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Abstract—The ability to support continuous network config-
uration updates is an important ability for enabling Software
Defined Networks (SDN) to handle frequent or bursty changes.
Current solutions for updating SDN configurations focus on one
single update at a time, leading to slow, sequential (i.e., blocking)
update execution. In this paper, we develop update algebra,
a novel, systematic, theoretical framework based on abstract
algebra, to enable continuous, non-blocking, fast composition
of multiple updates. Specifically, by modeling each data-plane
operation in the set of data-plane operations to be executed
by an update as a set-theoretical projection, update algebra
defines novel operation composition so that the number of
projections for the same match remains constant regardless of
the number of updates to be composed, leading to substantial
performance benefits. Specifying the dependencies of the data-
plane operations in updates as a subset of a free monoid in the
general case and as partial ordering for basic consistency, update
algebra defines update composition that preserves consistency,
even under partially-executed updates, to guarantee correctness.
We conduct asymptotic analysis, extensive benchmarking using
a real controller, and integration with a real application to
demonstrate the benefits of update algebra. In particular, our
asymptotic analysis demonstrates that in independent-update
dominant settings, update completion time of update algebra
remains asymptotically constant despite growth of the number
of updates to be executed. Our benchmarking shows that update
algebra can achieve 16x reduction in update latency even in
settings with an update arrival rate of only 1.6/s. Our integration
with Hedera, a real SDN traffic engineering application, shows
that update algebra can reduce average link bandwidth utilization
by 30% compared with sequential updates.

I. INTRODUCTION

The ability to provide continuous, rapid, non-blocking
network configuration updates is an essential capability for
Software Defined Networking (SDN). First, it provides a
foundation for the development of advanced applications
with frequent network updates, which are typically prohib-
ited or discouraged in current SDN systems. A recent trend
is the application of machine learning to continuously and
rapidly adapt routing strategies to minimize maximum link
utilization, achieve proportional fairness, or maximize other
objectives [1]–[3]. In addition, with studies having revealed
that traffic in several settings (e.g., data centers) is highly
dynamic, many solutions are advocating switching traffic
at a finer granularity than flows, including subflows, and
flowlets, to reduce congestion, and optimize path choices more
frequently [4]–[6]. These trends and applications emphasize
the need for controllers to support continuous, rapid, non-
blocking network configuration updates. Second, a network
may experience a set of rapid bursts of changes, causing an
SDN controller to receive and handle a batch of network
configuration updates [7]. For example, such updates may stem
from the occurrence of unpredictable events including outages,
Denial of Service attacks, BGP re-routes, or flash crowds.

Although a large amount of research effort has recently
been devoted to developing efficient algorithms to update
forwarding rules in SDN, existing solutions are unsatisfactory,
and do not provide the required capability to handle frequent
or short sudden groups of network changes. This is because
despite having developed algorithms reduce the numbers of
changes, or minimize the network update completion times [8],
or preserve a range of properties [9]–[12] including loop and
blackhole freedom, existing solutions focus on one single
network configuration update at a time. In other words, they
execute consecutive received network updates individually,
and sequentially in a blocking manner [13]. Similar to the
development of pipelining executions of instructions that has
led to fundamental changes and performance improvements
in computer architecture, the ability to execute continuous
and non-blocking updates can lead to significant potential
improvements in SDN control architecture [14].

Achieving continuous, non-blocking network updates is not
straightforward. The first challenge is to guarantee correctness;
a naı̈ve execution may lead to unnecessary blocking due
to dependencies on updates. To illustrate this, consider two
consecutive updates: a first update U1 sets the route for a
flow, and a following update U2 changes part of the route.
Therefore, in a straightforward execution, the execution of U2

cannot start until U1 is finished, leading to a sequential (i.e.,
blocking execution) update model. The second challenge is
that a network configuration update often consists of multiple
operations that must be executed at different switches in
a specific order to guarantee properties, such as blackhole
freedom and waypoint routing (e.g., to traverse a sequence
of VNFs) [12]. When executing consecutive updates in a non-
blocking manner, these properties must also be preserved. The
third challenge is that because network configuration updates
often consist of multiple operations, updates do not operate
atomically, and when a new update arrives, previous updates
may be mid-execution. The execution status may even be
unknown to the controller due to the fundamentally distributed
nature of the SDN system.

In this paper, we develop a novel, systematic, and foun-
dational theoretical framework based on abstract algebra to
reason about and support continuous, non-blocking updates.
The framework is motivated by the following two insights.
First, when handling multiple updates (i.e., multiple batches
of operations), operations on the same flow rules from con-
secutive updates may be replaced by fewer equivalent ones.
For example, the creation of a flow rule followed by its
modification can be replaced by the creation of an updated
rule. To realize this insight, we model each operation as a
set-theoretical projection, which provides flexible composition



between operations. As such, the first challenge can be ade-
quately addressed. Second, an update can be represented by
a set of feasible sequences of operations whose order ensures
the desired properties, and composition of multiple updates
can be modeled as the application of different mathematical
operations on these sequences. In abstract algebra, such a
model can be well defined by a free monoid (of which a typical
example is words with letters). By modeling each update as a
subset of a free monoid on a set of projections, we can take
advantage of the algebraic properties (i.e., associativity, idem-
potence, selectivity, commutativity) of the structure to identify
equivalent operation sequences that preserve correctness and
consistency properties, whether the former updates have been
completely or partially executed. This insight addresses the
second and third challenges.

