Abstract

Let A be a matrix with known singular values and left and/or right singular
vectors, and let A’ be the matrix obtained by deleting a row from A. We
present efficient and stable algorithms for computing the singular values and
left and/or right singular vectors of A’. We show that the problem of comput-
ing the singular values of A’ is well-conditioned when the left singular vectors of
A are given and can be ill-conditioned when they are not. Previous algorithms
are based on an unstable algorithm for the ill-conditioned problem.
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1. Introduction

The singular value decomposition (SVD) of a matrix A € R™*" is
A=UzZVT, (1.1)

where U € R™*™ and V € R™*" are orthogonal; and ¥ € R™*" is zero except on the main
diagonal, which has non-negative entries in decreasing order. The columns of U and V' are
the left singular vectors and the right singular vectors of A, respectively; the diagonal entries
of ¥ are the singular values of A.

In many least squares and signal processing applications (see [3, 15, 20] and the references
therein), we repeatedly update A by appending a row or a column, or downdate A by deleting
a row or a column. After each update or downdate, we must compute the SVD of the
resulting matrix. In [13] we consider the problem of updating the SVD. In this paper we
consider the problem of downdating the SVD. This problem is also related to the problem
of downdating the URV and ULV decompositions (see [17]).

Since deleting a column of A is tantamount to deleting a row of AT, we only consider
the latter case. Without loss of generality, we further assume that the last row is deleted.

Thus, we can write
AI
= 1.2
A < oT ) > (1.2)

where A’ € R(™~1%" is the downdated matrix. Let the SVD of A’ be
A =0V, (1.3)

where U’ € R(m=Dx(m=1) apd V' € R™" are orthogonal; and £’ € R(™~1*" is zero except
on the main diagonal, which has non-negative entries in decreasing order. We would like to
take advantage of our knowledge of the SVD of A when computing the SVD of A'.

First consider the case m > n. We write

U=(U1 Uz), E=(10)> and U’Z(U{ Ué), E/=(D0) ’

where U; € R™* U, € R™*(™=") and D € R™"; and Uj € R™~D*", U} ¢ R{m-Dx(m=n=1)
and D’ € R"*". Equations (1.1) and (1.3) can be rewritten as

A=UsVT = (U, U,) ( 10) ) vT =Uu,DvT (1.4)
and
A =0V = (U] Uy) ( 13 ) v =Uve. (1.5)

There are three downdating problems to consider:

1. Given V, D and a, compute V' and D'.




2. Given U (or Uy), V and D, compute U’ (or U]), V' and D'.
3. Given U (or U;) and D, compute U’ (or Uj) and D'.

We assume that Problem 1 has a solution, i.e., that a is the last row of some matrix A

with SVD (1.4). We show that
ATA = V' D?*VT = V(D? - 22TV,

where z = VTa € R". Thus the eigenvalues of D? —zzT must be non-negative!. The singular
values of A’ can be computed by the eigendecomposition

D? — 22T = 50287,

where S € R™*™ is orthogonal and ! € R™ " is non-negative diagonal. The right singular
vector matrix V' can be computed as V'.S. The diagonal elements of D' = ) are the singular
values. We present Algorithm I to solve Problem 1 stably in Section 2.1.

Since Problem 1 requires computing the eigendecomposition of D? — zzT, small per-

turbations in V, D and a can cause large perturbations in D’ and V’. We analyze the
ill-conditioning of the singular values in Section 6.1. Our perturbation results are similar to
those of Stewart [19] in the context of downdating the Cholesky/QR factorization.

Problems 2 and 3 always have a solution. We show that there exists a column orthogonal
matrix X € R~ such that

A =X VT, (1.6)

where C; € R™*™ is given by

1
01 = (I - 1 T uuluf) .D,

with u; a vector and p > 0 a scalar. The singular values of A’ can be computed by the SVD
C] = Q19W1T 5

where Q;, Wi € R™™ are orthogonal and Q@ € R™*" is non-negative diagonal. The left
singular vector matrix U] can be computed as X@;. The right singular vector matrix V' can
be computed as VW;. The diagonal elements of D’ = Q are the singular values. We present
Algorithm II to solve Problems 2 and 3 stably in Section 4.1.

For Problems 2 and 3, the singular values are well-conditioned with respect to per-
turbations in the input data, whereas the singular vectors can be very sensitive to such
perturbations (see Section 4.1).

The case m < n is similar. We write

V=MW V), £=(D 0) and V' =(V/ V), ¥ = (D' 0),

T

1 In general the eigenvalues of D? — 227 can be negative.




where V; € Rnxm, V, € R»*(r-m) and D € Rmxm; and Vll € Rnx(m—l), V2/ € Rnx(n—'m+1)
and D’ € R(m-1x(m=1) Equations (1.1) and (1.3) can be rewritten as

T
A=USVT =U(D 0)(“?T)=UDV1T (1.7)
2
and
I 1y 1T 10y Vl,T 1 1y T
A =vsvT=U WD 0)( pr ) <UD (1.8)

There are three downdating problems to consider:
1. Given V (or V4), D and a, compute V' (or V) and D'.
2. Given U, V (or V4) and D, compute U’, V' (or V}) and D'.
3. Given U and D, compute U’ and D'.

We assume that Problem 1 has a solution as before. We extend Algorithm I to solve
Problem 1 stably for m < n in Section 2.2. Both the singular values and the singular vectors
can be ill-conditioned. We analyze the ill-conditioning of the singular values in Section 6.2.

Problems 2 and 3 always have a solution. We extend Algorithm II to solve Prob-
lems 2 and 3 stably for m < n in Section 4.3. The singular values are well-conditioned
with respect to perturbations in the input data, whereas the singular vectors can be very
sensitive to such perturbations (see Section 4.3).

Both cases of Problems 1 and 2 were considered by Bunch and Nielsen [3], using results
from [4, 8]. They also reduced Problem 1 to computing the eigendecomposition of D? — zz7,
but their scheme for finding this eigendecomposition can be unstable [3, 4]. They solve
Problem 2 by reducing it to Problem 1. This risks solving a well-conditioned problem using

an ill-conditioned process.

Let k = min(m, n). Algorithm I solves Problem 1 in O(nk?) time, and Algorithm II solves
Problems 2 and 3 in O((m+n)k?) and O(mk?) time, respectively. As with the SVD updating
algorithm in [13], Algorithm I can be accelerated by the fast multipole method of Carrier,
Greengard and Rokhlin [5, 11] to solve Problem 1 in O(nklog}€) time, and Algorithm II
can be accelerated to solve Problems 2 and 3 in O((m + n)klog €) and O(mklogj ¢) time,
respectively, where € is the machine precision. This is an important advantage for large
matrices. Since the techniques are essentially the same as those in [13], we do not elaborate
on this issue.

We take the usual model of arithmetic?

