We describe a preconditioned Krylov iterative algorithm based on domain decomposition for im-
plicit linear systems arising from partial differential equation problems which require local mesh
refinement. In order to keep data structures as simple as possible for parallel computing applica-
tions, the fundamental computational unit in the algorithm is a subregion of the domain spanned by
a locally uniform tensor-product grid, suggestively called a tile. This is in contrast to local refine-
ment techniques whose fundamental computational unit is a grid at a given level of refinement. The
bookkeeping requirements of such algorithms are potentially substantial, since consistency of data
must be enforced at points of space which may belong several different grids, and furthermore, the
grids are not necessarily of tensor-product type, but more generally, unions thereof. The tile-based
domain decomposition approach condenses the number of levels in consideration at each point of
the domain to two: a global coarse grid defined by tile vertices only and a local fine grid, where the
degree of resolution of the fine grid can vary from tile to tile. Experimentally, it is shown herein
that one global level and one local level provide sufficient flexibility to handle a diverse collection of
two-dimensional problems which include irregular regions, non-simply-connected regions, non-self-
adjoint operators, mixed boundary conditions, non-smooth coefficients, or non-smooth solutions.
We employ from 1 to 1024 tiles on problems containing up to 16K degrees of freedom. Though mo-
tivated by local refinement and parallel processing applications, benchmark serial implementations
of the tile-based algorithm on uniform grids produce iteration counts and execution times which
are competitive with those of traditional global preconditionings.

Domain Decomposition
with Local Mesh Refinement

William D. Groppt and David E. Keyes}

Research Report YALEU/DCS/RR-726
August 1989

Approved for public release: distribution is unlimited.

t Department of Computer Science, Yale University, New Haven, CT 06520. The work of this
author was supported in part by the Office of Naval Research under contract N00014-86-K-0310
and the National Science Foundation under contract number DCR 8521451.

{ Department of Mechanical Engineering, Yale University, New Haven, CT 06520. The work of
this author was supported in part by the National Science Foundation under contract number
EET-8707109.




1. Introduction

The combination of domain decomposition with preconditioned iterative methods provides a
framework which extends the usefulness of numerical techniques for certain special partial differ-
ential equation problems to those of more general structure. Non-smooth features, non-separable
geometries, or massive sizes of practical problems limit the application of many “standard” nu-
merical techniques. Direct methods are rapidly defeated by problem size. “Fast” methods which
take advantage of special coefficient and grid structure often do not apply globally. Iterative
methods often depend for efficient implementation on regular grids which, if global in extent, are
inconsistent with accurate and economical resolution of the physics of the problem. However,
the domains of problems with these features can often be decomposed into smaller subdomains
of simpler structure, increasing the utility of extant software libraries, particularly as components
of preconditioners. Moreover, the domain decomposition can be made to produce a transparent
mapping of many problems onto medium-scale parallel computers. Our primary focus in this paper
is the incorporation of spatially-varying mesh refinement requirements into a finite-difference-based
domain decomposition algorithm. We illustrate the convergence behavior of the algorithm on a va-
riety of two-dimensional elliptic PDE problems, including non-self-adjoint, non-separable geometry
cases. We also point out features of the method which are relevant to a parallel implementation
but defer the corresponding complexity analysis to a subsequent companion paper.

Many PDE problems which are “large” in the discrete sense are so because the continuous
problems from which they are generated require resolution of several different length scales for the
production of a meaningful solution. The value of compromising between the extremes of globally
uniform refinement, which leads to simple and usually vectorizable algorithms but wastes time and
memory, and pointwise adaptive refinement, which minimizes the discrete problem size for a given
accuracy requirement but leads to complicated data structures, has been recognized for some time
and described in contexts too numerous to acknowledge fairly. Locally Uniform Mesh Refinement
(LUMR) characterizes one such class of discretizations, based on composites of highly structured
subgrids. Many treatments of LUMR in the literature pertain to explicit methods for transient
problems, a class with its own advantages (see [3] and references therein) and limitations [39]
which is somewhat distinct from ours. Implicit treatments of locally regular refinement for elliptic
problems include approaches arising out of classical multigrid (see [31] and references therein), a
nonconforming spectral technique [30], and methods rooted in iterative substructuring for finite
element problems [5].

Computationally practical locally uniform grids are usually expressible as the union of a coarse
uniform tensor-product grid covering the entire domain with one or more refined tensor-product
grids defined over subregions, including the possibility of multiple, nested levels. Generalizations
of this within the LUMR framework include allowing the grids at any particular level of refinement
to themselves be the union of tensor-product subgrids, and reinterpreting “uniform” as “quasi-
uniform” to allow general curvilinear coordinates for custom body- or solution-fitting. We select
for consideration a rather restricted form of LUMR in which refinement occurs exclusively within
complete cells of a quasi-uniform coarse grid, as described in section 2 below.

The goal of the present contribution is an LUMR methodology with starkly simple data struc-
tures, for efficient portability to a variety of parallel machines. It borrows from the mesh refinement
and domain decomposition literature and from the authors’ own experience in these areas and in
parallel computation [20, 22, 28]. In our pursuit of convenience and overall parallel performance,
in which we include both absolute speedup and efficiency, we are ready, potentially, to compromise
“optimality” as defined by conventional serial computing measures. For example, by refining only
in units of full coarse grid cells, we may impose a tendency towards refinement in regions where it
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Figure 1: The anatomy of a tile. Unless closed by a physical
boundary, a tile is open along its high-z and high-y perimeter.

would be unnecessary from a truncation error point of view alone. As another example, our con-
vergence rate is dependent upon a coarse grid resolution which may be chosen with criteria beyond
convergence rate in view, such as the balance of work among multiple processors. Fortunately, the
methodology survives such compromises and is even sequentially advantageous in many problems.

The domain decomposition algorithms we employ (section 3) involve “nearly” parallel precon-
ditioners in conjunction with generalized minimum residual (GMRES) iteration, a non-stationary
method not dependent upon operator symmetry. In two dimensions, the preconditioner involves
three separate phases: a global coarse grid solve, independent solves along interfaces between sub-
domains, and independent solves in the subdomain interiors. The global coarse grid solve, which
we do directly, is an essential feature as it provides the only global exchange of information in the
preconditioner itself. We will compare alternative formulations of the more negotiable interface
and subdomain solves.

The main body of the paper is the collection of numerical experiments on two-dimensional ellip-
tic boundary value problems in section 4. The experiments include standard model problems, “L”-
shaped, “T”-shaped, and non-simply-connected regions, non-self-adjoint operators, mixed bound-
ary conditions, and problems with non-smooth coefficients or non-smooth solutions. We use from 1
to 1024 coarse grid elements on problems containing up to 16K degrees of freedom. Among our find-
ings is that the interface probe preconditioning advocated in our earlier work on convective-diffusive
systems with stripwise decompositions [28] does not perform as well on decompositions with inter-
nal vertices as the much simpler tangential operator preconditioning. We also demonstrate that
incomplete factorizations are not cost-effective subdomain interior preconditioners, relative to exact
subdomain solves, once the subdomains become sufficiently narrow.

2. Mesh refinement by tiles

In this section we describe a simple mesh refinement philosophy based on a regular tessellation
of the global domain into subdomains which we call “tiles” in two dimensions. Mathematically,
a tile is the tensor-product of half-open intervals in each coordinate direction, except that a tile
abutting a physical boundary along what would ordinarily be one of its open edges is closed along
that edge. Each tile possesses its own tensor-product discretized interior, at least two of its four
sides, and at least one of its four corners. Although the specific convention is arbitrary, we assume
for definiteness that in its own local right-handed coordinate system, each tile contains its origin
and its z and y axes (see Figure 1).