We conduct asymptotic analysis, extensive benchmarking
using a real controller, and integration with a real application
to demonstrate the benefits of update algebra. The asymptotic
analysis demonstrates that in independent-update dominant
settings, the completion time with the existing sequential
execution grows linearly, while that of the update algebra
remains asymptotically constant. The benchmarking results
show that update algebra can achieve 16x reduction in update
latency even in settings with an update arrival rate of only 1.6/s
Finally, the integration with a real application shows that by
applying update algebra, SDN Traffic Engineering applications
(e.g., Hedera [2]) can reduce the average link bandwidth
utilization by 30% compared to sequential execution.

II. BASIC MODELS

This section introduces the basic models to represent the
network data plane configuration and individual network up-
dates. The update algebra framework for the continuous, non-
blocking composition of consecutive network updates will
be specified in Section III. TABLE I summarizes the main
variables and notations used in the following content.

TABLE I: Terminologies

SW = {sw} the set of switches (forwarding tables)
M = {m} the set of all possible match values
PR = {pr} the set of priorities
key = (key.m, key.pr) flow rule key, defined by a match value

endowed with a priority
KEY = {key} = M ×PR the set of 2-tuple flow rule keys
AC = {ac} the set of all possible actions
AC+ = AC ∪ {Null} the action set with a null value
C : SW ×KEY → AC+ data plane configuration
o(sw, key, ac) : C → C′ data plane operation
u = o1o2...ok update representative
U = {u1, u2, ...} : C → C′ data plane update
O(U) constituent operations of U
Ω(U) order constraint of update U

A. Data Plane Configurations
An SDN is comprised of a set of switches SW . A data

plane configuration C consists of a collection of flow rules
that determine the packets’ forwarding states in the network.
A flow rule defines an action ac ∈ AC for flows matching
a key ∈ KEY at switch sw ∈ SW . A key therefore has
two attributes: (1) the matching criteria (key.m), and (2) a
priority (key.pr). Equation (1) illustrates four flow rule keys.
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Fig. 1: Illustration of a data plane configuration C with four switches
and two keys. A data plane operation o(A, key1, fwd E) : C → C′

is applied on C to get C′ where the changed value is labeled in red.

The matching criteria key.m can have wildcards (*) to match
ranges of values, and key.pr is set to a finite integer number
where a higher number means a higher priority: if a flow
matches the matching criteria from multiple keys, the one with
the highest priority is preferred and selected.

key1 = (pr = 1,m = {src ip = 10.0.0.1}),
key2 = (pr = 1,m = {src ip = 10.0.0.2}),
key3 = (pr = 2,m = {dst ip = 10.0.0.∗}),
key4 = (pr = 2,m = {src ip = 10.0.1.1, dst port = 22}).

(1)

An action ac of a flow rule represents the instruction
that is applied to the flows matching it. An action can be
forwarding to a specified next-hop, modifying a packet, or
pipeline processing. The proposed models support the concept
of multi-table pipelines in a switch: each flow table can simply
be represented as an individual virtual sw. Formally, we define
a data plane configuration as follows.

Definition 1 (Data Plane Configuration). A data plane con-
figuration C of a network is defined as a map from the
set of switches and flow rule keys to the set of actions
C : SW ×KEY → AC+, where AC+ = AC ∪ {Null}.

Therefore, a configuration C can be expressed with a 2-
dimensional matrix over SW × KEY where each element
Csw,key is an action ac ∈ AC+ for (sw, key). Csw,key =
Null represents the absence of a flow rule with key key at
sw. Fig. 1 illustrates an example of C with four switches and
two keys.

B. Data Plane Updates
A data plane update U consisting of a set of data plane op-

erations O(U) on multiple switches and flow rules can change
one configuration to another. Data plane operations act on keys
at a particular switch and fall into one of three categories:
addition, modification, or deletion. We denote these operations
as {add(sw, key, ac),mod(sw, key, ac), del(sw, key)}; e.g.,
add(sw, key, ac) means to add an action ac for key at sw.
For example, consider the network topology depicted in Fig. 2.
In the first update U1, flows from source IP address 10.0.0.1
(key1) are forwarded along the route A→ B → C → D; in
the second update U2, flows from source IP address 10.0.0.2
(key2) are forwarded along B→C→D, and the forwarding
path for key1 is changed to A→E→C→D (e.g., to balance
the network load). Fig. 2 illustrates the corresponding data
plane operations in both U1 and U2.

For further derivation, we introduce a more general expres-
sion o, parameterized by SW × KEY × AC+: add, mod
and del are all special cases of o; e.g., add(sw, key, ac) or
mod(sw, key, ac) can be expressed as o(sw, key, ac), and
del(sw, key) as o(sw, key,Null). An operation o transforms
an arbitrary configuration C to another C ′ as follows:
Definition 2 (Data Plane Operation). A data plane operation
o(sw, key, ac) is defined as a morphism between two config-
urations, i.e., o : C → C ′ or C o−→ C ′, using:



First update  !

Install ABCD for  !"#

$%# = &''(),  !"#, *+'_-.

$/# = &''(-,  !"#, *+'_0.

$1# = &''(0,  !"#, *+'_2.

Second update  !

Change to AECD for  !"# Install BCD for  !"#

$%&' = ($)*+,  !"&, -.)_/0

$1&' = )!2*3,  !"&0

$4& = 5))*/,  !"&, -.)_60

$1# = 5))*3,  !"#, -.)_60

$7# = 5))*6,  !"#, -.)_80

o
c1

o
a1

o
b1

o
e1

o
a1'

o
b1'

o
c2

o
b2

CA

B

E

D

E

 !"# = $% = 1,& = {'%()$ = 10.0.0.1}

 !"* = +$% = 1,& = {'%()$ = 10.0.0.2}-

DAG 

for /#

DAG 

for /*

Fig. 2: An example of two consecutive updates involving common
flows (match key1). The order constraint ensuring blackhole freedom
for each update is illustrated as a DAG of data plane operations.