Alaof)=(aop) (1 +v),

2 This model excludes machines like CRAYs and CDC Cybers that do not have a guard digit. Algo-
rithms I and II can easily be modified for such machines.




where a and J are floating point numbers; o is one of +, —, x, and +; fl(co B) is the floating
point result of the operation o; and |v| < e. We also require that ‘

AWVe)=va (14v)

for any positive floating point number a. For simplicity, we ignore the possibility of overflow
and underflow.

We use the definition of stability in Stewart [18, pages 75-76]. Let F(X) be a function of
the input data A'. We say that an algorithm for computing F(X) is stable if its output is a
small perturbation of F(X'), where X is a small perturbation of X'. This notion of stability is
similar to that of mized stability [1, 2] and is used in the context of downdating least squares
solutions and Cholesky/QR factorizations [1, 2, 16, 19].

Section 2 introduces Algorithm I; Section 3 gives an algorithm for finding the eigende-
composition of D? — zzT; Section 4 introduces Algorithm II; Section 5 gives an algorithm
for finding the SVD of C;; and Section 6 analyzes the ill-conditioning of Problem 1 for the
singular values.

2. Algorithm I

2.1. The case m > n

Combining (1.2) and (1.4), we get

(5)-¢ (2) v

where U € R™™ and V € R™*" are orthogonal; and D € R™*" is non-negative diagonal,
with diagonal entries in decreasing order. From (1.5), we have

A =T (13 )V’T,

where U’ € R(m~1x(m-1) and V’ € R™*"* are orthogonal; and @ € R™ " is non-negative
diagonal, with diagonal entries in decreasing order. Thus

ATA + adT = VDWVT,
and
V'D*V7T = ATA' = VD*VT — ad”.
Letting z = V7a, this can be rewritten as
VDVt =V (D? - 227) V7. (2.1)

The eigenvalues of D? — zzT must be non-negative and are the diagonal elements of D'?. Let

50257 be the eigendecomposition of D? — zz7. Then we have V/ = V.S and D' = Q.




élgorithm I uses the scheme in Section 3 to compute a numerical eigendecomposition
SD"" ST satisfying
§=8+0(e) and D' =0+ 0(|Dl2), (2.2)

where the eigendecomposition

D? — zz7 = 530257
1s exact and
D =D+ 0O(e||D)lz) and z=z+ O(¢|D||z)- (2.3)
It then computes a right singular vector matrix satisfying
V' =VS+0(e).

Since V is orthogonal, the error in computing z from V and a can be attributed to an error
in a:

a=Vz=a+ O(¢|D|2)- (2.4)
Thus D’ and V' 5 are the exact solution to Problem 1 with slightly perturbed input data V,
D and a. Hence Algorithm I is stable (see Section 1).

Problem 1 requires computing the eigendecomposition of D? — zz7. Small perturbations
in D and a can cause large perturbations in D’ and V' = VS in other words, D’ and S can
be very different from D’ and S, respectively. Thus I’ and S can be very different from D’
and S, respectively. We analyze the ill-conditioning of the singular values in Section 6.1.

The scheme in Section 3 takes O(n?) time, and the computation of V'S takes O(n?) time.
Thus the total time for Algorithm Iis O(n?).

2.2. The case m <n

Combining (1.2) and (1.7), we get

(aT,)=U(D0)VT=U(D0)(‘é§),. (2.5)

where U € R™*™ and V € R™ " are orthogonal; D € R™*™ is non-negative diagonal, with
diagonal entries in decreasing order; and V = (V; V,), with V; € R**™ and V; € Rx(n—m)
Multiplying both sides of (2.5) times V,, we have

A’ Vr
(7)r-v@o (i )n-o

and so V,fa = 0. Equation (2.5) also implies that

T D% 0 v
ATA =W 1/2)( 0 0)(‘/1,T)—aaT. (2.6)
2




From (1.8), we have
T 144
A=U (D OVT=U (D 0)(V1,T>,
2
where U’ € R(m-Dx(m=1) and V' € R**" are orthogonal; D’ € R(™m=1*(m-1) i5 non-negative

diagonal, with diagonal entries in decreasing order; and V' = (V] V}), with ¥} € R**(m-1)
and V, € R™X(»=m+1)_ Tet » = VTa. Plugging the last relation into (2.6) we have

ww(h ) )=mw (P (%) e

where we have used the fact that a = (V; 1) ( g )

Note that D> € R(m=1)x(m-1) and D% — ;T € R™*™, The eigenvalues of D? — 2z must
be non-negative and are the diagonal elements of D’?> and 0. Thus letting
2
Dz—zzT=S(% g)ST,
we have D' = Q, (V] v) = V1S and V] = (v V), where v € R" is the last column of the
matrix V1 S.

Algorithm I uses the scheme in Section 3 to compute the eigendecomposition of D? —zzT.

Similar to Section 2.1, Algorithm I is stable (see (2.2) and (2.4)). However, the computed
singular values and singular vectors can be very different from the exact singular values and
singular vectors of A’, respectively. We analyze the ill-conditioning of the singular values in
Section 6.2.

The scheme in Section 3 takes O(m?) time, and the computation of V4 S takes O(nm?)
time. Thus the total time for Algorithm I is O(nm?).

3. Computing the Eigendecomposition of D? — 227

3.1. Relations for the Eigendecomposition of D? — zz7

In this subsection we establish some relations for the eigendecomposition of D? — zz7,

where D = diag(ds,...,dx) € R¥* withd; > ... > dy > 0; and z = ((1,.-.,8)T € R In
light of (2.1) and (2.7), we assume that the eigenvalues of D? — z27 are non-negative. This
implies that || D]|2 > ||z]|-
We further assume that D and =z satisfy
dk > 0, d; — d,'+1 > 9”D”2 and |C,I > 9||D”2, (3].)

where 6 is a small multiple of € to be specified in Section 3.4. Any matrix of the form
D?—2z2T can be reduced to one that satisfies these conditions by using the deflation procedure
described in Section 3.5.




The following lemma characterizes the eigenvalues and eigenvectors of D? — z27.

LEMMA 1 (BUNCH AND NIELSEN [3]). The eigenvalues of D* — 22T are non-negative
if and only if 2TD 2z < 1. Assume that z27D7%2z < 1. Then the eigendecomposition of
D? — 22T can be written as SQ2ST, where

= ($1,...,8x) and Q= diag(wy,...,ws),

with wy > ... > wy > 0. The eigenvalues {w?}E_, of D* — 22T satisfy the secular equation

2

fi(w) ——1+Zd2 — =0, (3.2)

7=1

and the interlacing property
di>w>...>de>wp 20,
where wy, = 0 if and only if z7 D=2z = 1. The eigenvectors are given by

s,-=((ﬁ_(_‘w?,...,dZ )/ Z(:P w2)2‘ (3.3)

i=1

T

On the other hand, given D and all the eigenvalues of D? — 227, we can reconstruct 2.