In contrast to physical boundary segments, we refer to the artificial decomposition-induced
boundaries of the tiles as “interfaces”. We refer to the points at the intersection of all boundaries,
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Figure 2: Sample Tessellations. (a) is permissible, (b) is
not.

physical or artificial, as “cross-points”. We require that the cross-points be embeddable in a tensor-
product global quasi-uniform coarse grid, from which only points lying exterior to the (possibly
multiply connected) boundary are missing. This rules out irregular tiling patterns such as in
Figure 2b. However, there is no requirement that the domain itself be of tensor-product type; the
decomposition in Figure 2a is permissible.

Associated with each tile is the data defined over a quasi-uniform grid covering its portion
of the domain and a set of operators for executing its block-row portions of the preconditioner
solve to be described later. In our object-oriented approach, these operators can potentially be of
different types for different tiles. For computational convenience, we assume throughout that the
grids covering individual tiles are derived from the coarse grid of cross-points through refinement in
ratios of powers of two. We can therefore indicate refinement levels using the graphical shorthand
of Figure 10 where the integer indicates the logarithm of the refinement ratio.

2.1. Tile-tile interfaces

In order to minimize restrictions on the structure of adjacent tiles (and to eliminate redundant
communication between tiles in a multiprocessor implementation, in which different tiles might be
assigned to different processors), each tile stores and maintains, in addition to its own data, the
data associated with a buffer region of phantom points equal in width to one-half of that of its
associated finite difference stencil (see Figure 3). Excluding the redundant phantom points, each
point of the domain is uniquely associated with a single tile.

Data at the phantom points is supplied in a manner dependent upon the internal structure and
refinement ratios of the adjacent tiles in question. A finer tile obtains bi-quadratically interpolated
data from its coarser neighbor. Since the problems studied herein involve second-order operators,
this allows the use of conventional finite difference techniques in generating the difference equations
at the subdomain interfaces. Bi-linear interpolation alone would limit the potential accuracy of a
second-order differencing scheme, as observed in some preliminary experiments. We note that such
a difference scheme does not guarantee discrete flux conservation. Our focus herein is simply on
the solution of a consistent set of discrete equations. More careful attention to the discretization
has already been given in the context of locally regular refinement in [19].

All of our examples employ strictly uniform local grids. Although this is not a necessary
restriction of the method, this simplifies the exchange of data between adjacent tiles.

The coarse grid system obtains its data by simple (unweighted) injection. That is, the value
at the point in the finer neighboring tile that lies on the coarse grid stencil is used for the coarse
grid point. A weighted averaging could be employed to preserve operator symmetry, if that were
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Figure 3: Sample tile, showing the computational buffer
region required for the standard five-point stencil.

necessary for other reasons, for instance, conjugate gradient iteration of a self-adjoint problem.
A finite element discretization with transition elements along the interface would unambiguously
deliver the appropriate weighting coefficients in this case.

The selection of refinement criteria is a much studied, yet still open problem; see [2] and
[26] for a sampling of work in this area. The refinement criteria, however, are orthogonal to the
equation-solving aspect considered herein, except to the extent that a part of the computational
work required by one of these tasks may be a by-product of the other. Some issues in refinement
criteria will be discussed in a subsequent report [23]. For present purposes, we give one example
with a smooth solution but non-smooth coefficients and others with smooth coefficients but a
non-smooth solution. In these examples, “good” refinement strategies can be done “by hand”.

In general, tile interfaces can be the site of changes in the discretization besides just the
refinement level. For instance, the discrete stencil can change order at interfaces. Even the form
of the operators or their number can change at interfaces while still preserving the subdomain
uniformity required for efficient subdomain solution algorithms. As a motivational example, a
reacting flow problem frequently consists of large regions in which there is only transport of mass,
momentum, and thermal energy but no reaction among constituents of known composition, to all
adequate orders of approximation. In other regions it is essential to retain composition variables,
because they diffuse differentially, and in a subset of these, reaction terms must also be retained
in the equations. To accommodate such generality, the routines that pack the buffer regions are
responsible for providing the necessary mappings.

2.2. Physical boundaries

For generality, the equations for the physical boundaries are incorporated into the overall
system matrix, including Dirichlet conditions. Our implementation allows inhomogeneous Robin
boundary conditions at all boundary points, namely,

Ju
a(w,y)% + b(z, y)u = c(z,y).

Both first- and second-order one-sided difference approximations to the normal derivative term are
employed. The second-order approximation is used in the actual operator, and the first-order is
used in the preconditioners (to preserve uniformity of the bandwidth of the matrices used in the
preconditioning). Though tempting in their simplicity, Dirichlet boundary conditions alone in the
preconditioner were found to perform poorly in practice, in accord with expectation from the theory
in [33] and references therein.
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Figure 4: One-dimensional schematic of the tile basis func-
tions.

2.3. Comparison with other approaches

In contrast to multi-level approaches in which the fundamental computational unit is a grid
at a given level, our fundamental computational unit is a subregion of the domain. The present
approach requires only one grid which possesses connectivity with arbitrarily distant regions of the
domain, namely the coarsest one. In the framework of the hierarchical basis function technique
[43], we have simply a two-level hierarchy, but the the higher level may be different in different
subregions. Figure 4 gives a one-dimensional illustration. This admittedly represents a severe
condensation of the range of intermediate scales present in multi-level local uniform refinement,
on which much of the asymptotic convergence theory is based. Tiles are much closer to being the
software equivalent of the “geometry-defining processors” (GDPs) of Dewey and Patera [14].

The tile approach is also similar to the additive Schwartz method [16, 41] and the techniques
of [6] in its reliance upon just a single domain-spanning grid. The main difference between these
techniques and the tile approach is in the treatment of the interfacial degrees of freedom. In the
additive Schwarz technique, interior problems are solved on extended overlapped subdomains, of
which the interfacial degrees of freedom are interior points and thus demand no special consider-
ation. In [6], good preconditioners for the interfacial degrees of freedom are derived theoretically,
for self-adjoint operators. Optimal algebraic convergence (independent of degree of refinement)
has been proved for both classes of algorithms in [18] and [5], so there are, intuitively, grounds for
optimism about single global-grid algorithms even though we present no extensions of the theory
to the non-self-adjoint problems we consider. The main disadvantage in condensing out interme-
diate scales is that the coarse grid, on which all optimal approaches require an exact solve, cannot
necessarily become as coarse as one might like.

The field of locally uniform mesh refinement is spanned by a continuum of resolution strategies
governed by clustering rules which control the size and shape of the refined subregions. Global
refinement lies at one extreme and pointwise adaptive refinement at the other. As soon as the
global tensor product mesh is abandoned a host of difficult practical decisions need to be made
about data structures and clustering algorithms. The logic required to handle the numerous types
of subgrid-subgrid interactions which can arise and to insure the consistency of the data structure
is a significant impediment to efficient parallelism. In contrast, “horizontal” neighbor-neighbor
interactions are simple. The sufficiency of a two-level approach in obtaining reasonable convergence
is demonstrated in section 4. Compelling superiority of approaches with a greater richness of scales
has not yet been fully established in production parallel software, although it may be ultimately.
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Experience on parallel computers gained from a two-level approach will be beneficial in any event.

3. Iterative domain decomposition algorithms

As mentioned in the introduction, preconditioned iterative methods and domain decomposition
provide a framework suitable for the description of a wide class of algorithms. The four common
elements of this framework are: a global operator arising from the discretization of the PDE (or
system of PDEs); an approximate inverse, or preconditioner, for the global operator; an iterative
method relying only on repeated application of the preconditioned operator; and a geometry-
based partition of the discrete unknowns so that size, locality, and uniformity can be exploited
in applying the preconditioned operator. Since the numerical analysis literature contains many
successful discretization schemes and iterative methods specialized for different operator properties,
such as the presence or absence of definiteness and symmetry, the recent burgeoning effort in
iterative domain decomposition algorithms has concentrated primarily (though not exclusively) on
the interaction of the second and fourth of these elements. In the parallel context, this is a natural
preoccupation because the bottleneck to parallelism usually (though not exclusively) lies in the
requirement of the global transport of information in the preconditioner.