C ′sw′,key′ = [o(sw, key, ac)(C)]sw′,key′ (2)

=

{
ac if sw = sw′, key = key′,
Csw′,key′ otherwise. (3)

That is, o(sw, key, ac) maps C to C ′ by changing C ′sw,key =
ac but preserving other values of C. Fig. 1 shows an example
of applying the operation oa1′ = o(A, key1, fwd E) on
configuration C to obtain C ′, where the changed value is
labeled in red.

Due to the distributed nature of the data plane, operations
in an update can be applied in any order, resulting in different
intermediate configuration states. However, some intermediate
configurations during an update may violate consistency prop-
erties such as blackhole/loop-freedom; an order constraint is
required to specify the feasible operation orders in an update.

Definition 3 (Order Constraint). The order constraint of
update U is defined as Ω(U), which specifies the feasible
operation orders in U to ensure consistency properties.

A concrete instantiation of Ω(U) will be given in Sec-
tion III-C. Fig. 2 presents an example of the order constraint
to avoid blackholes where no matched rule exists during the
updates; the order constraint is represented in the form of a
directed acyclic graph (DAG); e.g., the DAG for U1 shows that
oa1 must be applied after ob1 and oc1. Note that generating
the order constraints for various consistency properties is well
studied in literature [9]–[12], and therefore not the focus of
our work.
Issues with Multiple Updates. The model for individual
updates is simple and well documented, but new issues arise
when attempting to compose and execute multiple consecutive
updates in a non-blocking manner. First, a naı̈ve parallel exe-
cution of consecutive updates could lead to non-deterministic
or incorrect outcomes. For example, in the scenario of Fig. 2,
the execution of U1, and U2, could lead to non-deterministic
configurations. This is because the operations oa1, and oa1′ ,
apply to the same key1 at switch A, but differ in action-
s: oa1.(sw, key) = oa1′ .(sw, key), but oa1.ac 6= oa1′ .ac.
Consequently, depending on the order in which they were
applied, the two operations would lead to different configu-
rations. Further, the order constraints in different updates may
have dependencies that affect the non-blocking composition
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Fig. 3: Roadmap of update algebra.

of consecutive updates and may be difficult to identify. For
example, oa1′ in U2 must be applied after oc1 in U1 to
guarantee the absence of blackholes. Lastly, when a new
update arrives, previous updates may be mid-execution. The
execution status may even be unknown to the controller due
to the fundamentally distributed nature of the SDN system.
For example, if U1 is partially executed when U2 arrives, the
exact execution status may be unknown to the controller.

III. UPDATE ALGEBRA FRAMEWORK

In this section, we present our update algebra framework
based on advanced abstract algebra. Specifically, data plane
operations and updates are modeled by the notions of set-
theoretical projection (Section III-A) and free monoid (Sec-
tion III-B1), which provide the foundation and substantial
algebraic properties for further composition. Based on these
models, Section III-B2 proposes a general solution to compose
consecutive updates. The solution is general as it can preserve
any consistency property. Then, Section III-C introduces an
efficient representation and composition using partial order to
guarantee specific but commonly required properties. Lastly,
Section III-D addresses the issue of composition with partially-
executed updates to guarantee correctness under uncertainty.
The roadmap of update algebra is illustrated in Fig. 3.

A. Operation as a Set-theoretical Projection
As the basic unit of an update, operation and its composition

are first introduced in update algebra, providing the foundation
and freedom to replace and rearrange the data plane operations
within one update or across distinct updates.

Recall Definition 2 where a data plane operation is defined
as a morphism from one configuration to another with one
value changed. The operation morphism can be viewed as a
set-theoretical projection as follows:

Definition 4 (Operation Projection). Considering the set of
all possible configurations over a fixed SW × KEY , such
a set is the Cartesian product (AC+)SW×KEY . Then the
operation o(sw, key, ac) can be considered a projection from
(AC+)SW×KEY to the subset {C|Csw,key = ac}.

Definition 4 helps us to visualize an operation as a mor-
phism of the configuration space, i.e., the Cartesian product
(AC+)SW×KEY as shown in Fig. 4. For example, assume
|SW × KEY | = 2, then the space is two-dimensional.
Therefore, o(sw, key, ac) projects any configuration points
onto a line with (sw, key)-component = ac, and the operation
on the other (sw∗, key∗) is “orthogonal” to o(sw, key, ac).

Definition 5 (Morphism Equality). Two morphisms π1 and π2
are equivalent iff for any configuration C, π1(C) = π2(C).



Since both the domain and codomain of an operation
morphism are the configuration space, a set of data plane
operations {o1, o2, ...} can be “composed”, i.e., arranged in
a sequence to form a new morphism. Formally, we define a
binary operation ◦, called composition of morphisms, such
that for any o1 : C0 → C1 and o2 : C1 → C2, we have
o2 ◦ o1 : C0 → C2. By modeling an operation as a set-
theoretical projection based on Definition 4, the operation
composition holds the following properties:

Theorem 1 (Operation Composition Properties). The univer-
sal operation set O = {o1, o2, ...} and the binary operator ◦
have the following four properties under Definition 5.