LEMMA 2. Given a diagonal matriz D = diag(dy, . ..,dx) and a set of numbers {&;}f,
satisfying the interlacing property

dy >0 >...>dp >0 20, (3.4)
there exists a vector z = (61, N &C) such that the eigenvalues of D* — 237 are {O2}5.,. The
vector z is determined by

\ L@ —d?) A (02— d?)
K'zi: A2) H d; d2 ( 4 _dz); (35)
]_1 7 z j=i I7+1 )
where the sign of & can be chosen arbitrarily.
Proof: The existence of 2 and equation (3.5) are established in [12]. n

3.2. Computing the Eigenvectors of D? — zzT

For each ezact w;, equation (3.3) gives the corresponding ezact eigenvector. Observe
that if w; was given ezactly, then each difference d;‘f — w? could be computed to high relative
accuracy as (d; — w;)(d; + w;). Each ratio and each product could also be computed to
high relative accuracy. As a result, the corresponding eigenvector s; could be computed to
component-wise high relative accuracy.




In practice we can only hope to compute an approximation w; to w;. But problems can
arise if we approximate s; by

. ¢
“(zlaats) / Z i

(i.e., replace w; by @; in (3.3), as in [3]). For even if &; is close to w;, the approximate ratio
(i/(d? — &F) can still be very different from the exact ratio ¢;/(d? — w?), resulting in a unit
eigenvector very different from s;. After all {&;}£; are computed and all the corresponding
eigenvectors are approximated in this manner, the resulting eigenvector matrix may not be
orthogonal.

But Lemma 2 allows us to overcome this problem. After we have computed all the
a.pprox1mat10ns {&:}5,, we find a new vector 2 such that {&?}%, are the ezact eigenvalues
of D? — 23T and then compute the eigenvectors of D? — 237 using Lemma, 1. Note that each

difference
of —d} = (& —di)(@; + di) and d} —dF = (d; — di)(d; + dy)

in (3.5) can be computed to high relative accuracy. Each ratio and each product can also be
computed to high relative accuracy. Thus Ig:,l can be computed to high relative accuracy. We
choose the sign of C., to be the sign of (;. Substituting the ezact eigenvalues {&?}%, and the
computed 2 into (3.3), each eigenvector of D? — 22T can again be computed to component-
wise high relative accuracy. Consequently, after all the singular vectors of D? — 227 are
computed, the eigenvector matrix will be numerically orthogonal.

, to satisfy the interlacing property (3.4). But

since {w;}¥ _, satisfy the same interlacing property (see Lemma 1), this is only an accuracy

requirement on {&;}%,, and is not an additional restriction on D? — z27.

To ensure the existence of 2, we need {&;}%

=

We use the eigendecomposition of D? — 22T as an approximation to that of D? — zzT.

This is stable as long as 2 is close to z (see (2.2) and (2.4)).

T

3.3. Finding the Roots of the Secular Equation

In this subsection, we show how to find the roots of the secular equation

k Cz
flw) = —p+2d2 =0,

J=1

where p > 0 is a scalar. Equation (3.2) is the special case® where p = 1.

3 Equation (5.3) is another special case.




Consider the root w; € (d;41,d;) for 1 <7 < k—1; the possible k-th root wy, is considered
later. We first assume that* w; € (diy1, d‘—’*‘%ﬂ). Let é; = d; — di41 and

_y ¢ 5
¢(€)=Z(5j_€)(dj+di+1+€) and ¢(¢) = Z (8 — €)(dj + diy1 + &)

j=1 J=i+1

Since
f€+dia) = —p+4(£) + 8(£) = 9(§),
we seek the root & = w; — diq1 € (0,6;/2) of g(£) = 0.

An important property of g(£) is that we can compute each difference §; — ¢ to high
relative accuracy for any ¢ € (0,6;/2). Indeed, since 6,47 = 0, we have fi(6iy1 — €) =
—A(¢); since fl(6;) = fi(d; — diy1) and 0 < ¢ < (d; — di41)/2, we can compute fI(6; — §)
as fl(fi(d; — di+1) — fi(€)); and in a similar fashion, we can compute §; — ¢ to high relative
accuracy for any j # ¢, + 1.

Because we can also compute d; + d;11 + £ (a sum of positive terms) to high relative
accuracy, we can compute each ratio (7/((6; — €)(d; + diy1 + €)) in g(€) to high relative
accuracy for any ¢ € (0, 6;/2). Thus, since both %(§) and @(£) are sums of terms of the same
'sign, we can bound the error in computing g(§) by

nk(p + [¥(€)] + |(6)D),

where 7 is a small multiple of € that is independent of £ and £.

We now assume that w; € [ﬁ%ﬂ, d;). Let 6; = d; — d; and

¢ G
“0=Y. ey ¢ 40= X GraeraTy

=1 j=i+1

We seek the root ¢ = w; — d; € [6:+1/2,0) of the equation

9(§) = f(€+di) = —p+9(&) + 6(£) = 0.

For any ¢ € [6i4+1/2,0), we can compute each difference §; — ¢ to high relative accuracy.
Since €| < |6i41]/2 < di/2, we can compute each sum d; + d; + ¢ to high relative accuracy
as d; + (d; +£). Thus we can again compute each ratio {?/((6; — £)(d; + d:i + £)) to high
relative accuracy and bound the error in computing g(¢) as before.

Next we consider the case where p > 0 and f(0) < 0 so that there is a root wy € (0, dk).

“ This can easily be checked by computing f(%tgit1). If f(%tditr) > 0, then w; € (diyq, ZEgRL),
otherwise w; € [ﬂ';—i-‘ii, d;).
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We first assume that® wy < di/2. Let §; = d; and

¥(¢) = 2(5 C(d g o @ =0

7=1

We seek the root ¢; = w; € (0,6x/2) of the equation

9&) = f(&) =—p+¥(£) + (&) =0.

For any £ € (0,6;/2), we can compute each ratio (7/((6; — £)(d; + £)) to high relative
accuracy, and bound the error in computing g(¢) as before.

We now assume that wy > di/2. Let §; = d; — di and

$(¢) = Z WM T md #o=o

We seek the root ¢; = w; — di € [—6,/2,0) of the equation

9(&) = fE+dr) =—p+¥(€) + ¢(¢) = 0.

For any ¢ € [—di/2,0), we can compute each ratio (7/((8; — €)(d; + dr + £)) to high relative
accuracy, and bound the error in computing g(¢) as before.

In practice a root-finder can not make any progress at a point ¢ where it is impossible
to determine the sign of g(¢) numerically. Thus we propose the stopping criterion

lg(&)] < nk(p + [#(E)] + [6(£)D)s (3.6)

where as before, nk(p + |¥(€)| + |#(€)]) is an upper bound on the round-off error one would
make in computing g(¢). Note that for each z, there is at least one floating point number
that satisfies this stopping criterion numerically, namely fi(¢;).

We have not specified the scheme for finding the root of g(¢). We can use the bisection
method or the rational interpolation strategies in [3, 10, 14]. What is most important is the
stopping criterion and the fact that, with the reformulation of the secular equation given
above, we can find a £ that satisfies it.

3.4. Numerical Stability

In this subsection we first derive a bound on |&? — w?|, and then show that when p =1,
the Z defined in (3.5) is close to z.