Many of the numerical examples described in section 4 rule out the use of iterative meth-
ods based on symmetry, but permit the assumptions of definiteness and diagonal-dominance. In
particular, full or incomplete factorizations of subdomain matrices can be undertaken without
pivoting. Because of its robustness, we join many recent users [13, 32, 38, 42] in adopting the
parameter-free generalized minimum residual (GMRES) method [37] as the outer iteration. The
main disadvantages of GMRES, its linear and quadratic (in iteration index) memory and execution
time requirements, respectively, must be mitigated by scaling and preconditioning. For other ac-
celeration schemes, such as Chebyshev, the memory and execution time requirements may be only
constant and linear, respectively, but GMRES dispenses with the difficulty of estimating param-
eters. The primary type of decomposition used herein involves roughly unit aspect ratio tiles, as
opposed to thin strips. Ordering the interior points (and the physical boundary points other than
cross-points) first, the cross-points last, and the interfaces connecting the cross-points in between,
gives a nested-dissection-like “arrow” matrix appearance to the global discrete operator, which we
denote A. The basic structure of our preconditioner B is the block-upper triangular portion of
the arrow matrix. The application of B~! thus begins with a cross-point solve, which updates the
right-hand sides of a set of independent interface solves. These, in turn, update the right-hand
sides of a set of interior solves. For a nine-point stencil, the cross-point result would also update
the interior right-hand sides. However, there is no dependence, within a single iteration, of the
interface solution upon the result of the interior solution, or of the cross-point solution upon ei-
ther. (In [11], structurally symmetric arrow matrix preconditioners were compared against the
corresponding triangular forms on a variety of strip-wise decomposed problems. It is found therein
that retaining the interior-to-interface coupling in the preconditioner generally reduces the total
number of iterations required to attain a fixed convergence criterion, but that the execution time of
the structurally symmetric algorithm is greater, because of the cost of the extra set of subdomain
solves in each iteration. The first and second sets of subdomain solves are inherently sequential.)

The derivation of the coefficients of the preconditioner blocks is as follows. The cross-point
equations are simply a scaled coarse grid discretization of the continuous PDE. Physical boundary
points lying at tile corners are retained in the cross-point system in order to accommodate first-order
Neumann or mixed conditions in this coarse grid discretization. Weighted averaging possibilities for
the derivation of the coarse grid operator arise from the possession of the coefficients and right-hand
side on finer grids surrounding each cross-point, but these are not currently exploited. The current
implementation supports LU-based Gaussian elimination on the coarse-grid system. This solve is
the chief parallel bottleneck in the preconditioner and can be performed in either of two ways:
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redundantly on each processor after broadcasting the required coefficient data for small systems,
or in a fully distributed fashion for large systems. Determination of the most efficient technique is
generally domain and network dependent. If strip decompositions are used, there is no cross-point
system, and the lower-right block of the preconditioner is simply the interface system described
below.

The tile interior equations consist of fine grid discretizations of the PDE over local regions,
with physically appropriate boundary conditions along any true boundary segments and Dirich-
let boundary conditions at artificial interfaces. Only first-order differences are accommodated in
the physical boundary conditions of the preconditioner, even if higher-order are employed in the
operator A. The current implementation supports full LU Gaussian elimination, incomplete LU
decomposition, or modified incomplete LU decomposition. Each tile performs its interior solve
completely independently.

Unlike the coarse grid and tile interior equations, which bear the physical dimension of the
underlying PDE and have natural preconditionings, the lower-dimensional interfacial equations are
properly derived from a related pseudo-differential operator, a theoretically well-developed approach
we do not pursue here because of the difficulty in applying it to arbitrary problems. Instead, we
have compared three approaches referred to below as (a) tangential, (b) truncated, and (c) interface
probe. The tangential interface preconditioner is the one-dimensional discretization of the terms
of the underlying operator which remain when the derivatives normal to the interface are set to
zero. The truncated interface preconditioner is a discretization of the full underlying operator,
with the coefficients associated with non-interfacial unknowns set to zero. The interface probe
preconditioner has been described elsewhere [9, 29] as a low-bandwidth approximation to the true
capacitance matrix of the interfacial unknowns in the ambient matrix corresponding to the degrees
of freedom of the interface itself and the two subdomain interiors on either side.

The differences between these three techniques are perhaps most easily visualized by consider-
ing the example of Laplace’s equation on a uniformly discretized square partitioned by an interface
parallel to one pair of edges into subdomains 1 and 2, the interfacial unknowns being subscripted 3.
Let A;; and Ay, be the subdomain operators, let Ay3 and A3 translate the values on the interface
into the respective subdomain boundary condition right-hand side vectors, and vice versa for As;
and Az;. The tangential preconditioner is the tridiagonal matrix with diagonal elements —2 and
sub- and super-diagonal elements 1. The truncated preconditioner is the same except for —4’s on
the diagonal. The interface probe preconditioner is the truncated preconditioner minus a diagonal
matrix whose elements are those of the vector [A31A1_11 Az + A32A2'21A23]e, where e is the vector
of all 1’s. The probe preconditioner has the same row sum as the actual Schur complement matrix
for the interface, namely Asz — A3 A7 A13 — A32A5;) Ags. These three preconditioner matrix types
differ only along the diagonal, with the elements of the probe diagonal lying between the first two.

4. Numerical experiments

The numerical experiments of this section serve to illustrate the effectiveness of the domain
decomposition methods employed in terms of the convergence of the iterations and also the effec-
tiveness of the locally uniform mesh refinement in terms of the convergence of the discretization.

4.1. Model problems

We present twelve model problems, each containing a single dependent variable and two inde-
pendent variables. These restrictions on the number of variables beg generalization, so we comment
briefly at the outset. Multiple dependent variable cases have been examined for stripwise decom-
positions in [29] and will be presented for the current cross-point of the algorithm in a subsequent
paper oriented towards applications. The extension of our current techniques to three-dimensional
problems is straightforward, but not necessarily effective. Optimal or near optimal algorithms for
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Figure 5: The four domains considered in this paper.

three-dimensional problems are known which require a more implicit lower-right corner block of the
preconditioner, containing more than cross-points alone [15, 17]. We have not yet examined these
so-called “wire-basket” forms of the preconditioner. From a parallel perspective, they introduce
additional sequential overhead, and a careful consideration of the trade-offs between convergence
rate and cost per iterations will be required in a future study.

Some of the problems below are self-adjoint and could be discretized in a symmetric manner
and perhaps solved more cheaply with conjugate gradients than with GMRES. Our main interest,
however, is in the more extensible formulation. In all the examples to follow except for the last,
an exact solution of the continuous problem Lu = f is specified. From this , all of the following
source terms f and boundary condition inhomogeneities g may be calculated. In cases where the
expressions for f and g are sufficiently simple, they are written out along with the solution. The
twelve problems include four different domains, pictured in Figure 5.

The first two examples, with constant coefficients and an exact solution quadratic in each
independent variable, are extremely simple and possess truncation-error-free second-order finite
difference representations. They are identical except for the type of boundary conditions along one
side of their square domain. These problems are not candidates for mesh refinement; rather, they
are chosen to show the deterioration in convergence rate caused when Dirichlet boundary conditions
are replaced with Neumann, and to allow controlled experimentation on the effect of inaccurate
boundary conditions in the preconditioner. The poor convergence of #2 using the preconditioner
of #1 led to the decision to expand the cross-point system to include physical boundary points in
the general case.




Problem #1: Pure isotropic diffusion with all Dirichlet boundaries.