1) Idempotence (general): ∀o1
o1 ◦ o1 = o1. (4)

2) Associativity (general): ∀o1, o2, o3
(o3 ◦ o2) ◦ o1 = o3 ◦ (o2 ◦ o1). (5)

3) Selectivity (conditional): if o1.(sw, key) = o2.(sw, key),

o2 ◦ o1 = o2. (6)

4) Commutativity (conditional): if o1.(sw, key) 6=
o2.(sw, key),

o2 ◦ o1 = o1 ◦ o2. (7)

Here o1.(sw, key) = o2.(sw, key) means both the sw and
the key of o1 and o2 are equal. Theorem 1 can be directly
proven by Definition 2. Intuitively, if each morphism is con-
sidered as a projection based on Definition 4, we can visualize
the four operation properties in the form of projections in a
configuration space as in Fig. 4.

C
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C1 = o1(C), C2 = o2(C1),

C3 = o3(C2) = (o3 ◦ o2)(C1)
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C
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C′
1

C1

C12 = C21

C

C1 = o1(C), C12 = o2(C1),

C2 = o2(C), C21 = o1(C2)

Commutativity
Fig. 4: Visualization of the four properties satisfied by projec-
tions.

The properties of real-world SDN implementation (e.g.,
Flow table modification messages in OpenFlow) align exactly
with these properties except for Selectivity. TABLE II illus-
trates a concrete example of Selectivity, where o1.(sw, key) =
o2.(sw, key). Note that if o2 is a mod, all results after
composition become an add. Because in our framework
add(sw, key, ac2) = mod(sw, key, ac2) = o(sw, key, ac2),

and an add can act as a potent mod (an add operation can
override an action even though an action for the identical key
already resides in the requested table sw), therefore Selectivity
property can still hold. Note that o.key is endowed with a
determined priority, so operations on overlapping flow rules
can be distinguished in composition.

TABLE II: Composition rules for o2 ◦ o1.

o2 \ o1 add(ac1) mod(ac1) del()
add(ac2) add(ac2) add(ac2) add(ac2)
mod(ac2) add(ac2) add(ac2) add(ac2)

del() del() del() del()

B. General Update Representation and Composition
1) Update as a Subset of a Free Monoid: Given the concept

of operation composition, an update can be considered as the
composition of data plane operations in different sequences,
e.g., o1 ◦ o2 ◦ o3 and o3 ◦ o1 ◦ o2. Therefore, we extend the
definition of an update using a free monoid [15] to address
possible operation sequences and capture the order constraint.
The formal definitions of the monoid and the free monoid are
given as follows:

Definition 6 (Monoid). A monoid (sometimes called a semi-
group with identity element) is a 3-tuple (S, e, ∗), where S
is a set, e ∈ S is an element, and ∗ is a binary operation
S×S → S such that for all x, y, z ∈ S, x∗(y∗z) = (x∗y)∗z
and e ∗ x = x ∗ e = x.

Definition 7 (Free Monoid). A free monoid S∗ on a generat-
ing set S is a monoid whose elements are all finite sequences
(or strings) of zero or more elements from S, with string
concatenation as the monoid operation ∗.
Example: Letter and Words - A typical free monoid example
is about letters and words. Start with an alphabet S of letters,
S = {a, b, c, ..., z}. A word on the generating set S is a finite
sequence of letters, e.g., infocom, and paris. Thus, S∗ is the
set of all possible words, the identity element e is an empty
word, and the operation ∗ is word-concatenation. In this free
monoid, any words can be simply composed together to get a
new word, e.g., no ∗ on = noon.

Consider a free monoid O∗, in which the generating set is
a data plane operation set O and the identity element e is an
empty update ∅ (i.e., applying nothing on a configuration C).
Then an update can be modeled as follows:

Definition 8 (Update Representation). An update is represent-
ed as a set U = {u1, u2, ...} where ui, called a representative,
is a sequence of elements from O(U), and satisfies the order
constraint Ω(U) and the following conditions:
• Constitution: ∀o ∈ O(U), o ∈ ui;
• Distinction: ∀oi, oj ∈ ui, oi.(sw, key) 6= oj .(sw, key).

Remark. U is a subset of the free monoid O(U)∗ on the
generating set O(U). Constitution condition guarantees that
all representatives have the constituent operations. Distinction
condition avoids configuring a flow rule twice in an update.
Each representative ui representing an order to compose O(U)
can transform a C to another as follows:

Definition 9 (Update Representative Morphism). An update
representative ui = o1o2...ok can be considered as a mor-



C C′
u2 = o2 ◦ o1 ◦ · · · ◦ on

u1 = o1 ◦ o2 ◦ · · · ◦ on

ui ∈ U

...

(a) Equivalence of representatives.

C0 C1

C2

U1

U2 ◦ U1

U2

(b) Update composition.

Fig. 5: Diagrams of the update algebra. (a) Applying any represen-
tative of an update achieves the same result. (b) If U1 : C0 → C1

and U2 : C1 → C2, then U2 ◦ U1 : C0 → C2.

phism between two configurations, i.e., ui : C → C ′, where
C ′ = ui(C) = (o1 ◦ o2 ◦ ... ◦ ok)(C).

Theorem 2 (Equivalence of Representatives). Given an update
U , for any configuration C, we have ui(C) = uj(C),
∀ui, uj ∈ U .