Since f(w;) = 0, we have

® This can easily be checked by computing f(dx/2). If f(dz/2) > 0, then wy < di/2, otherwise wy > di/2.
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and the stopping criterion (3.6) implies that &; satisfies®

k 2
|f(wzl<77k<zld2 w|+z|d2€f&:72[)

j=1 j=1

Since

F@) = f(@) = flwi) = (&F - 2)2(012 w2)(d2 w7)’

Jj=1
1t follows that

A ¢ g
&= 2';|(d2 - w2>|S”’“(ledf—wﬂ*;ldﬁ—w?l)‘ (8.7

2

Note that for any j,
1 + 1 < 2 |02 — w2
|df —@F|  |df —w?| T |(d2 - &F)(d? —w?)|? |(d2 o) (d? — )|
Substituting this into (3.7) and using the Cauchy-Schwartz inequality, we get

G"”‘Zl<d2 (d? )
2nk i
‘1—nkz|<d2 oﬂ)(d? A

nznz\J S @ d2 wal

or

a2 _ 2 2nk :
w; wil < 1—77’9”2”2/\J21|(d2 ‘bz)(dz w2)l

2nk|z||2 2 _ 02)(d2 — w?
A= Bl VI =& o)

2nk|| 2|2 ( 2 _ 2|+ 2|02 — w? )
< g (46—t glot -t

Letting B; = 2nk||z||2/((1 — nk)|(;]), this implies that

<

02 ~ ol < 21—l (3.9)
2~

for every 1 < j <k, provided that 3; < 2.

® This condition is also satisfied when wy, = 0 is known to be a root as in (2.7).
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Now consider the special case p = 1. Let &f — w? = ay;(d? — w?)/¢; for all ¢ and j.
Suppose that we pick § = 29k? in (3.1). Then we have |(;| > 2nk?||z||2. Assume further
that nk < 1/100. Then B; < 2/3, and (3.8) implies that |a;;| < a = 4nk||z||; for all ¢ and ;.
Thus, from (3.5),

) (& — 2 (W — 2 il G k b
|Cil= HJ( J dz) _ __HJ( 7 1)(1+ ]/C)zlcilJH(l_*' 1)

(@ -d) [L;z:(d} —d?) G
k a..
J II (1 + T) 1

1 SlCil((1+|—Z“l)§—1)

< 1o (exp (557) - 1) < (-1 akf2

< 417k2||z||2, (3.9)

7=1

and, since @ and (; have the same sign,

A

I =Gl = 16l

where we have used the fact that ak/(2](;|) <1 and that e =1 < (e—1)yfor0 <y < 1.

One factor of k in 8 and (3.9) comes from the stopping criterion (3.6). It can be reduced
to log, k by using a binary tree structure for summing up the terms in ¥ (¢) and ¢(¢). The
other factor of k comes from the upper bound for J[,(1 + ;i/¢;). This also seems quite
conservative. Thus we might expect the factor of k% in 8 and (3.9) to be more like O(k) in
practice.

3.5. Deflation

Consider the matrix D? — zz7, where D = diag(dy,...,d;) € RF** withd; > ... > dp >
0; and z = ((y,-...,(x)T € R*. Assume that the eigenvalues of D? — z2zT are non-negative.
We now show that we can reduce it to a matrix of the same form that further satisfies

(see (3.1))
dp >0, di—diy1r 20| Df2 and || = 6] D]z,

where 8 is specified in Section 3.4. Similar reductions appear in [3, 7].

First assume that dy = 0. Since D? — 227 is non-negative definite, its diagonal elements

must all be non-negative. Thus d? — C,f > 0 and (; = 0. Writing
o=(") = == (7).

DZ_zsz(Df—zlz:lr >
0

we have
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The eigenvalue 0 can be deflated, and the matrix D? — z;27 has no negative eigenvalues and
is of the same form but of smaller dimensions. This reduction is exact.

In the following reductions we assume that d; > 0. Recall from Lemma 1 that the

eigenvalues of D? — 22T are non-negative if and only if

k

¢2
Z?' <1 (3.10)

i=1 ¢

Assume that |(;| < 6||D||2. We illustrate the reduction for ¢ = k. Let

) == (5) == (5)
D= , = and 2= .
( i) T\ 0
We perturb (; to 0. The matrix D? — 227 is perturbed to

2 _ T
D?— 357 = ( Dy —=zz ) . (3.11)
di

The eigenvalue d? can be deflated, and the matrix D? — 227 satisfies (3.10) and is of the
same form but of smaller dimensions. This reduction is stable (see (2.3)).

Now assume that d; — d;y1 < 0||D||2. We illustrate the reduction for ¢ = k — 1. Let

_( Dy v (D
D—( dk) and D—( dk—1>.

We perturb diy; to d;. The matrix D? — 227 is perturbed to D? — 227, which also satis-
fies (3.10). Let G be a Givens rotation in the (k— 1, k) plane that zeroes the k-th component

T
of z; in other words, Gz = %, where ¥ = (3¥,0)T with %, = ((1,. oy Chm2ya[CEy + le) .
Since GDGT = D, we have

2y yT
G(D2—zzT)GT=D2—§5T=(D1 ! 2 )
k-1

The eigenvalue d?_, can be deflated, and the matrix D? — %, #T satisfies (3.10) and is of the
same form but of smaller dimensions. This reduction is stable (see (2.3)).

4. Algorithm II

4.1. The case m >n

From (1.2) and (1.4)

(£)-ww(2)w
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where U; € R™*" and U, € R™%(m=") are column orthogonal; V € R™*" is orthogonal; and
D € R™™" is non-negative diagonal. Partition U; and U, as

_(Uu _ [ U2
Ul——(u,{) and Uz—(ug>, (41)

where Uy, € R™-D)x7 4, ¢ R™ Uy, € R(m_l)x(’""") and up € R(™ " Then
A"\ [ Un U D VT
a )\ uf of 0 ’

D
0

or

A = (U Uy) ( ) VI =U;DVT and a= VDu. (4.2)

The decomposition of A’ in (4.2) is almost an SVD. Uy, is close to being column orthog-
onal since it is obtained by deleting the last row from U;. In the following we decompose Uiy
into a product of an (m — 1) X n column orthogonal matrix and a simple n x n matrix. To
this end, we will need a scalar 4 > 0 and a vector £ € R™! such that ||u;]|> + #* =1 and

Y = (U;I ””) (4.3)

up K
is column orthogonal. We will show how to compute Y in Section 4.2.