Viu=4
u(e,y) = 2 + ¢
Dirichlet data on 99
Q = Unit square

Problem #2: Pure isotropic diffusion with a partial Neumann boundary.

Viu =4
u(z,y) = z° + y?
Dirichlet data on the three lower sides of 32
ou |
—_— 1)=2
an ((U, )
Q = Unit square

The next example is included to study orientation-sensitivity of the substructuring due to
anisotropic diffusion, for comparison with problem #1, to which it is identical when a = 1. The
order-of-magnitude ratio between the diffusion coefficients in the z and y directions is mathemat-
ically indistinguishable at the discrete level from an order-of-magnitude physical domain aspect
ratio in an isotropic problem.

Problem #3: Anisotropic diffusion.

9 (a@) +— Ou =2(a+1)

oz \ Oz oy?
u(z,y) = ¢ + ¢
a=10

Dirichlet data on 3%
Q) = Unit square

The fourth example is a prototype convection-diffusion problem: a passive scalar in a plug flow
which is fully developed at the outflow. It is a companion problem to #2 in the sense of possessing
a smooth solution with one Neumann boundary, but asymmetry due to the convection. In that its
anisotropy comes from a first-order operator, it is also an interesting complement to #3.

Problem #4: Plug-flow convection-diffusion with fully-developed outflow boundary.

~Viu + c =f

Y
u(z,y) = s1n(7r:c) sin (7)
c=10
u = 0 on the three lower sides of 9

ou
—(z,1)=0
an(w7 )

Q) = Unit Square
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The next two examples (the first two from the standard “population” of elliptic problems in
[35, 36]) bring in non-constant coefficients, the latter in a non-self-adjoint way with Robin boundary
conditions.}

Problem #5: Self-adjoint, non-constant coefficient, Dirichlet boundaries.

2 (204 2 ()t
oz Az Ay dy 1+z+y
u(z,y) = esin(wz) sin(7y)
% =0 on 9Q

Q = Unit square

Problem #6: Non-self-adjoint, non-constant coefficient, Robin boundaries.

?u 0 N ou 2,0
P— _— — ) - — - 2 —_— =
a$2+ay<(1+y)ay) 5, (Lt y+y)ay f

u(z,y) = 0.135(e” Y + (22 — z)%log(1 + ¥?))

ou
u——é}z—gonﬁﬂ

Q = Unit square

The derivative is the outward normal.

The seventh example, from [1, 27], has a smooth solution, but rapidly varying coefficients along
an internal layer. Here, the solution itself gives no hint of the requirement of mesh refinement.
Interestingly, the locations of maximum error in a uniformly refined discretization of the PDE do
not even occur at the internal layer itself, but towards the interiors of the two subdomains it divides
[23].

Problem #7: Internal layer.

VaVu = f

a(z,y) = 1+ b arctan (m - %) + ¢ arctan (d (y - %))

w(z,y) = 162(1 — z)y(1 - y)
b=0.65 c=0.35 d=10.0
2 =0 on N

Q = Unit square

The next three examples are obtained by taking three different values of the convection, re-
spectively ¢ = 0, ¢ = —10, and ¢ = 1, in the convection-diffusion problem below.

Problems #8-10: Cylindrically-separable reentrant corner convection-diffusion problem.

tThe more widely available reference [25] contains an identical listing of problem #5 and a similar but not identical version
of #6. A typographical error in the latter renders it ill-posed.
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where r = \/(:c -1)24(y—1)2
and § = arg((z —1)+i(y—1)), 0<0 < 2r
Dirichlet data on 92
Q = L-shaped region

The first of these corresponds to pure diffusion, and the second and third to convection in towards
the reentrant corner, and away from it respectively, at a rate inversely proportional to radius.
The respective values of the radial eigenfunction exponent o are %, :—13, and approximately 10.0442,
from the Euler equation formula a = [c +4/c2+ l§| /2. The first two solutions of this trio lack

derivatives at the reentrant corner. The last is everywhere twice-differentiable, but the solution
is characterized by steep variation in the three non-reentrant corner regions, where r > 1. Local
mesh refinement is critical to improving the accuracy of a finite-difference solution. In addition to
refinement, a simple change to the finite difference scheme in the vicinity of the reentrant corner is
made that substantially improves the accuracy of the solution; this is described in more detail in
[21].

The eleventh example, from [4, 27], illustrates how an irregularly-shaped domain may force a
minimum granularity upon a tessellation comprised of congruent tiles. For the problem at hand,
the minimum granularity is near the ideal one.

Problem #11: T-shaped domain.

VZu = 4 — 2 cos(y)e®
u(z,y) = 22 + y? — ze” cos(y)
Dirichlet data on 92
) = T-shaped region

The last example, from [7], is provided to illustrate the accommodation of non-simply-connected
domains. Again, the geometry imposes a minimum granularity on congruent tiles.

Problem #12: Two-hole domain.

_6 . mwz\ Ou 0 . TT ., TY\Ou\ _ 5 o
9z ((1+Sm 10) ax) dy ((Hs’n 10°" 10) 8y) =ty

u = 0 on outer boundary of 9Q
o
51—;(:1:, 0) = 0 on hole boundary of Q2
Q0 = Two-hole region
Perspective surface plots of the solutions to these twelve problems are given in Figures 6 and 7.
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Figure 6: Surface plots of the test problem solutions: (a)
#1°3, (b) #4, (c) #5, (d) #6, (e) #7, (£) #11. (Note that
the solution to #11 is smooth; the apparent fronts are due to

zeroing the surface over the undefined regions of the T-shaped
domain.)

4.2. Parameters studied

Several categories of experiments are reported. First, a two-dimensional parameter space con-
sisting of coarse grid resolution and overall (uniform) resolution is explored by numerical experiment
on problems #1-10. A non-restarted GMRES algorithm is used, block-triangularly preconditioned
with exact solves on the subdomain interiors and on the coarse grid, and with tangential inter-
face solves. Here, as throughout this study, we use exclusively right preconditioning and an initial
iterate of zero. The goal of these experiments is the evaluation of the algorithm over a range of res-

olutions, in terms of iteration count and execution time, for comparison with back-of-the-envelope
complexity analyses.
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Figure T: Surface plots of the test problem solutions: (a)
#8, (b) #9, (c) #10, (d) #12.

Another set of experiments is performed on problems #7-10 with the goal of evaluating the
economy of the local refinement technique. We show that local uniform mesh refinement is capable
of significant CPU and memory savings with no sacrifice of accuracy relative to uniform refinement,
but that improving the discretization in simple ways can be more effective than considerable refine-
ment. In a third set, we evaluate the effect of decomposition orientation for non-unit-aspect ratio
tiles, using problems #1-4. The limiting cases are the stripwise decompositions previously consid-
ered by us in [29]. In another, brief proof-of-concept section, we present results for the complex
domain problems, #11 and #12. We then evaluate different preconditioner options than the exact
interior solves and tangential interface solves used in all of the examples above. With exact interior
solves, we compare three different interfacial preconditioners, and for tangential interface solves, we
compare three different interior preconditioners. Finally, we compare our preferred options in this
set to global incomplete factorizations for all of the problems which are posed on square domains.
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1 m | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10
1 128 1 4 1 2 1 5 1 NA NA NA
2 64 7 15 13 22 22 20 20 12 11 4
4 32 11 24 18 28 37 35 35 17 16 12
8 16 13 23 24 30 39 32 32 23 22 18

16 8 10 17 22 27 31 25 23 16 19 16
32 4 7 13 16 20 24 17 15 11 12 10
64 2 - - - - - - - - - -

128 1 1 1 1 1 1 1 1 1 1 1

Table 1: Iteration count as a function of number of tiles
per side of circumscribing square, ¢, and number of mesh
points along a tile side, m, at constant refinement parameter,
h—1 = 128, for a reduction in the initial residual of 10~5. The
last two lines of the table are not available experimentally due
to minimum discrete subdomain size conventions in the code;

however, the last line consists of all 1’s by definition, when
t=h"1.