Theorem 2 can be simply proven with Commutativity
in Theorem 1 and the conditions in Definition 8. Fig. 5(a)
illustrates the diagram of Theorem 2. According to the monoid
presentation theory [15], an update U is an equivalence class
of representatives in a free monoid, thus can be further defined
as follows:

Definition 10 (Update Morphism). An update U can be
considered a morphism between two configurations, i.e., U :
C → C ′, where C ′ = U(C) = ui(C), ∀ui ∈ U .

Definitions 8 and 10 illustrate an update in the perspec-
tives of representation and morphism respectively. Updates as
morphisms are equipped with a composition operation. The
diagram of the update composition is illustrated in Fig. 5(b),
and such composition presents the following properties:

Theorem 3 (Update Composition Properties). The universal
update set U = {U1, U2, ...} and the binary operator ◦ have
Associativity and Idempotence properties under Definition 5;
i.e., ∀U1, U2, U3, we have (U3 ◦ U2) ◦ U1 = U3 ◦ (U2 ◦ U1)
and U1 ◦ U1 = U1.

Associativity in Theorem 3 is inherited from a monoid as in
Definition 6, and Idempotence can be proven by Idempotence
and Commutativity of operation composition in Theorem 1.

2) General Update Composition: Represented by a subset
of O(∗U) enumerating all acceptable operation sequences, an
update can be determined by its constituent operations O(U)
and order constraint Ω(U). Therefore, the composition Uk ◦
... ◦U1 is determined by O(Uk ◦ ... ◦U1) and Ω(Uk ◦ ... ◦U1).
Computation of O(Uk ◦ ... ◦ U1). The goal of update
composition is to obtain the equivalent operation sequences
with a lower operation number. Based on Associativity in
Theorem 1, multiple updates can be concurrently composed
in a flexible way. Given a set of updates {U1, U2, ..., Uk}, we
propose a general solution to compute O(Uk ◦ ... ◦ U1) with
the following steps:

1) Choose an arbitrary representative ui from each update
Ui, i ∈ [1, k],

2) Concatenate them with ◦, i.e., uk ◦ ... ◦ u1,
3) Simplify the concatenated sequence of operations using

the properties in Theorem 1 until Distinction condition
in Definition 8 is satisfied,

Example. Consider the composition of U1 and U2 in Fig. 2,
i.e., U2 ◦ U1. Randomly choose their representatives as u1
and u2 respectively, and then the composition u2 ◦ u1 can be
simplified as follows:

u2 ◦ u1 = (oa1′ob1′oe1ob2oc2) ◦ (oa1ob1oc1)

= (oa1′ ◦ ob1′ ◦ oe1 ◦ ob2 ◦ oc2) ◦ (oa1 ◦ ob1 ◦ oc1)

= oa1′ ◦ oa1 ◦ ob1′ ◦ ob1 ◦ oe1 ◦ ob2 ◦ oc2 ◦ oc1
by Associativity and Commutativity in Theorem 1

= oa1′ ◦ ob1′ ◦ oe1 ◦ ob2 ◦ oc2 ◦ oc1
by Selectivity Theorem 1

= oa1′′ ◦ ob1′ ◦ oe1 ◦ ob2 ◦ oc2 ◦ oc1
oa1′ is changed to oa1′′ according to TABLE II

Computation of Ω(Uk ◦ ... ◦U1). To obtain all acceptable
update sequences (representatives) from O(Uk ◦ ... ◦ U1), we
also need Ω(Uk◦...◦U1), so that the consistency properties can
be preserved. Given a set of operations, existing work on con-
sistent updates provide a large number of efficient algorithms
to generate an order constraint for various consistency prop-
erties, including loop-freedom [9], and waypoint routing [11].
A general solution is to take O(Uk ◦ ... ◦ U1) as an input and
run one of the algorithms to get Ω(Uk ◦ ...◦U1). For properties
whose order constraint consists of partial orders, Section III-C
below presents a solution to compute Ω(Uk ◦ ... ◦ U1) more
efficiently.

C. Efficient Representation and Composition for Basic Con-
sistency

The update representation using a subset of a free monoid
is complete, but the sequence set U can get large, especially
when composing updates with long sequences of operations;
for example, if U1 has n1 sequences and U2 has n2, a naı̈ve
concatenation could result in n1×n2 possible sequences. This
section introduces an efficient and compact way to specify and
derive the order constraints consisting of partial orders. This
format of order constraint guarantees the basic consistency
property defined in Definition 11 below.

Definition 11 (Basic Consistency). The basic consistency
property is defined as blackhole- and loop-freedom.

Basic consistency is commonly used in networks to avoid
packet drops and traffic loops [9], [16]. To ensure it, the update
execution can be represented by a DAG as in Fig. 6. Consider
each edge in the DAG to be a partial order pair, the Ω(U)
for the basic consistency can be represented by a strict partial
order set, whose elements are of the form o1 ≺ o2, denoting
that o1 ought to be applied before o2. The generation of the
DAG and partial order set can be found in [17]. For example
in Fig. 6, Ω(U1) = {oc1 ≺ oa1, ob1 ≺ oa1} and Ω(U2) =
{oe1 ≺ oa1′ , oa1′ ≺ ob1′ , oc2 ≺ ob2}. The strict partial order
≺ satisfies the following properties:

1) o ⊀ o,
2) if o1 ≺ o2 and o2 ≺ o3, then o1 ≺ o3,
3) if o1 ≺ o2, then o2 ⊀ o1.
Based on the partial ordering, we propose an efficient

solution to achieve update composition, e.g., Uk ◦ ... ◦ U1.
In our solution, the constituent operations O(Uk ◦ ...◦U1) can
be obtained by the same solution as in Section III-B2, while
Ω(Uk ◦ ... ◦ U1) is computed as follows:
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Fig. 6: An example of the efficient composition of U1 and U2 in
Fig. 2 to preserve the basic consistency, oa1′′ = oa1′◦oa1 is computed
according to TABLE II.