Note that if g = 1, then u; = 0, z = 0 and Uy; is column orthogonal. In general, p # 1,
but we can orthogonally transform the rows of Y such that g = 1. The matrix

1
H= I— muluf U1
—uf p

is orthogonal and (u¥ w)H = (0,...,0,1)T. Since

1
YH — Un(I - mulutlr) — X uf Uuul =+ HT
0 1
is column orthogonal, it follows that
Unuy +pz=0,

so that

1
X = U11 (I - muluf) - uf
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is column orthogonal’. Thus
1 T
YH=(U1T1$) T =(XO>, (44)
uy p —uT i 01

1
(Un IE) = (Ull :L')HHT = (X O)HT =X (I - mulu{ —_ ul) s

and

which implies that
1

The first matrix on the right-hand side of (4.5) is column orthogonal and the second is simple.
Plugging (4.5) into (4.2), we have

A=X (1 -2 ”uluf) DVT =XxC, VT, (4.6)

1+

1

Let Q:QW{ be the SVD of Cy, where Q,, W1 € R™*" are orthogonal and € R™*" is
non-negative diagonal. Substituting this into (4.6), we have

A = XQQWIVT = (XQ.)QUVWL)T. (4.7)

Comparing this with (1.5), we have D’ = Q, U; = X@; and V' = VW;. We specify Uj in
Section 4.2.

where C; € R™*" is given by

Algorithm II computes a numerically column orthogonal matrix Y and a numerical SVD
Q:QWT satisfying (see Sections 4.2 and 5)

Y=Y+0@), §1=01+0(), Q=0+0(e||D|2) and Wy =Wy +0(¢),  (4.8)

_ Ui a‘;)
V="
(Uf Iz

is an exact column orthogonal matrix with

where

1711 = U11 + 0(6), U1 = up + O(G) and [—ll =u + 0(6),

and

_ 1 N\ = =~
Cl=(I—1+ﬁu1uf>D=QlﬂW1

7 Paige [16] has proven similar relations.
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is an exact SVD with D = D + O(¢||D|2).

Let
_ _ 1 _ o
Algorithm II then computes numerical approximations to U’ and V' satisfying

01 =XQ:1+0(e), U;=0+0(c) and V' =VWi+0(), (49)

for Problems 2 and 3, where (X@; Uj) € R(™-1Ix(m-1) i5 exactly orthogonal (see Sec-
tion 4.2.1). Since XQ;, Q and VW; solve Problems 2 and 3 exactly for slightly perturbed
input data Uy, D and V, Algorithm II is stable (see Section 1).

Because U’ is column orthogonal, we have (see (4.5))

_ — 1 _
Un_ =X<I-— 1+ﬁu1uf),

and thus from (4.2), we have
A’ = UpDVT = U1, DVT + O(€|| D|2) = XC1VT + O(e|| D|l2). (4.10)

It is well-known that the singular values of A’ are always well-conditioned with respect
to perturbations in A’, but that the singular vectors of A’ can be very sensitive to such
perturbations [9, 18]. Thus (4.10) guarantees that D’ and D’ are close to D’; in other words,
for Problems 2 and 3, the singular values are well-conditioned. But @, and W can be very
different from Q; and W;, respectively, and thus U! and V' can be very different from U}
and V', respectively. ”

It takes O(mn) time to compute X. It takes O(mn) time to compute y, z and Uj (see
Section 4.2). It takes O(n?) time to compute the SVD of C; (see Section 5). And it takes
O(mn?) and O(n®) time to compute X@Q; and VW, respectively. Algorithm II computes
FQ, for Problem 3 and computes both X@Q; and VW, for Problem 2. Thus the total times
for solving Problems 2 and 3 are O((m + n)n?) and O(mn?), respectively.

4.2. Computing Y and U}

Given a vector t, we will need an orthogonal matrix P(t) such that
P(t)t = ||t]|ze1,

where e; = (1,0,...,0)T. We define P(t) = sign(t) if ¢ is a non-zero one-dimensional vector;
Pity=1Iift=0;

T tf
P(t) = —sign(T)t1 I - I—:I_].—I-Tht:lr
T

if t = (7 tF)T and ||t||2 = 1; and P(t) = P(t/||t||2) otherwise.
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4.2.1. Computing Y and U, with U,

U
u= (%),

where Uy, € R(™~DX(m=n) and u, € R™". Define (22, X12) = U12P(u2)T, where z, € R™!
and X, € R(m~1)x(m=7=1) i5 column orthogonal. Since

(Uu Ul2)(In )=(Un r%) Xl2)
u] uj P(us)T ul Jugllz 0 )’
(Un e )
ul  Jluzl2

is column orthogonal and ||u;||2 + ||uz||? = 1. We set 2 = z; and g = ||uz||2. This shows how
to compute Y when U, is available. These computations are stable (see (4.8)).

Recall from (4.1) that

is orthogonal,

From (4.4) we have

Uu z X12 H — X 0 X12
uflr g 0 Ly 01 O ’

and thus (X Xj;) € Rm-1)x(m=1) is orthogonal. We set X1, = U} (see (1.5) and (4.7)). It
takes O(n(m—n)) time to compute X;5. These computations are stable (see (4.8) and (4.9)).

4.2.2. Computing Y without U;

Recall from (4.1) that

where Uy; € R™1*" and u; € R". Define (21, X11) = U1 P(u1)T, where z; € R™* and
X131 € R(»1x(*=1) is column orthogonal. Since

() per=( o, )

is column orthogonal, it follows that X7, z; = 0 and that ||z ||+ ||u1]|3 = 1. In finite precision
arithmetic the computed X7; and z; satisfy

X{z1=0(e) and |z|} + |lwall; =1+ O(e).

By using a scheme similar to the iterative reorthogonalization scheme developed in [6, Sec-
tion 4], Algorithm II finds a vector Z with norm near unity that satisfies

7 = ||z1)|l22 4+ O(¢) and X7 %= O(e),
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Since the matrix
Un —||u1||25) ( llz1]l22 X1 —||u1||25) (P(ul)T )
= + O(e
(57 lale 0 Jalb 1) To

is numerically column orthogonal, we can set z = —||u;||2z and g = ||z1||2. These computa-
tions are stable (see (4.8)). The time for computing # is O(Imk), where [ is the number of
reorthogonalization steps, which is a small constant in practice [6].

4.3. The case m<n

From (1.2) and (1.7), we get

(7)-veo (i)

where U € R™™ is orthogonal; D € R™*™ is non-negative diagonal; and V; € R™*™ and
Vs € R**(*=™) are column orthogonal. Partition U and D as

_ Un =z _ Dy
U_(ufu) MdD_< d»

where z, u; € R™ ! are vectors; D; € R(™~Dx(m-1) i5 diagonal; and d is the smallest
diagonal element of D. Note that u = (uf u)T € R™ is a unit vector so that [lus]|3+ p? = 1.
We further assume that® g > 0. Then

A:Wﬁ@(md8)<£)=wn@(md)W1 (4.11)

a=@ﬁ%)(§>u=%Dm (4.12)

The decomposition of A’ in (4.11) is almost an SVD. (Uy; z) is close to being orthogonal
since it is obtained by deleting the last row from U. In the following we decompose it into
a product of an (m — 1) x (m — 1) orthogonal matrix and a simple (m — 1) X m matrix.