The timings given below are from a Multiflow Trace 14/200 computer using 64-bit reals. All of
the code (primarily in C but with FORTRAN computational kernals) was compiled with the default
(-03) optimization and with version 2.1.3 of the compilers. Because of the varying performance of
hardware (vector, parallel, superscalar) on different problem sizes (due to different startup costs
and data dependency limitations), execution times are difficult to compare directly. The reader
should keep in mind while studying the results that different organizations of the code and different
compiler capabilities can account for large variations in times across architectures and software
releases. We have run the same experiments (to the extent supported by memory) on two other
Unix machines and find that the proportion of time spent in factorization and solution phases
varies widely between machines even though the relative rankings of total timings remain mostly
the same. In addition, replacing the nonsymmetric bandsolver in LINPACK used to solve the linear
systems with a custom nonpivoting routine produces a large benefit on one computer (a factor of
three reduction in time), but has little effect on another.

4.3. Convergence as a function of coarse grid granularity

In order to test coarse grid granularity over a large range, we fix the finest mesh spacing at
h~1 = 128 (relative to the length of the domain, whether that be 1 in the first seven problems, or
2 in the next three) and investigate the tradeoff between numbers of tiles and points per tile, as
shown in Tables 1 and 2 and plotted in Figure 8. The mesh is identical and uniform for all runs
in these tables (with the obvious exception that one quadrant of it is not present in the L-shaped
domain problems, #8-10, which therefore lack single-tile entries). The convergence criterion is a
relative reduction in residual of five orders of magnitude. Table 1 shows that the iteration count
peaks in the middle of the granularity range, at either 4 or 8 tiles per side. The bottom row of
all 1’s can be supplied without benefit of actual experiments, since it represents a direct solve on
a single grid. The top row entries differ from 1 in problems where the preconditioner has different
(lower order) boundary conditions than the operator A.

Table 2 shows the deceptiveness of iteration count alone as a measure of overall performance.
In execution time, the extreme runs, representing single-domain limiting cases, suffer due to the
high cost per iteration, even though the number of iterations required is very small. This table is a
profound illustration of the title of [10]: Domain Decomposition Beneficial Even Sequentially. The
most favorable total sequential execution times are found for multi-domain cases near the iteration
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1 m #1 #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #1i0
1 | 128 | 416 | 419 | 416 | 418 | 424 | 432 | 425 | NA | NA | NA
2 64 108 115 113 121 121 119 117 84 85 81
4 32 30 38 34 41 48 46 45 25 25 23
8 16 12 19 20 25 34 27 25 | 14 14 12
16 | 8 7 13 23 23 42 27 23 9 14 12
32 | a4 17 32 41 55 70 47 35 | 36 | 21 17

Table 2: Execution time (sec) as a function of number of
tiles per unit length, ¢, and number of mesh points along a
tile side, m, at constant h~1 = 128, for a reduction in the
initial residual of 10~3.

No. of Iterations
1 1 M T

Totol Execution Time (sec.)
T T T T T

40

Log of No. of Tiles on o slde Log of No. of Tiles on a slde

Figure 8: Plots of Tables 1 and 2 (problems #1-10 super-
posed), illustrating that the minimum execution time serial
algorithm occurs near ¢ = 16 tiles on a side, despite the large
iteration count at this granularity.

count maxima, in particular at 16 tiles per side.

The factorization of the banded matrix in the single subdomain case is the dominant contri-
bution to the overall time. In problems #1-7, over 410 seconds are spent doing the factorization
alone. Of course, one might not ordinarily employ exact solves on the single domain cases, although
many structural analysis codes do this very thing. A comparable penalty will accrue in an attempt
to do exact solves on a very fine “coarse” grid, in which each tile contains just one point. However,
the table of execution times is truncated beyond tile sizes of m = 4.

The behavior in Table 2 can be understood with reference to back-of-the-envelope complexity
estimates for the solution and factorization operators of the preconditioner. We observe that there
are O(t?) cross-point, interfaces, and interiors. Naturally ordered banded direct factorizations and
solves require O(Nb%) and O(Nb) operators respectively, where N is the number of unknowns and b
the bandwidth. For the cross-point system, N = t2 and b ~ t; for the interfaces, N = m and b = 1;
and for the subdomain interiors, N = m? and b = m. Thus, the interface operation counts are
always asymptotically subdominant and can be omitted in the following. From choosing the larger of
the cross-point and interior complexities, we see that factorization costs max(; ,){O(t*), O(t>m*)}
and solves cost max(; ,){O(t3),0(t?m3)}. Since m = 128/t in these experiments, the first term
grows with ¢ and the second decays with it. Quick calculations reveal that (to the resolution
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t h—1 #1 #2 #3 #4 | #5 #6 #7 #8 #9 #10
2 16 6 10 10 12 12 15 10 6 5 3
4 32 11 19 16 17 24 31 21 12 11 11
8 64 12 20 22 25 29 28 23 17 14 16

16 128 10 17 22 27 31 25 23 16 13 16

Table 3: Iteration count as a function of number of tiles per
side of circumscribing square, ¢, and refinement parameter,
h—1, at constant number of mesh points along a tile side,
m = 8, for a reduction in the initial residual of 105,

of the table) the minima for both factorization and solve costs occur at or between ¢ = 16 and
32 when h~! = 128. The tendency of buffer overhead, neglected in the estimates, is to favor a
slightly smaller number of tiles ¢ than thus estimated. It is important to note that the memory
requirements follow the solve complexities above. Thus, for a fixed memory size, an intermediate
coarse grid granularity accommodates the largest problem in core. Of course, all of these per
iteration complexity estimates need to be redone when the preconditioner blocks are other than
exact solves, for instance, incomplete factorizations. However, incomplete and exact factorizations
differ little in actual cost per iteration when the grid is narrow enough in the rapidly ordered
direction, which includes the case of small, square tiles.

4.4. Convergence as a function of tile refinement

In contrast to the previous section, we here investigate iteration count as a function of overall
resolution, for a fixed number of subintervals per tile. The results are shown in Table 3. The global
mesh grows in refinement from 16 to 128 as the number of points per tile remains constant at 8. In
spite of the fact that the truncation error improves with at least h~1, we use the same convergence
tolerance of 1075 as in the earlier tables. The fine grid in the last line of Table 3 corresponds to
the t = 16 case of the earlier tables.

The experiments suggest that the iteration count is bounded nearly independently of h, and
thus that the two-level algorithm is nearly optimal asymptotically in the constant m limit. In
fact, some of the finest mesh results are even relatively better than preceding coarser ones. This
should not be regarded as surprising, since there is a steep price for this favorable iteration count
when m is held constant and h~! is increased, namely, a larger cross-point system. We have not
pursued any theoretical justification for this bound, but the theory for conjugate gradient iteration
for self-adjoint problems, see, e.g., [6, 40], contains similar results, namely, constant upper bounds
on the iteration count for constant m.

As representative convergence histories, we present Figure 9 which follows the residual reduc-
tion over five orders of magnitude, and the time versus iteration count history for problems #1
and #2. The latter plots reveal the quadratic term in the GMRES work estimate that comes
from the need to orthogonalize each iterate over a subspace whose size grows linearly in iteration
count. This pair of figures also illustrates the poorer conditioning of Neumann problems, since the
initial iterates and the solutions converged to are identical, and so are the operators except for one
Neumann boundary segment.