• Step 1: Combine the order constraints together, i.e.,
Ω(Uk ◦ ... ◦ U1) = Ω(U1) ∪ Ω(U2) ∪ ... ∪ Ω(Uk),

• Step 2: Replace operations by composed counterparts in
O(Uk ◦ ... ◦ U1),

• Step 3: Search cycles in Ω(Uk ◦ ... ◦ U1) based on the
properties of ≺,

• Step 4.1: In each cycle, remove element o1 ≺ o2 if ∃o′1 ≺
o′2 ∈ Ω(Ui), o

′′
2 ≺ o′′1 ∈ Ω(Uj), s.t. o1.(sw, key) =

o′1.(sw, key) = o′′1 .(sw, key), o2.(sw, key) =
o′2.(sw, key) = o′′2 .(sw, key) and i < j,

• Step 4.2: At elements om ≺ on, ∀m,n, if om ≺ o1 and
o2 ≺ on;

• Step 5: Simplify Ω(Uk ◦ ... ◦U1) based on the properties
of ≺.

Example. Fig. 6 shows the efficient composition of U1 and
U2 in the example of Fig. 2. We use the format of DAGs
for simple illustration. After Steps 1 and 2, there is a cycle
between oa1′′ and ob1′ , where oa1′′ = oa1′ ◦ oa1 is computed
according to TABLE II. Since ob1′ ≺ oa1′′ is inherited from
Ω(U1) but conflicts with Ω(U2), it will be removed as depicted
in Step 4.1 of our solution.

Theorem 4. If the sequential execution from Ω(U1), Ω(U2),...,
to Ω(Uk) guarantees the basic consistency, the non-blacking
execution of Ω(Uk ◦ ... ◦U1) in update algebra can guarantee
the basic consistency.

The detailed proof of Theorem 4 is omitted due to s-
pace limitation. The intuition here is that the first two
steps allow Ω(Uk ◦ ... ◦ U1) to inherit the orders from
{Ω(U1),Ω(U2), ...,Ω(Uk)}. Even when there exist orders
between operations with different keys, such orders can be
captured in the first two steps. In Step 3, any cycle indicates
the presence of order conflicts between Ui and Uj for the
same flow rules. Since based on Selectivity in Theorem 1, the
conflicting operations are overwritten by the last one, applying
the same rationale into the order constraint, only the order
element in Uj , (i < j), is preserved as depicted in Step 4.1.
However, many of the orders are implicit and not shown
because of the transitivity property. When breaking the cycles,
we remove some elements, which may lead to dependency
loss. For example, in Ω(U2), if we remove oe1 ≺ oa1′ ∈,
the hidden (implicit) dependency element oe1 ≺ ob1′ will be
lost. Therefore in Step 4.2, we make all dependencies explicit
by adding edges from all parents to all children, to ensure
correctness when composing the operations. The example in
Fig. 6 does not involve Steps 4.1 and 4, but more interesting
and complicated examples can be found in our technical
report [17].

Not all updates can be represented with partial ordering:
for example, if the acceptable sequences in a free monoid are

Idle Scheduled

sent to the data plane

Completed

initial

response: failed

response: successful

Fig. 7: Finite machine of an operation.

o1o2o3 and o3o2o1, then partial ordering is not enough. Com-
position of the updates with general consistency properties can
be addressed by the solution in Section III-B2.

D. Composition with Partial Execution

The update algebra in the previous sections assumes that
all operations of updates to be composed are not executed.
However in practice, new updates can arrive while previous
ones are partially executed. The problem is that such a partial
execution results in uncertainty of configuration states. To
resolve this problem, we 1) introduce an uncertainty model
to reflect partial executions, and 2) provide a solution for
continuous and non-blocking composition for updates with
partial executions.

1) Uncertainty Model: An SDN controller sends operations
of an update to a data plane (in a proper order) to execute the
update. Once switches receive the operations, they reply to
the controller with the progress of execution. Therefore, from
the perspective of the SDN controller, each operation has one
of the following states: Idle, Scheduled or Completed. Fig. 7
shows the finite machine of an operation state. Initialized with
state Idle, once an operation is sent to the data plane for
installation, its state becomes Scheduled. After installation,
switches return a response message to notify whether the
operation is applied successfully. A successful response turns
the operation state into Completed state whereas a failed
response turns it back to Idle.

The configurations according to the states of an operation
o : C → C ′ are as follows:
• Invariant 1: If o is at Idle, it is not applied at the data

plane; i.e., the configuration is C.
• Invariant 2: If o is at Completed, it is applied at the data

plane; i.e., the configuration is C ′.
• Uncertainty: If o is at Scheduled, it can be applied or

not; i.e., the configuration is C or C ′.
Partial Execution. Consider an update composition of U1 and
U2 in which U1 is partially-executed when U2 arrives at the
controller. Let U+

1 denote the part of U1 that has been applied
(Completed), and U−1 the remainder, i.e., U1 = U−1 ◦ U

+
1 .