Note that if 4 = 1, then u; = 0, = 0 and Uy; is column orthogonal. In general, p # 1,
but we can orthogonally transform the rows of U such that 4 = 1. From Section 4.1, the
matrix

H= I—1+ﬂu1uf Uy
—uf p

8If u < 0, we multiply both U and V by —1. The result is an SVD of A with g > 0.
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is orthogonal and (u! w)H = (0,...,0,1)%. Since

1
U.H: (Un(['— 1+”u1u?)—xuf U11U1+ﬂ.$)

0 1

is orthogonal, it follows that
Unui +pz=0,

so that

1
X=Un (I——l_l_uuluf) —:cuf

is orthogonal. Thus

1
(Un .'Z',') = (U11 .T)HHT = (X O)HT=X (I-— 1+”U1Uf —U1> .

Plugging this into (4.11), we have

. 1 T Dy 0\ (VT
Vi T
= X(C 0) vr = XCVT, (4.13)

where C € R(™~1)*™ is given by

_ 1 T D,
C=(I—1+Mu1u1 ul)( d)'

Let Q(Q 0)WT be the SVD of C, where @ € R™1)x(m-1) and W € R™*™ are
orthogonal, and © € R(™~1*(m~1) js non-negative diagonal. Substituting this into (4.13),
we have

4= (XQ)(@ 0) 0) ( (“g)T) — (XQ)(®@ )W),

Comparing this with (1.8), we have
D=Q, U=XQ, (W vy=WW and V,;=(v V),
where v is the last column of W.

Algorithm II uses the stable scheme in Section 5 to compute the SVD of C. As in
Section 4.1, Algorithm II is stable. The computed singular values are close to the exact
singular values of A, but the computed singular vectors can be very different from the exact
singular vectors. '

It takes O(m?) time to compute X. It takes O(m?) time to compute the SVD of C (see
Section 5). And it takes O(m?®) and O(nm?) time to compute X@Q and VW, respectively.
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Algorithm II computes XQ for both Problems 2 and 3 and computes VW for Problem 2.
Thus the total times for solving Problems 2 and 3 are O((m+n)m?) and O(m?), respectively.

5. Computing the SVD of C and C;
5.1. Relations for the SVD of C and C;

In this subsection we establish some relations for the SVD of the matrix C € R*-1)xk

given by

where D = diag(D,,d) = diag(dl, veeydi1,dy) € R¥F withdy > ... > dpy > dp =d > 0;
and u = (uf, )T = (g1, ..., pr-1, #x)¥ € RF is a unit vector. When d = 0, C simplifies to

((I— liﬂulul)Dl o) =(Cy 0).

The results also apply to C.

We assume that

di — dip1 2 0||Dll2 and |uil 29, (5.2)

where 6 is a small multiple of € to be specified in Section 5.3. Any matrix of the form (5.1) can
be reduced to one that satisfies these conditions by using the deflation procedure described
in Section 5.4. This deflation procedure also applies to Cj.

The following lemma characterizes the singular values and singular vectors of C.
LEMMA 3. Let Q(2 0)W7T be the SVD of C with
=(q1,---,qk-1), $§ =diag(ws,...,wx-1) and W = (ws,...,Wr-1,Ws),
where wy > ... > wp_y > 0. Then the singular values {w;}5=} satisfy the secular equation

folw) = Z = s — =0 (5.3)

j=1 13

and the interlacing property
d1 > wy > ...>dk..1 > Wi—1 >dk=d.
The singular vectors are given by

2 2
Y, 1”1 Vi k-1Hk-1 (71 JI‘LJ
; E 2 5.4
%= (d2 —wP A2, ) /J (d? — w2)2 ’ (54)

Jj=
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where v}; = (wf — &) + p(w? — d?), and

dip deape—y _dipe \T C
(d{—w adz _wz,dz w) /JZ( 2)2? (5.5)

' k
B He-1 |2 2]
wy = (dl dk-— ) dk / Z (dj> Zf dk > 0 (5.6)

J=1

(0,...,0,1)T Zfdk=0

Ww;

Proof: Since

1 r\’ 1 T
cTC = (Dl ) (I_1+uu1ul) '—(I_Huulul)ul (Dl )
- d d

we have
det(CTC — w*I) = det(D? — w?I — Duu D)
= det(D? — w?I) (1 — uTD(D? —w?)™'Du)
= —w? det(D? — w?I) uT(D* —w?)tu

k k 2
#.
= o [[ @) Y22 (57)

2 7
w
j=1 j=1 7

where we have assumed that d? — w? # 0. The sum on the right-hand side is f>(w), which
has exactly one zero in each 1nterva1 (diz1,d;) for 1 <7 < k— 1. These k — 1 positive zeros
of det(CTC — w?I) must be the singular values of C.

For 1 <4 < k — 1, the right singular vector w; is a unit vector satisfying
CTCw; = D(I - uuT)Dwi = wlw;.
Solving this equation we get (5.5). Because wy, is a unit vector satisfying Cw; = 0, we have
CTCwy = D(I — uwuT)Dwy, = 0.

Solving this equation we get (5.6).




22

From (5.5) we see that w; is the normalized eigenvector of (D? — w?I)~'Du. Since
w;g; = Cw;, it follows that g; is the normalized eigenvector of C'(D? —w?I)~! Du. Simplifying,

C(D? — wI)™ Du

_ 1 T DD} — i)™ uy

B (I I ) ( P(&P —wi)

uI DY(D? — W2I) 1y,
1+p

Because w; satisfies the secular equation (5.3), we have

= D3(D? — W I) 'uy — ( + d*(d* - w?)“1p> uy.  (5.8)

Since ||u]|z = 1, this implies that
uI DX(D? — W ) uy = 1 — p2d*(d® — i)
Plugging this into (5.8), we have
C(D? — w?I)™ Du

_ w2)-1

2(w? — @)
— 2D2_ 2] -1 sz(wz
wz( 1 W ) U1+( 1+” Uy

2\ —
= @ IV (4 )R = )+ p(DF — D)) (D2 = D)

1+p
2(,2 — g2)-1
= “’—(—% ((w? = &) + u(D? — 1)) (D? — 1) u.
Ignoring the leading positive factor and normalizing, we get (5.4). u

When d = di, = 0, the k-th component of w; is 0 for 1 <7 < k—1, and wy = (0,...,0,1)T.
Thus W can be written as diag(W1,1), and the SVD of

1
C, = (I— 1 +#u1u{) Dy

The following lemma allows one to construct a matrix of the form (5.1) using D and all
the singular values.

is QOWT.

LEMMA 4. Given a diagonal matriz D = diag(Dy,d) = diag(ds,...,dk-1,dr) and a set

of numbers {&;}5=1 satisfying the interlacing property

di >0 >...>de1 > >dp=d >0, (5.9)
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there exists a unit vector 4T = (4T, ) = (fa,..., fk-1, fix) with fx = 4 > 0, such that
{&:}e2} are the singular values of

- 1 .7 X D,
C—(I 1+ﬂu1u1 —ul)( d)'

The vector @ is determined by

-1 A d2

O |
H(d2 ) H(dj+1—df)’ 1<i<k, (5.10)

7=1 1=t

where the sign of [i; can be chosen arbitrariy for 1 <:<k—1.