4.5. Economies of local mesh refinement

Examples #7 through #10 allow us to display the well-known benefits of local uniform mesh
refinement in elliptic problems: comparable accuracy in considerably fewer operations, compared
with global uniform refinement. We solve these problems at refinement levels of A~ = 32, 64, 128,
and 256, based on the global grid, but perform both global and local refinements for comparison,
where possible. (The finest global refinement does not fit into the memory available, which is, of
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Figure 9: Convergence histories for problems #1 and #2, for
t =16, m = 8, h~! = 128. (a) and (b) show the normalized
Euclidean norm of the residual versus iteration count, and
(c) and (d) show time versus iteration count.

course, another of the main motivations for LUMR, along with execution time savings.) All of
these computations were made with a reduction in the residual of 10~8, so that the measure of the
error would not be contaminated by the residual. In all cases, the choice of where to refine is made
by hand. In a forthcoming paper [23] we will show that the local error is not always adequate as
an indicator of the optimal refinement location. Since we are interested in studing how domain
decomposition and mesh refinement interact, given a good refinement strategy, we eliminate the
latter question from this study.

Tables 4 through 7 compare global refinement results on the left, and local on the right. Each
set of columns lists the number of unknowns, the sup-norm of the error, the number of iterations to
reduce the discrete residual by 8 orders of magnitude, and the total execution time thus required.
The right-most column gives the execution time ratios for each refinement level. Memory use ratios
can also be estimated from the tile structure of the discrete problem, but the present code records no
explicit allocation measurements. All entries share a constant value of ¢ = 8 in order to fix regions
of enhanced refinement that do not shrink as h does. Therefore, the “global” iteration columns
of Tables 4 through 7 comprise a convergence study which is complementary to both Table 1 (in
which A is constant) and Table 3 (in which m is constant).

17




1.0 T T T
ol of o] o of| of o]
e} O [} 0 o] 0 0 04
v 1] 1| 1] 1]
0.8 - =
3l 3] 3| 3 3| 3] 3
3| 3| 3] 3 3| 3| 3
0.4 - -
L1 1] 1]t 1] 1] 1]
s2-0f of 0] o al o] of
o|l o] o] o af a| o]
0g gt Y
(a)
2.0 T T 2.0 ——rp— —r T
o] of o] o 3| o 0 ]
o]l of o] 1 | 3| o 0 ]
1.5 - 1.5 -
ol of t] 1 1 3| o 0
o] 1] 1] 3 3] o 0
1.0 1.0
of 1] 1] 3 1] 1] 0] 3| o ol o] o 0]
Lo 1] 1] 1 1] o] o] 3| o ol of o 0]
0.5 0.8
of o] 1] 1 o] o 0 3| 3 o] o] o 01
ol ol o] o o| o o] [ 3] 3 3| 3| 3 3]
0.4, g — 55 1.0 - — '] 0.q g 15 )
(b) (c)

Figure 10: Refinement levels. The maximum (third level)
local uniform refinements. (a) Problem #7. (b) Problems
#8 and #9. (c) Problem #10. In second level tests, all tiles
showing “3” are set to “2”. In first level tests, these are
further reduced to “1”. In zeroth level refinement, all tiles
are set to “0”, which here corresponds to m = 8.

Global Local Ratio
Rt Ng eq I Ta N, er, I, Ty, Tg/TL
32 | 4 | 1089 | 158(4) | 26 | 39 | 1089 | 158(-4) | 26 | 3.9 | 1.00
64 | 8 | 4225 | 3.95(5) | 37 | 1009 | 2641 | 4.15(-5) | 46 | 122 89
128 16 16641 9.89(-6) 53 51.1 5729 2.06(-5) 65 31.5 1.62
256 | 32 NA NA | NA | 18049 | 1.70(-5) | 80 | 99.1 | NA

Table 4: Number of unknowns N, sup-norm of the error
e, iteration count I, and execution time T (sec) for problem
#7 (internal layer), globally and locally refined, along with
execution time ratios, for a reduction in the initial residual
of 1078,

The behavior of iteration count with each doubling of global refinement in the self-adjoint

problems in Tables 4 and 5 is consistent with the logarithmic growth in conditioning with A~!
proved for self-adjoint problems in [6]. The locally refined examples also worsen in conditioning
with h~! when ¢ is held constant, but the CPU time advantage of local refinement increases with

h=1, overall.
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Global Local Ratio
h-1 Ng eq Ig Ta Ny, ey, I, Ty, Tg/TL
32 | 4 834 | 1.30(-2) | 24 27 | 834 | 130(-2) | 24 | 27 1.00
64 | 8 | 3202 | 830(-3) | 32 68 | 1818 | 830(-3) | 35 | 6.2 1.10
128 16 12546 5.25(-3) 41 27.1 2410 5.26(-3) 37 7.6 3.57
256 | 32 NA NA | NA | 4746 | 333(-3) | 41 | 16.4 NA
Table 5: Number of unknowns N, sup-norm of the error
e, iteration count J, and execution time T (sec) for problem
#8 (reentrant corner, pure diffusion), globally and locally
refined, along with execution time ratios, for a reduction in
the initial residual of 103,
Global Local Ratio
h-1 Ng eq Ig T Ny, €er, Iy, Ty, TG/TL
32 | 4 834 | 6.97(-2) | 23 26 | 834 | 697(-2) | 23 | 26 1.00
64 8 3202 5.65(-2) 37 8.2 1818 5.66(-2) 34 5.7 1.44
128 | 16 | 12546 | 4.53(-2) | 40 | 26.1 | 2410 | 4.58(-2) | 37 | 76 3.43
256 32 NA NA NA 4746 3.67(-2) 41 16.5 NA
Table 6: Number of unknowns N, sup-norm of the error
e, iteration count I, and execution time T (sec) for problem
#9 (reentrant corner, convective inflow), globally and locally
refined, along with execution time ratios, for a reduction in
the initial residual of 10~3.
Global Local Ratio
h-1 Ng eq Ig Te N, er, Iy, Ty, Ta/TL
32 4 834 7.35(-1) 22 24 834 7.35(-1) 22 24 1.00
64 8 3202 4.15(-1) 28 5.7 1610 4.30(-1) 25 3.6 1.58
128 | 16 | 12546 | 2.19(-1) | 34 | 215 | 4698 | 240(-1) | 29 | 85 | 253
256 32 NA NA NA 17018 1.98(-1) 35 51.6 NA

Table 7: Number of unknowns N, sup-norm of the error e,
iteration count I, and execution time T (sec) for problem #10
(reentrant corner, convective outflow), globally and locally
refined, along with execution time ratios, for a reduction in
the initial residual of 10~8. The error values here appear
large, but are in fact small relative to the size of the solution.

The sup-norm of the error shows sublinear improvement in h in problems #8 and #9, as one

expects with non-differentiable solutions. The second-order accuracy of the discretization is readily
apparent (the ratio of errors is almost exactly 4 with each reduction of h by 2) in problem #7, and

the first-order accurate treatment of convection in problem #10 leaves its signature as well.
In Table 8 we show the benefit of rediscretization of the tiles surrounding the reentrant corner

in problems #8 and #9 to fit the discrete solution to the known power-law radial dependence of
the singular exact solution (see the problem statements above). Rather than making the customary
Taylor series assumptions, we take u(r) = ug +ar? + br??, where p is derivable from a local analysis
(see [21]). Figure 11 displays u(r) along the ray 6 = X, which is the symmetry axis of the three
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Figure 11: Cross-section of u(r) along the symmetry axis.
(a) Problem #8, pure diffusion, non-differentiable at r = 0.
(b) Problem #9, convective inflow, strengthening the singu-
larity. (c) Problem #10, convective outflow, eliminating the

singularity.
Problem #8 Problem #9
h-1 m e4 Iy Ta ealer es Iy Ta ealer
32 4 | 1.63(-3) | 23 2.5 13 2.16(-2) | 21 2.2 31
64 8 1.04(-3) 61 13.5 13 1.88(-2) 35 5.8 33
128 | 16 | 6.66(-4) | 64 | 16.5 13 1.61(-2) | 36 7.0 35
256 32 4.26(-4) 67 28.5 13 1.33(-2) 39 15.1 .36

Table 8: Sup-norm of the error e, iteration count I, and
execution time T (sec) for problems #8 and #9 locally refined
with asymptotic fitting, along with the ratio of the error to
the corresponding local entries without asymptotic fitting in
Tables 5 and 6.