Based on Associativity in Theorem 3, we have:

U2 ◦ U1 = U2 ◦ (U−1 ◦ U
+
1 ) = (U2 ◦ U−1 ) ◦ U+

1 (8)

Fig. 8(a) presents the transitions of configuration states
according to executed updates. Note that we compose U1 and
U2 at the configuration state C ′1 with a partial execution U+

1 ,
which means U2 ◦U−1 is our target composition. The problem
is that C ′1 and U−1 may be unknown to the controller due to the
uncertainty state of operations at Scheduled state. A solution is
to prohibit Scheduled states during composition; i.e., once U2

arrives, the controller stops scheduling new operations in U1
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Fig. 8: (a) Uncertainty model where C′1 and U−1 may be unknown.
(b) Illustration of Problem 1 where o1 is at the Scheduled state, so
its execution can be either failed or successful.

and collects responses for all Scheduled ones until their states
become steady one such as Idle and Completed. However, this
solution inefficiently blocks updates due to the interruption for
collecting the responses.

2) Solution: The basic idea behind our solution is to treat
Scheduled operations as “not applied” at a data plane during
composition. Consider an update composition U2 ◦ U1 in
Fig. 8(a). Assume that one operation o1 in the update U1 is in
Scheduled state. Suppose that CF

1 and CS
1 are the configura-

tions after failed and successful responses for o1, respectively.
Based on the two Invariants, the current configuration C ′1
must be either CF

1 or CS
1 . Then, we aim to solve:

Problem 1. Given C ′1 ∈ {CF
1 , C

S
1 }, find U : C ′1 → C2.

Let US : CS
1 → C2 denote the composed update to achieve

U2. As depicted in Fig. 8(b), we have

CS
1 = o1(CF

1 ), (9)

C2 = US ◦ o1(CF
1 ). (10)

Recall that our solution treats Scheduled operations as “not
applied”, i.e., C ′1 = CF

1 . Based on the assumption C ′1 = CF
1 ,

the solution is U = US ◦o1 from Equation (10). We show that
the solution yields U(C ′1) = C2 even in the case of C ′1 = CS

1
as follows:

US ◦ o1(C ′1) = US ◦ o1(CS
1 ) (11)

= US ◦ o1(o1(CF
1 )) (12)

= (US ◦ o1) ◦ o1(CF
1 ) (13)

= US ◦ (o1 ◦ o1)(CF
1 ) (14)

= US ◦ o1(CF
1 ) (15)

= C2, (16)

where Equation (12), (14), (15) and (16) are deduced from (9),
Associativity, Idempotent in Theorem 1 and Equation (10),
respectively.

Therefore, regardless of the uncertainty due to Scheduled
operations, the update algebra is able to compute an update
composition and achieve correctness based on our solution.

IV. EVALUATION

This section evaluates the benefits of update algebra through
asymptotic analysis (Section IV-A), extensive benchmarking
using a real controller (Section IV-B), and integration with a
real application (Section IV-C).

A. Asymptotic Analysis
We conduct an asymptotic analysis to compare the cor-

rectness, overhead, and completion time of the composition

of consecutive updates using sequential, parallel, and update
algebra based executions. We denote p ∈ [0, 1] the probability
that two consecutive updates are related, i.e., involve common
flows. In other words, 1 − p denotes the probability that
two consecutive updates are fully independent. Each update
is represented as a sequence of operations. For simplicity,
if two consecutive updates U1 and U2 are related (with
probability p), the two sequences are modeled as overlapping,
and the common segment is randomly selected using a uniform
distribution. The total length of the update after composition
is provided by Equation (17), with N1 and N2 representing
the lengths of U1 and U2. The details of the proof are omitted
due to space limitation.

f(N1, N2) =
N2

1 +N1N2 +N2
2

N1 +N2
− 1 (17)

TABLE III summarizes the results. First, as explained in
Section II, parallel execution may violate correctness as it
does not respect update dependencies. Second, TABLE III
shows that the completion time of a sequential execution
increases linearly with the number of updates. In contrast,
in independent-update dominant settings, the completion time
with update algebra stays asymptotically constant, similar to
that of a parallel execution, while guaranteeing correctness.

TABLE III: Asymptotic analysis of the composition of two
consecutive updates U1 and U2.

Correctness Operation Number
(N )

Update Completion
Time (T )

Sequential
√

N1 + N2 T1 + T2

Parallel × N1 + N2 max(T1, T2)
Update
Algebra

√
≈ f(N1, N2)p +

(N1 + N2)(1− p)
≈ f(T1, T2)p +

max(T1, T2)(1− p)

B. Benchmarking

Methodology: We deploy update algebra in a SDN network
running a Ryu 4.24 controller, and twenty Open vSwitch [18]
2.5.4, connected in a FatTree topology, which is common in
data centers.

We generate updates as follows: each update involves a ran-
dom number of flows ranging from 17 to 20. Two successive
updates include common flows with a probability of p. We
vary p, and for each case, we synthesize 300 network update
events with different Poisson arrival rates λ.

The controller schedules the arriving updates according to
the order constraints (i.e., DAG) derived using the algorith-
m [9] proposed by Forster et al. to ensure a lack of blackholes
and loops during the updates. We compare two composition
approaches: in the first, the controller keeps track of the
state of each operation, and continuously merges new arriving
updates with ongoing ones through update algebra; in the
second approach, the controller executes the arriving updates
in a sequential (blocking) manner, i.e., according to a First-
In-First-Out (FIFO) policy.