Proof: Assume that C exists. By definition,
det(CTC — w?I) = —w? H (@7 —w?).
=1

As in the proof of Lemma 3, we also have

k k A2
A~ A # .
det(CTC — wI) = —* [ (&} - w?) )| p
J=1 j=1
Combining these two equations,
k-1 k Eop
22 _ 2 2 3
[T - =T - Y 525
=1 j=1 7=1

Setting w = d;, we get

| P (&2 —d?)
Because of the interlacing property (5.9), the expression on the right-hand side is positive.
Taking square roots we get (5.10).

On the other hand, if @ is given by (5.10), then 4 is a unit vector (see [9]). Working the
above process backward, the singular values of C are {&;}5]. n

In the special case d = 0, Lemma 4 reconstructs a matrix

A 1
Cy=1(I-
' ( 144

ulul) D]

with given singular values.
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5.2. Computing the Singular Vectors of C

By (5.2) and Lemma 3, ¢ > 0, w; —d > 0 and d; — d > 0 for any ¢. Thus if the singular
value w; of C was given exactly, then each difference

&} — w} = (dj — wi)(d; +wi)

7 t

in (5.4) and (5.5) could be computed to high relative accuracy; and each sum
v = (W} — &) + p(dj — d*) = (wi — d)(wi + d) + p(d; — d)(d; + d)

in (5.4) could be computed to high relative accuracy (each factor in the products is positive).
Each product and each ratio in (5.4) and (5.5) could also be computed to high relative
accuracy. As a result, the corresponding singular vectors ¢; and w; could be computed to
component-wise high relative accuracy.

In practice we can only hope to compute an approximation &; to w;. It is well known
that equations similar to (5.4) and (5.5) can be very sensitive to small errors in w; (see
Section 3.2). But Lemma 4 allows us to overcome this problem. After we have computed
all the approximate singular values {&;}5=} of C, we use Lemma 4 to find a new matrix ¢
whose ezact singular values are {¢;}7=}, and then compute the singular vectors of C using
Lemma 3. Note that each difference

0} —df = (&; — di)(@j +di) and d} —d} = (d;j — di)(d; + d)

in (5.10) can be computed to high relative accuracy. Each product and each ratio can also
be computed to high relative accuracy. Thus |ji;| can be computed to high relative accuracy.
We choose the sign of ji; to be the sign of ;. Substituting the computed @ and the ezact
singular values {&;}%=! into (5.4), (5.5) and (5.6), each singular vector of C' can again be
computed to component-wise high relative accuracy. Consequently, after all the singular
vectors are computed, the singular vector matrices of € will be numerically orthogonal.

To ensure the existence of C, we need {&; Y51 to satisfy the interlacing property (5.9).
But since the exact singular values of C satisfy the same interlacing property (see Lemma 3),
this is only an accuracy requirement on the computed singular values, and is not an additional
restriction on C. We can use the SVD of C as an approximation to the SVD of C. This is
stable as long as @ is close to u (see (4.8)).

5.3. Stably Computing the Singular Values of C' and

In Section 3.3 we showed how to find the roots of a secular equation of the form

k Cg
f(w)=—p+zdg_1w2

=1 7

=0,
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where z = ({1,...,(x)T is a vector and p > 0 is a scalar. Since equation (5.3) is the special
case p = 0 and z = u = (p1,..., )T with |lu|l; = 1, all that remains is to show that the
approximations {&;}X=} to {w;}5=} are sufficiently accurate that 4 is close to u.

Applying (3.8) with p = 0 and z = u, we get

T ﬂ’lﬂ |d2 — W2 (5.11)
2

for every ¢ and j, provided that 3; = 2nk||ull2/((1 — nk)|u;]) < 2.

|0? — w?| <

Let @? — w? = oyj(d? — w?)/p; for all i and j. Suppose that we pick 8 = 29k? in (5.2).
Then we have |u;| > 2nk?||u||s. Assume further that nk < 1/100. Then 8; < 2/3, and (5.11)
implies that |as;| < a = 4nk||u||; for all ¢ and j. Thus, from (5.10),

(w _dz) H dz)(1+a1,/y,) _ M Qji
\/ I, @ \/ @=a =il & )

.7953 7=1

and, since j; and g; have the same sign,

k-1 X
N Qs a \?
i — pel = |uil ”(1"‘;)—1 Sl#i|(<1+m) —1)

J=1

il (20 (7)< 1) < (e~ 1) k2

< 4nk?lulls, (5.12)

IA

where we have used the fact that ak/(2|y;|) <1 and that e =1 < (e—1)yfor 0 <y < 1.
As in the discussion following (3.9), we might expect the factor of k¥* in 6 and (5.12) to be
more like O(k) in practice.

We have been assuming that ||ul|z = 1. In practice this is not always true due to round-
off errors. However, since a vector with norm near unity is close to an ezact unit vector to
component-wise high relative accuracy, in practice u is given to component-wise high relative
accuracy. This implies that each term in the secular equation (5.3) is still computed to high
relative accuracy after the reformulation of Section 3.3. Hence the stopping criterion (3.6)
holds and % is close to u.

5.4. Deflation for C and C;

Consider the matrix

_ ]. T Dl
C“(I T+p ™ ")( d)’

where D = diag(D1,d) = diag(dy,...,dk—1,dx) € RF* withdy > ... > dk 12> dy=d >0
and u; = (pg,.-.,pk-1)F € RF1 4 = pp > 0 is a scalar, a.nd u = (I w)T is a unit
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vector?. We now show that we can reduce C to a matrix of the same form which further
satisfies (see (5.2))

di —diy1 2 0||D|; and || >0,

where 6 is specified in Section 5.3. We only discuss deflation procedures for C; the deflation
procedures for C; are the same with d = 0 and D, replaced by D.

Assume that y < 6. Then

- <I_ e -ul) (Dl d) * ((1 +lf9)210+ i 0) (Dl d)

= C+0(0||Dll,),

5 1 T D,
C—<1—1+9u1u1 u1)< d)'

We perturb p to 8. The perturbed matrix C has the same form but with g > 6. This
reduction is stable (see Section 4.1).

where

Next assume that |g;| < 6 for some ¢ < k — 1. We illustrate the case ¢ = 1. Let

[ _ d .
ul_('l\il) and Dl—( D1>

Then
_ I’L% _ lul vlT _Ilcl dl
C = ui +u L4k D,
1 0 0 d 5
= 1 .. o D
OI—1+ﬂu1uf —iy ! p
2
[ad! [t Y d1
— a— u — o
o AT by
— U 0
1+p Uy 0 d
d;
- ( C) +0(0[1D),
where

‘ 1 .. . D
C’:(I—l_i_”ulu’f —u1)< 1 d>'

® As noted above, we only need to require u to have norm near unity.
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We perturb u; to 0. The perturbed matrix d & has d; as a singular value, and C is

another matrix with the same form but smaller dimensions. This reduction is stable (see
Section 4.1).