L-shaped problems.

4.6. Numerical compromises associated with domain geometry

The domains of problems #11 and #12 provide an interesting test of the tile decompositions
advocated herein because they can be more simply described with less restrictive decompositions.
For instance, if the only restriction on the decomposition was that all subdomains had to be rectan-
gular, the first has a two-subdomain, and the second a five-subdomain decomposition. In contrast,
our uniform-size decompositions require a minimum of 48 and 23 tiles respectively. However, be-
cause the Neumann boundary conditions of #12 require a minimum stencil width for the coarse
grid solve in the preconditioner, we must further bisect (in each coordinate direction) obtaining a
92-tile decomposition. Convergence results for some constant A discretizations are given in Tables 9
and 10.

Though domain geometry prohibits much exploration of granularity parameter space, we note
that: (a) the practical granularities are in the range found most useful for problems #1-10 in
Tables 1 and 2; (b) the number of processors available in a typical medium-scale parallel computer
(say 2° through 28) is appropriate for tessellating shapes such as these, which, when allowed to
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t m I T

16 14 8.8
16 8 12 6.9
32 4 10 16.8

Table 9: Execution time (sec) as a function of number of
tiles per unit length, ¢, and number of mesh points along a
tile side, m, at constant h~1 = 128, for a reduction in the
initial residual of 10~° on problem #11 (T-shaped domain).
There are 12546 unknowns.

t m I T
10 16 99 176
20 8 82 239
40 4 70 1124

Table 10: Execution time (sec) as a function of number of
tiles on a side, ¢, and number of mesh points along a tile
side, m, at constant h~! = 160 subintervals on a side, for
a reduction in the initial residual of 10~% on problem #12.
(Note that the two-hole domain of this example is in [0, 10] x
[0,10]). There are 24001 unknowns.

Sub Tnt #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10
Exact Tang. 13 23 24 30 39 32 32 23 22 18
Exact IP(0) 78 90 92 85 93 293 86 55 55 45
Exact Trun. 92 165 171 96 157 — 136 66 66 50

ILU(0) Tang. — — — e — o o — — 243
ILU(1) Tang. — — — — — — — 290 287 153
MILU(0) | Tang. | 38 | — 61 | — 63 | — 72 | 42 | 42 41

Table 11: Iteration count for different preconditioner block
combinations at constant refinement parameter, h~! = 128,
and tessellation, ¢ = 8, m = 16, for a reduction in the ini-
tial residual of 10~°. GMRES was restarted after every 100
iterations. — indicates that the iteration had not converged
after 500 steps.

undergo quasi-uniform distortion, are sufficiently general for a large class of typical two-dimensional
engineering applications; and (c) the quasi-uniform tiles represent quasi-uniform quanta of work
for a convenience in load-balancing that the less restrictive minimum tessellations do not have.

It should be noted that these problems are alternatively solved very successfully by embedding
into the circumscribing squares, and using preconditioners based on fast solves on the squares, in
what is known as the capacitance matrix method (see, e.g., [34]). Complex domains are often better
candidates for embedding preconditioners than for decomposition preconditioners in terms of the
size of the capacitance system (see, e.g., [8]). We note that either approach can lead to effective
parallelism, since readily parallelized fast solvers exist [12].

4.7. Tests of algorithmic combinations
Tables 11 and 12 explore different algorithmic combinations for the preconditioner blocks.
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Sub It | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10
Exact Tang. 11 17 18 22 30 24 24 13 12 10
Exact IP(0) 77 96 99 87 101 317 89 35 35 26
Exact Trun. 98 166 174 105 156 — 135 45 45 30

ILU(0) Tang. — — — — — o — — — 178
ILU(1) Tang. — — — — — — — 224 | 220 107
MILU(0) | Tang. | 23 | — 47 | — 49 | — 62 | 20 | 20 19

Table 12: Execution time (sec) for different preconditioner
block combinations at constant refinement parameter, h~1 =
128, and tessellation, ¢t = 8, m = 16, for a reduction in the
initial residual of 10~3. GMRES was restarted after every 100
iterations. — indicates that the iteration had not converged
after 500 steps.

Four subdomain preconditioners (exact, ILU(0), ILU(1), and MILU(0)) and three interface pre-
conditioners (IP(0), truncated, and tangential), as described in section 3, are tested on a standard
tessellation for problems #1-10. Many combinations did not converge after 100 iterations so a
restarted GMRES [37] was employed, in which an intermediate solution was computed, and a new
Krylov subspace begun every 100 iterations. Up to five restart cycles were attempted. (Note that
problems #1-7 contain 16641 unknowns, and #8-10 contain 12546, so a union of subspaces con-
sisting of a maximum of 500 search directions represents only 3 to 4 percent of the dimensionality
of the problem; even so, it is beyond the range of attractive performance for such methods.)

Evidently, the interface probe technique IP(0) does not work as well as the tangential precondi-
tioner on these problems, though it is always better than the truncation preconditioner. A possible
explanation for the poor performance of the IP(0) interface handling is that probing near the cross-
points is an inaccurate characterization of the mutual influence of points on intersecting interfaces.
Though IP(0) is a good technique for adapting interface preconditioning to coefficient variation,
the tables illustrate that the straightforward version for stripwise decompositions is ineffective on a
cross-point problem with “short” interior interfaces. Suitable generalizations of the interface probe
technique are important to applications because the information required to construct IP(0) is em-
bedded directly into the matrix elements of the linear system to be solved, whereas construction of
the tangential preconditioner requires information about the original differential operator, and the
relevant collection of terms is not defined for source-sink operators.

We note that the non-exact subdomain solves perform very poorly for these problems, relative
to the exact solves. The exception is MILU(0), which performs well on the Dirichlet problems.
Figure 12 is a useful diagnostic for the poor performance of many of the combinations. Shown in
the six panels is a surface plot of the elements of the vector B~! f for problem #1, decomposed into
an 8x8 array of 16X 16 tiles. A good preconditioner B will yield a plot resembling the actual solution
of the problem, u = 2+ y? (see Figure 6(a)). This is reasonably well approximated by combinations
of tangential interface preconditioning and exact or MILU subdomain preconditioning. The other
combinations with tangential interface preconditioning show that the “wire-basket” part of the
solution is well-defined, but that the subdomain preconditioning is poor. ILU(1) is slightly superior
to ILU(0), as expected, and as more bands of fill-in are permitted, ILU(k) eventually converges
to an exact solve (when k¥ = m — 1 for the five-point operator). The combinations with IP(0)
and truncated interface preconditionings show that the quality of the preconditioning is lost at the
“wire-basket” stage, independent of the subdomain solves.
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(b) Ex-
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Figure 12: Surface plots of B~1f for the six combinations

of Table 12 on Problem #1: (a) Exact/Tangential
act/IP(0), (c) Exact/Truncated, (d) ILU(0)/Tangential, (e)

ILU(1)/Tangential, (f) MILU(0)/Tangential.

4.8. Convergence dependence on decomposition orientation

Tables 13 and 14 provide a link between the present experiments and the stripwise decomposi-
tions of [28] (cf. Table 1 therein). Tangential and IP(0) preconditioners are compared on problems

#1-4 for stripwise and unit aspect ratio cross-point decompositions, as parameterized by the num-

ber of tiles in the z and y directions, t, and ty.

’

First

Three main results stand out from these tables.
relative to the tangential preconditioner in most cases,

we again note the weakness of IP(0)

and most dramatically in the many-interior-

, for the same number of processors
,16), and (16,1) triad), the stripwise

vertex cases of 8 X 8 and 16 x 16 tiles. Secondly, we note that

(e.g., comparing the

This

4), (1

they usually require more iterations.