To compare the performance, we report two metrics: aver-
age operation number, and average update completion time.
The former is the average number of operations applied in
the data plane for the 300 updates. The latter is the average
duration of an update which begins when it is considered by



the controller, and ends when the last operation is completed
or merged with new updates.
Results:
• Control Overhead: Fig. 9(a) shows the average number of
operations, which reflects the control message overhead in the
system. The sequential execution yields a constant number
of operations for different values of λ as all updates are
executed individually and sequentially, independent of their
arrival rate. In contrast, the overhead of update algebra based
execution varies with λ: the number of operations is similar
to that of the sequential execution when λ is low, as each
update completes before the next one arrives. However, as λ
increases, fewer updates are completed before new ones arrive.
Therefore, consecutive updates can be merged, reducing the
number of operations. Comparing the results of different p,
we observe that when successive updates are more related
(i.e., larger p), more operations can be merged through update
algebra, resulting in a reduction in numbers of operations.
As such, with λ = 2/s (the network being updated twice
a second on average), the non-blocking execution in update
algebra reduces the control message overhead by up to 30%.
• Completion time: Fig. 9(b) shows the average update com-

pletion time. It includes both the results from the experimental
evaluation, and the theoretical upper and lower bounds.

For the theoretical bounds, we model the sequential exe-
cution as an M/M/1 system where the arrival rate is λ and
the service rate µ is 1/(average update execution time); note
that the execution time of individual updates is exponentially
distributed in our experiments. For the parallel execution, as
updates can be executed concurrently, the execution bottleneck
comes from the operation queues at the switches. Considering
that updates arrive at switches uniformly at random, the
parallel execution can be approximated by an M/M/c system,
where c is the number of switches in the network. Therefore,
the average response time in the M/M/1 system reflects the
upper bound of the update completion time, and that the
M/M/c system corresponds to the lower bound.

Fig. 9(b) depicts the theoretical bounds, and the measured
update completion times of both the sequential execution and
update algebra. Both the sequential and update algebra based
executions yield similar constant times at low arrival rates as
all updates are completed without blocking. However, as λ
becomes larger, our approach completes updates faster than the
sequential execution. This is because the sequential execution
suffers from long waiting times due to the blocking in the
queue, while update algebra enables updates to be executed
concurrently, and reduces the number of operations, e.g., by
merging operations with same keys. When p = 0.2 and λ =
1.2/s, update algebra improves network update speed by up to
8x compared to the sequential execution, and when p = 0.8
and λ = 1.6/s, the gain can reach 16x.

The close-up figure in Fig. 9(b) (right-hand) clearly shows
the impact of different update patterns on the update perfor-
mance. As p increases, update algebra achieves higher gain,
and the update completion time with update algebra gets closer
to that of the theoretical lower bound. The results demonstrate
that by maximizing the execution parallelism while preserving
consistency properties, update algebra can handle frequent
network changes in a non-blocking, but also efficient way.

C. Performance in a Real Application

This section evaluates the performance benefits of update
algebra integrated with a real application. We deploy Hed-
era [2] in the SDN controller. Hedera continuously collects
network statistics, and updates flow routes to maximize the
aggregate network utilization. We use an unbalanced traffic
pattern with a large workload, and measure the average link
bandwidth utilization with different update frequencies. The
update frequency is an adjustable parameter (with a default
value 0.2/s) of Hedera specifying how frequently the updates
are generated.

Fig. 10 shows that the update algebra based execution
outperforms the sequential execution. As the update frequency
increases, more updates are generated. The sequential execu-
tion cannot complete the updates before the next ones arrive.
As a result, the arriving updates accumulate and the controller
fails to update the network as directed by Hedera, causing
network performance to degrade quickly. This is the reason
frequent updates are prohibited in current systems, and the
default frequency is set to 0.2/s (an update every five seconds).
In contrast, by merging consecutive updates in a non-blocking
manner, update algebra allows updates to be quickly enforced,
and the network performance keeps increasing with the update
frequency. With an update frequency of 1.2/s, update algebra
increases the network utilization by 13% compared to the
default value 0.2/s, and outperforms the sequential execution
by 30%. These results demonstrate the benefits of update
algebra with a real application.

V. RELATED WORK

Consistent Updates: A concerted research effort has recently
been made to tackle the problem of network updates in SDN
for different aims. Xitao et al. [8] minimize the number and
latency of rule updates for TCAM-based switches by elim-
inating redundant and unnecessary entry moves. Reitblatt et
al. [19] introduce the notion of consistent network updates, and
propose a two-phase update approach. Solutions supporting a
broad range of consistent properties are proposed, including
loop freedom [9], congestion-freedom [10], waypoint rout-
ing [11] and customizable properties [12]. However, existing
work is limited to a single network update at a time, and
does not handle consecutive network updates. Peter et al. [13]
mention the inter-update scheduling problem in their future
work, but only provide a strawman solution as an enhancement
to the sequential approach. In contrast, our work allows
controllers to efficiently merge multiple network updates to
handle continuous and non-blocking network changes while
preserving desired properties. To the best of the authors’
knowledge, our work is the first to handle multiple updates
as a group.
Policy Composition: Researchers have also investigated com-
posing policies. Several recent SDN policy languages and
controller hypervisors (e.g., NetKAT [20], Pyretic [21]) sup-
port taking multiple high-level policies and generating flow
tables that fulfill the semantics of the sequential and par-
allel composition. However, network update operations are
different from flow rules, and present unique challenges as
well as distinct requirements. For example, as discussed in
Section III-D, network updates may be partially executed, and
controllers may not have a complete and precise up-to-date
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view of the update progress. In addition, network updates
have distinct consistency requirements that differ from those
of policy composition. Consequently, existing work on policy
composition cannot be applied to composing network updates.
Instead, we developed a theoretical framework that captured
the unique characteristics of network updates, and allowed us
to reason about their properties and composition.
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