Now assume that d; — diy1 < 8]|D||; for some ¢ < k — 2. We illustrate the reduction

for i = 1. Let Gy; = diag(G, I,_;), with G being a Givens rotation that zeroes the first
T

component of ( Zl ), and let 4; = (\/uf +p2ps,... ,pk_l) and
2

D = diag(Dy, di) = diag(ds,ds, . . .,dr—1, di).

Then
0 d d
G2,k_1 Uy = (ﬁl ) a.nd Gg‘,k ( 2 D ) = ( 2 D ) Gg:k-
Since
ds
= v 9
D ( 5 ) +0(0]1Dll),
we have
G2,k—ICG§,k
1
= G2,k-—1 (I - 1 T ﬂululT - ul) D Gg,k
= Gopr (1= —2—wd  —w) G, [ ® ) +00IDI)
W= 1 + lll 1 2,k D
= |- ——1 (G k-1 u1) (Gok-1 ul)T — (G2e-1 w1) & 5 | + 00 Dl2)
14+ up D
1 0 0 ds y
= 1 .. . D + O(6||D
o 1oL o | +oeim)
d
= ( : C) +0(8IDIL),
where

We perturb d; to d;4;. The perturbed matrix @ & has d; as a singular value and C

is another matrix with the same form but smaller dimensions. This reduction is stable (see
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Section 4.1).
Finally assume that dx—q — d < 0||D||2 and dx—2 — di—1 2> || D||2- Let
-b = diag (d17 RRE) dk—Za die-1 + 6”0”27 d) =D+ 0(0 ”‘D“2)
Then
1 pd

where

v 1 v

We perturb dy_; to dx_; + 6||D||2. The perturbed matrix C has the same form but with
di—1 — d > 0||D||2. If the relation dg_o — di—1 > 6]|D||2 no longer holds, we can apply the
previous reduction to reduce the matrix size again. This reduction is stable (see Section 4.1).

6. Ill-conditioning of Problem 1 for Singular Values

In this section we analyze the ill-conditioning of the singular values for Problem 1 by
bounding the effect of perturbations in a on the singular values of A’. The effect of pertur-
bations in V and D is similar.

6.1. The Case m > n

From (4.6), we have
A =XCVT,

where X is column orthogonal and C; € R™*" is given by
1
C: = (I—— T Puwf) D,

Assume that D is non-singular. The second relation in equation (4.2) implies that

u; = D71V7Ta, whence yu = /1 — ||u1]|2 . Thus C; can be rewritten as

with 4 > 0 and ||u1||Z + p? = 1.

1
01=D—1+”'U,12'T,

where z = V7a.

Assume that @ is a vector slightly perturbed from a with ||[D~'V7g||; < 1. Define

= VT, @=D"VTa md i=+/1- [}

_ 1
CI"D"1+

Let

— '&1 ZT,
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and let A’ be the downdated matrix for the input data V, D and @. Then by (4.6) we have
A =XC, VT,

where X is a column orthogonal matrix. Thus the singular values of A’ and A’ are the
singular values of C; and C}, respectively. Let w; and @; be the i-th largest singular values
of C; and C,, respectively. Then |©; — w;| < ||C1 — Cil|2 (see [9, page 428]).

Since
z—z=VT(@—a) and @ —u =DVT(a—a),
we have
Iz2-zll<lla—allz and ||& — wllz < | D72 ||@ — afl2.
Similarly,
= 1=l = /1~
_ @113 = fluall3
V1=ll@l+ /1wl
- (al + ul)T (ﬁl - ul)
V1=llalg + /1=l
so that
_ 2||a1 — w2
B —pl £ —F—=.
V1= [lull3
Since
= 1
Ci—-C = — u 27 + uy 2%
1 1 1T 7 1 T4 1
— ( (ﬁ'_ﬂ)ul _ﬁl_ul) T _ Uy (E—Z)T
Q+p)(1+a) 1+5 1+4 ’
we have
& —wi| < ||Ci = Cillz
< up U — “ lz -
B “(Hu) em 17 |, Pt T e

IN

(17 = ul + 181 — w2l + [ — 2l
2lay — u _ _
< (u Tl - ulnz) lalls + 112 = Il
V=Tl
- 4max (D], flall,)

ST il
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When the factor ||[D~!||, ||a||2 is very large, or when ||u4]|; is near unity, we cannot guarantee
that @; is close to w;. This result parallels that of Stewart [19, page 205] in the context of
downdating the Cholesky/QR factorizations.

To better explain the role of ||u;||2, Stewart [19] shows that

d,' (7355 z_ 1
on SIDa Il and ol 2 (T

Thus if ||u;||2 is near unity, then w, is close to zero and C; (and hence A’) is close to being
singular. And if any d; is reduced (to w;) by a big factor, then ||u;||; is near unity.

6.2. The Case m<n

From (4.13), we have
A'= XCVT,

where X is orthogonal and C' € R(™~1)*™ i5 given by

1
C=<I—l+pu1u:1r —Ul)D,

with g > 0 and ||u,]|3 + p® = 1.

Assume that D is non-singular. By (4.12), u = (u7, p)T = D7*V/Ta. Let

D=(D1 d) and VlTa=<z£).

Then u; = Dyt 21, u = (/d and

| 1
C=(I——1+ﬂulzf —dul).

Assume that @ is a vector slightly perturbed from a such that Problem 1 with input data
Vi, D and a has a solution (see Section 1). Define

(2)=we wa (5)=(22)

— 1 _ _

C = (I—— 1+ﬁu1 z;‘r —dul),
and let A’ be the downdated matrix for the input data Vi, D and @ Then by (4.13), we
have

Let

A'=XCVT,
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where X is an orthogonal matrix. Thus the singular values of A’ and A’ are the singular
values of C and C, respectively. Let w; and &; be the i-th largest singular values of C' and
C, respectively. Then |©; — w;| < ||C — C||2 (see [9, page 428]).

Since

(%:?):Vf(&—@ and (ﬂ;:";l) = D'V (@ - a),

we have
max (||21 — z1ll2, 1 — ¢1) < lla — allz,
and
max (||&; — u1l2, |& — p]) < || D7, lla — a2

Similar to Section 6.1, we have

~ p—p r_wu@E-2)" (l-—w)z 7 )
C-C-= — - - —d(a —u) ).
((1+u)(1+ﬁ)”121 117 117 (t =)
Thus

|@: — wi

< IC=Cllz

- T = =T

< r|| o w (71— 21) (1 —w1) 5 o ld (- u

= H(1+u)(1+u"‘z‘ 2 1+4 |, Trp ||, el
< 5= pl |lzallz + 1121 — zull2 + 12a — wall2 [|Z1ll2 + d ||@1 — w2

< 4max (| D7, llellz |D7], lallz 1) lla — allz

When the factor || D7, ||al|2 is very large, we cannot guarantee that @; is close to w;
(cf. [19, page 205]).
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