(4

,2), (1,4) and (4,1) triad, or the

(2
decompositions yield smaller runtimes even though
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Tangential IP(0)
te | ty | #1 | #2 | #3 | #4 | #1 | #2 | #3 | #a
1 1 1 4 1 2 1 4 1 2
1 2 6 10 4 3 10 10 9 17
2 1 6 12 10 7 10 11 10 16
2 2 7 15 13 22 14 17 17 22
1 4 8 14 6 5 12 13 9 18
4 1 8 17 16 8 12 12 18 15
4 4 11 24 18 28 30 35 38 38
1 8 12 20 8 9 16 20 11 21
8 1 12 24 28 8 16 19 30 16
8 8 13 23 24 30 78 90 92 85
1 16 20 34 12 17 25 34 17 32
16 1 20 43 52 8 25 31 51 21
16 16 10 17 22 27 456 — — —

Table 13: Iteration count as a function of number of tiles
per horizontal and vertical sides of circumscribing square, at
constant refinement parameter, h~! = 128, for a reduction
in the initial residual of 10~5. GMRES was restarted after
every 100 iterations.

is due to the narrower bandwidths of the strip subdomain bandsolvers, and is an effect which
would be less pronounced had we used fast FFT-implementable, sparse, or incomplete subdomain
solvers. Finally, we note that stripwise decompositions can exploit anisotropies. In problem #3, for
instance, keeping the subdomains unbroken along the strongly coupled direction in the PDE (the
z-direction) leads to better iteration counts and execution times than otherwise. However, cross-
point decompositions are a good compromise between the “good” and the “bad” strip orientations.
In problems in which the optimal strip orientation either varies from location to location, or is
unknown a priori, a cross-point decomposition employing the same number of subdomains is a
good alternative to strips.

4.9. Comparison with undecomposed alternatives

Tables 15 and 16 provide a more realistic comparison between global and domain-decomposed
approaches to preconditioning than Tables 1 and 2. Recall that requiring exact bandsolves on all
subdomains penalizes beyond reason the performance of the lesser-decomposed alternatives. Here,
we use two standard preconditioners, MILU(0) and ILU(1) in place of exact solves on the global
version of problems #1-7.

All cases involving an unscaled Neumann or Robin boundary condition (the even-numbered
problems) fail to converge in 500 steps using the global MILU approach, and one of these (#6)
also confounds the ILU preconditioning. The tile-based preconditioning, inheriting the same bad
scaling, converged in a relatively modest number of iterations for all problems. The MILU precon-
ditioning leads to the best execution times in the cases for which it works, namely, the self-adjoint
Dirichlet problems. More importantly for future needs, the tile-based approach has significantly
better prospects for parallel execution, and since it is competitive with the global approach, the
overall parallel efficiency, relative to the best serial algorithm of any listed will be relatively high.
This will be true even on large, distributed memory machines with relatively slow interprocessor
communication, since the amount of communication required in domain decomposition is relatively
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Tangential IP(0)
tr ty #1 #2 #3 #4 #1 #2 #3 #4
1 1 416 419 416 418 416 419 416 418
1 2 107 109 105 105 109 109 109 114
2 1 107 111 109 108 109 110 109 113
2 2 108 115 113 121 111 113 112 116
1 4 28 31 28 27 30 30 29 33
4 1 28 33 32 28 30 30 33 31
4 4 30 38 34 41 40 44 47 47
1 8 10 14 9 9 12 14 10 15
8 1 10 16 20 9 12 14 20 12
8 8 12 19 20 25 76 94 98 86
1 16 11 23 7 9 15 23 9 20
16 1 11 32 44 5 15 20 41 12
16 16 7 13 23 23 773 — — —

Table 14: Execution time (sec) as a function of number
of tiles per horizontal and vertical sides of circumscribing
square, at constant refinement parameter, h~! = 128, for
a reduction in the initial residual of 10~5. GMRES was
restarted after every 100 iterations. —indicates that the it-
eration had not converged after 500 steps.

Method #1 | #2 | #3 | #4 | #5 | #6 | #7
Global/MILU | 22 | — | 19 | — | 39 | — | 39
Global /ILU 45 | 71 | 61 | 67 | 59 | — | 56
Tile/Exact 13 | 23 | 24 | 30 | 39 | 32 | 32

Table 15: Iteration count for problems #1-7 for a global
MILU(0)-preconditioned GMRES, a global ILU(1)-precondi-
tioned GMRES, and an tile exact/tangential preconditioned
GMRES (for t = 8, m = 16), at refinement parameter h~1 =
128, for a reduction in the initial residual of 10~5.

Method #1 | #2 | #3 | #4 | #5 | #6 | #7
Global /MILU 8 | — 6 | — | 16 | — | 16
Global /ILU 19 | 37 | 30 | 34 | 28 | — | 26
Tile/Exact 12 | 19 | 20 | 25 | 34 | 27 | 25

Table 16: Execution time (sec) for problems #1-7 for a
global MILU(0)-preconditioned GMRES, a global ILU(1)-
preconditioned GMRES, and an tile exact/tangential precon-
ditioned GMRES (for t = 8, m = 16), at refinement parame-
ter h=! = 128, for a reduction in the initial residual of 10~5.

small, particularly compared to global techniques.

5. Conclusions and future directions

Experiments on a diverse group of problems demonstrate that a two-level domain decomposi-
tion algorithm with a single global coarse grid can provide “nearly” optimal convergence and allow
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a great deal of flexibility in refinement strategy, while also permitting a data structure amenable
to parallel and vector implementations, as summarized in closing below. Although often moti-
vated by parallelization, domain decomposition may also yield runtime and memory use benefits
as a sequential programming paradigm. Furthermore, the simple structure of individual blocks of
the domain-decomposed preconditioner means that new applications are found for the “standard
solvers” in conventional software libraries.

The traditional economies of local uniform mesh refinement can be straightforwardly incorpo-
rated into the domain decomposition framework at the price of interface handlers with conditionals
for refinement differences between adjacent subdomains. Because of the highly modular nature of
a standardized tile-oriented domain decomposition code, custom discretizations for certain classes
of singularities may be archived into applications libraries for reuse.

The tile algorithm demonstrated herein in a superscalar mode on a Multiflow computer is
amenable to vectorization in either of two ways. The regular operation sequences on the tensor-
product subgrid arrays are precisely the type for which vectorizing compilers were conceived. The
vector lengths depend on the precise form of solvers used in the preconditioner, but would tend to
be rather small for the rows of individual 8 x 8 or 16 X 16 tiles found best in the two-dimensional
applications above. An alternative form of vectorization can be realized by grouping together all
tiles of a given (discrete) size and shape and operating in lock step on corresponding elements in
each tile, assuming an identical solver is applied to each. A vector in this approach consists of the
ith element from each of the subdomains. Our 8 X 8 arrays of tiles would be thus be optimal for
machines with a vector length of 64.

Parallelization requires careful attention to the load balancer/mapper and also to the coarse
grid solve in the preconditioner. Some complexity estimates pertaining to alternative forms of
the latter may be found in [24]. The main disadvantage of the two-level algorithm in the parallel
context is that the choice of coarse grid granularity is even more of an “over-determined” problem
than in serial. Communication cost per iteration and convergence properties potentially inveigh
against the lower bounds imposed by domain geometry, solution and coefficient smoothness, and
parallel load balance. The key determination for future applications of the tile methodology will
be whether this over-determination is consistent in practice. Inasmuch as the examples herein are
representative of single-independent variable problems, and parallel communication costs generally
comprise a relatively smaller proportion of the total work in coupled multi-component problems,
there are substantial grounds for optimism that this will be the case.
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