 0.1) Fig. 4. Probe Limit (FP, 0.7)
T T T I T T T T T T T I T T T L

8
b—e—s—s5—8 885 5 o @
- - —£ 4 —
Delay=10S g Delay=10S
Fs
[
- ~ n - -
g -\0\‘___,; Delay=S
a
F t t + ! t +
] Ko | —]
[Peley=s >
)\S‘U &—6—0—06—06—6—9O Delay=0.1S
Delay=0.1S
1 1 1 l 1 1 1 1 0 1 1 1 | 1 1 1 1
5 10 5 10
Probe Limit Probe Limit
Fig. 5. Probe Limit (RP, 0.1) 6 Fig. 6. Probe Limit (RP, 0.7)
T T T I T T T T T T T ‘ T T T T
! g
Delay=10S elay=

'S
I
|

Response Time
O

N

Probe Limit Probe Limit

Fig. 7. T, (FP, 0.1)
T L T T T T

10 T T
M/M/1
[
E L .
[=
[
2 5g Delay=10S S
2
S
(]
o
Delay=0.1S
B M/M/20
F—o—0—0—0—0—0—0—0—0—
1 1 1 I 1 1 1 1
S 5 10
T,
Fig. 9. Biased Probing (FP, 0.1)
T T T T | T T T T
Y p
E T
[
85 Delay=10S
2 d
8
o
Delay=S
-t
o—o o—o i
Delay=0.18
o 1 1 1 A I i 1 A 1
0.0 0.5 1.0

Fig. 8. T, (FP, 0.1)
T T T I T T T

10 T T
M/M/1
o
E L 4
Fod
v
2 5 Delay=10S =
Q B\B =) = & = S =
a ‘—E—B"§]
h -
O
o
Delay=S
Tt —t—t—t—t—t—tt7
g—g—f—8 85200 ©
o | M/M/20 5', Delay=0.1S | .

Te

Fig. 10. Biased Probing (FP, 0.7
T T ‘ T T T T

)

Response Time

T T

Delay=10S

Fig. 12. Opt. R.T.(FP)

1.0 AL R T T T T T

Fig. 11. Biased Probing (RP, 0.1)
& T T T | T —T T T

v L)
E g
= 13
(1% v
o0 n 0 5
2 a 0.5
o <]
a a
n w
O U
[+ o

3 7 4 (0.9,0.1) 4
: l 1 ! L 1 1 L 1 |- | |
000 05 - 10 0.010_2 L1 Illlluo_1 1 Illlllloo 11 ””‘1’01 11 l]_l_ulloz
1, Delay as a Fraction of S
Fig. 13. Opt. R.T.(RP) Fig. 14. Opt. R.T. Fixed Load
1'0 T “ll”lr T lllTHlI T IIIIIIII T T T 11717 10 T T_Y||H|I T |1|IIHI T T T o1 C
r b
R (0.5,0.5)
o) —
E el
[£ o
© o 0.7.0.3
505 0.5 () .
[<] Q
a. a. -
0 17] -
Q Q)
o o
. d T
8"
L 4 r (0.9,0.1) E
0 L1 IlJJJ_ll A llllllll 1 llllllll I R 00 11 lleUl 1 1 Alllll] L1 llllnl I
9oz 107! 10° 10° 10° 1072 1077 10° 10' 10*

Delay as a Fraction of S Delay as a Fraction of S

Response Time

Response Time

10

10

Fig. 15. T, (FP, 0.2)
T T T ‘ T T T

M/M/1

Delay=S

Delay=10S

Delay=0.1S E
LB, i
——0—0—0—0—0—0—0—4

1 ! 1 1] ! 1 1 1
5 10

T,
Fig. 17. T, (FP,0.8)

T T T T T T T T T

M/M/1 4

10

Response Time
o

10

Response Time

M/M/1
J Delay=108 -
]
\ -
Delay=S
Delay=0.18
LB, ’
VN VLN Va¥ FaN aN O
A4 \4 v A4 4 v \4 A4 A4 A
1 1 1 1 l 1 1] 1
5 10
Te

LB,
i\ .\ O N VN N S o .\
A4 4 "4 N4 A4 < v A A4 3
! 1 Il Il | L Il 1 !
5 10

Fig. 19. Opt. R.T.(FP) Fig. 20. Opt. R.T.(RP)

"0 T Illllllr T T II||II| T lIIIIIII T T 1.0 ;
Q ® '
E £
&= 3
Q
0.5 2 .
2 g

0 11 lIlIlll 1 1 IIIlIl| 11 lHIlI' L1 111l 0 L1 IILlLll 1.1 Illllll 11 IlIIIII 11
Yoz 1071 10° 10! 102 Yo 107! 10° 10! 102
Delay as a Fraction of S Delay as a Fraction of S

